Development of Biodegradable Films Produced from Residues of Nixtamalization of Popcorn
Abstract
:1. Introduction
2. Materials and Methods
2.1. Elaboration and Characterization of Films
2.1.1. Film Elaboration
2.1.2. Color of Films
2.1.3. Moisture and Thickness
2.1.4. Water Solubility (WS)
2.1.5. Water Adsorption Capacity (WA)
2.1.6. Tensile Properties
2.1.7. Fourier-Transform Infrared Spectroscopy (FT-IR)
2.1.8. Imaging with Atomic Force Microscopy (AFM)
2.1.9. Scanning Electron Microscopy (SEM)
2.1.10. Biodegradability Test
- = initial dried weight of the films before the test
- = final dried weight of the films
2.2. Physicochemical Properties of Avocado
2.2.1. Avocado Conditioning
2.2.2. Color Analysis
2.2.3. Weight Loss
2.2.4. Avocado Firmness
2.2.5. Total Soluble Solids (TSS) and Titratable Acidity (TA)
2.2.6. Total and Reducing Sugars
2.3. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Films
3.1.1. Color
3.1.2. Moisture (M) and Thickness (T)
3.1.3. Water Solubility (WS)
3.1.4. Water Adsorption Capacity (WA)
3.1.5. Tensile Properties
3.1.6. Fourier-Transform Infrared Spectroscopy (FT-IR)
3.1.7. Microstructure by Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM)
3.1.8. Biodegradability of Films
3.2. Physicochemical Characterization of Avocado
3.2.1. Color Analysis
3.2.2. Weight Loss
3.2.3. Avocado Firmness
3.2.4. Titratable Acidity (TA) and Total Soluble Solids (TSS)
3.2.5. Total and Reducing Sugars
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Díaz-Montes, E.; Castro-Muñoz, R.; Yáñez-Fernández, J. An Overview of Nejayote, a Nixtamalization by Product. Agric. Biosyst. Eng. 2016, 8, 41–60. [Google Scholar] [CrossRef] [Green Version]
- Salmeron-Alcocer, A.; Rodriguez-Mendoza, N.; Pineda-Santiago, V.; Cristiani-Urbina, E.; Juarez-Ramirez, C.; Ruiz-Ordaz, N.; Galindez-Mayer, J. Aerobic treatment of maize-processing wastewater (nejayote) in a single-stream multi-stage bioreactor. J. Environ. Eng. Sci. 2003, 2, 401–406. [Google Scholar] [CrossRef]
- Scheel, C. Beyond sustainability. Transforming industrial zero-valued residues into increasing economic returns. J. Clean. Prod. 2016, 131, 376–386. [Google Scholar] [CrossRef]
- Ramírez-Romero, G.; Reyes-Velazquez, M.; Cruz-Guerrero, A. Study of Nejayote as Culture Medium for Probiotics and Production of Bacteriocins. Rev. Mex. Ing. Quim. 2013, 12, 463–471. Available online: https://www.scielo.org.mx/pdf/rmiq/v12n3/v12n3a9.pdf (accessed on 19 June 2023).
- Castro-Muñoz, R.; Fíla, V.; Durán-Páramo, E. A review of the primary by-product (Nejayote) of the nixtamalization during maize processing: Potential reuses. Waste Biomass Valorization 2019, 10, 13–22. [Google Scholar] [CrossRef]
- Velasco-Martinez, M.; Angulo, O.; Vazquez-Couturier, D.L.; Arroyo-Lara, A.; Monroy-Rivera, J.A. Effect of dried solids of nejayote on broiler growth. Poult. Sci. 1997, 76, 1531–1534. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Estrada, B.A.; Lazo-Vélez, M.A.; Nava-Valdez, Y.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Improvement of dietary fiber, ferulic acid and calcium contents in pan bread enriched with nejayote food additive from white maize (Zea mays). J. Cereal Sci. 2014, 60, 264–269. [Google Scholar] [CrossRef]
- Castañeda-Ruelas, G.M.; Ibarra-Medina, R.K.; Niño-Medina, G.; Mora-Rochín, S.; Montes-Ávila, J.; Cuevas-Rodríguez, E.O.; Jiménez-Edeza, M. Phenolic extract from nejayote flour: Bioactive properties and its potential use as an antimicrobial agent of alginate-based edible coatings. Cereal Chem. 2021, 98, 1165–1174. [Google Scholar] [CrossRef]
- Sanchez-Gonzalez, M.; Blanco-Gamez, A.; Escalante, A.; Valladares, A.G.; Olvera, C.; Parra, R. Isolation and characterization of new facultative alkaliphilic Bacillus flexus strains from maize processing waste water (Nejayote). Lett. Appl. Microbiol. 2011, 52, 413–419. [Google Scholar] [CrossRef]
- Ruzaina, I.; Norizzah, A.R.; Zahrah Halimahton, M.S.; Cheow, C.S.; Adi, M.S.; Noorakmar, A.W.; Mohd Zhaid, A. Utilisation of Palm-Based and Beeswax Coating on the Postharvest-Life of Guava (Psidium guajava L.) during Ambient and Chilled Storage. Int. Food Res. J. 2013, 20, 265. Available online: http://ifrj.upm.edu.my/20%20(01)%202013/35%20IFRJ%2020%20(01)%202013%20Norizzah%20(219).pdf (accessed on 12 June 2023).
- Velickova, E.; Winkelhausen, E.; Kuzmanova, S.; Alves, V.D.; Moldão-Martins, M. Impact of Chitosan-Beeswax Edible Coatings on the Quality of Fresh Strawberries (Fragaria ananassa Cv Camarosa) under Commercial Storage Conditions. LWT 2013, 52, 80–92. [Google Scholar] [CrossRef]
- Valdespino-León, M.; Calderón-Domínguez, G.; De La Paz Salgado-Cruz, M.; Rentería-Ortega, M.; Farrera-Rebollo, R.R.; Morales-Sánchez, E.; Gaona-Sánchez, V.A.; Terrazas-Valencia, F. Biodegradable Electrosprayed Pectin Films: An Alternative to Valorize Coffee Mucilage. Waste Biomass Valorization 2021, 12, 2477–2494. [Google Scholar] [CrossRef]
- Hernández-Varela, J.D.; Chanona-Pérez, J.J.; Calderón Benavides, H.A.; Cervantes Sodi, F.; Vicente-Flores, M. Effect of Ball Milling on Cellulose Nanoparticles Structure Obtained from Garlic and Agave Waste. Carbohydr. Polym. 2021, 255, 117347. [Google Scholar] [CrossRef]
- Abral, H.; Pratama, A.B.; Handayani, D.; Mahardika, M.; Aminah, I.; Sandrawati, N.; Sugiarti, E.; Muslimin, A.N.; Sapuan, S.M.; Ilyas, R.A. Antimicrobial Edible Film Prepared from Bacterial Cellulose Nanofibers/Starch/Chitosan for a Food Packaging Alternative. Int. J. Polym. Sci. 2021, 2021, 6641284. [Google Scholar] [CrossRef]
- Abdullah, Z.W.; Dong, Y. Biodegradable and Water Resistant Poly(Vinyl) Alcohol (PVA)/Starch (ST)/Glycerol (GL)/Halloysite Nanotube (HNT) Nanocomposite Films for Sustainable Food Packaging. Front. Mater. 2019, 6, 58. [Google Scholar] [CrossRef] [Green Version]
- Colussi, R.; Pinto, V.Z.; Lisie, S.; El Halal, M.; Da, E.; Zavareze, R.; Renato, A.; Dias, G. Physical, Mechanical, and Thermal Properties of Biodegradables Films of Rice Starch. Curr. Agric. Sci. Technol. 2014, 20. Available online: https://periodicos.ufpel.edu.br/index.php/CAST/article/view/2201 (accessed on 19 June 2023).
- Yoshida, T.; Sakamoto, M.; Azuma, J. Extraction of hemicelluloses from corn pericarp by the NaOH-urea solvent system. Procedia Chem. 2012, 4, 294–300. [Google Scholar] [CrossRef] [Green Version]
- Villa-Rodríguez, J.A.; Molina-Corral, F.J.; Ayala-Zavala, J.F.; Olivas, G.I.; González-Aguilar, G.A. Effect of maturity stage on the content of fatty acids and antioxidant activity of ‘Hass’ avocado. Food Res. Int. 2011, 44, 1231–1237. [Google Scholar] [CrossRef]
- Stephen, J.; Radhakrishnan, M. Avocado (Persea americana Mill.) Fruit: Nutritional Value, Handling and Processing Techniques, and Health Benefits. J. Food. Process. Preserv. 2022, 46, e17207. [Google Scholar] [CrossRef]
- Pedreschi, R.; Uarrota, V.; Fuentealba, C.; Alvaro, J.E.; Olmedo, P.; Defilippi, B.G.; Meneses, C.; Campos-Vargas, R. Primary Metabolism in Avocado Fruit. Front. Plant. Sci. 2019, 10, 795. [Google Scholar] [CrossRef] [Green Version]
- Xiao, L.; Kiyoto, M. Effects of modified atmosphere packages using films with different permeability characteristics on retaining freshness of avocado, papaya and mango fruits at normal temperature. Environ. Control Biol. 2001, 39, 183–189. [Google Scholar] [CrossRef] [Green Version]
- Kassim, A.; Workneh, T.S.; Bezuidenhout, C.N. A review on postharvest handling of avocado fruit. Afr. J. Agric. Res. 2013, 8, 2385–2402. [Google Scholar] [CrossRef]
- Aguilar-Méndez, M.A.; Martín-Martínez, E.S.; Tomas, S.A.; Cruz-Orea, A.; Jaime-Fonseca, M.R. Gelatine–starch films: Physicochemical properties and their application in extending the post-harvest shelf life of avocado (Persea americana). J. Sci. Food Agric. 2008, 88, 185–193. [Google Scholar] [CrossRef]
- Aguirre-Joya, J.A.; Ventura-Sobrevilla, J.; Martínez-Vazquez, G.; Ruelas-Chacón, X.; Rojas, R.; Rodríguez-Herrera, R.; Aguilar, C.N. Effects of a natural bioactive coating on the quality and shelf life prolongation at different storage conditions of avocado (Persea americana Mill.) cv. Hass. Food Packag. Shelf Life. 2017, 14, 102–107. [Google Scholar] [CrossRef]
- Arzate-Vázquez, I.; Chanona-Pérez, J.J.; Calderón-Domínguez, G.; Terres-Rojas, E.; Garibay-Febles, V.; Martínez-Rivas, A.; Gutiérrez-López, G.F. Microstructural Characterization of Chitosan and Alginate Films by Microscopy Techniques and Texture Image Analysis. Carbohydr. Polym. 2012, 87, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Varela, J.D.; Chanona-Pérez, J.J.; Resendis-Hernández, P.; Gonzalez Victoriano, L.; Méndez-Méndez, J.V.; Cárdenas-Pérez, S.; Calderón Benavides, H.A. Development and Characterization of Biopolymers Films Mechanically Reinforced with Garlic Skin Waste for Fabrication of Compostable Dishes. Food Hydrocoll. 2022, 124, 107252. [Google Scholar] [CrossRef]
- Rojas-Candelas, L.E.; Díaz-Ramírez, M.; Rayas-Amor, A.A.; Cruz-Monterrosa, R.; Méndez-Méndez, J.V.; Villanueva-Carvajal, A.; Cortés-Sánchez, A.d.J. Nanomechanical, Structural and Antioxidant Characterization of Nixtamalized Popcorn Pericarp. Appl. Sci. 2022, 12, 6789. [Google Scholar] [CrossRef]
- Rojas-Candelas, L.E.; Chanona-Pérez, J.J.; Méndez Méndez, J.V.; Perea-Flores, M.J.; Cervantes-Sodi, H.F.; Hernández-Hernández, H.M.; Marin-Bustamante, M.Q. Physicochemical, Structural and Nanomechanical Study Elucidating the Differences in Firmness among Four Apple Cultivars. Postharvest Biol. Technol. 2021, 171, 111342. [Google Scholar] [CrossRef]
- Gaona-Sánchez, V.A.; Calderón-Domínguez, G.; Morales-Sánchez, E.; Chanona-Pérez, J.J.; Arzate-Vázquez, I.; Terrés-Rojas, E. Pectin-Based Films Produced by Electrospraying. J. Appl. Polym. Sci. 2016, 133, 43779. [Google Scholar] [CrossRef]
- Zolfi, M.; Khodaiyan, F.; Mousavi, M.; Hashemi, M. Characterization of the New Biodegradable WPI/Clay Nanocomposite Films Based on Kefiran Exopolysaccharide. J. Food Sci. Technol. 2015, 52, 3485–3493. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Jiang, Y.; Liu, F.; Ren, F.; Zhao, G.; Leng, X. Fabrication and Characterization of TiO2/Whey Protein Isolate Nanocomposite Film. Food Hydrocoll. 2011, 25, 1098–1104. [Google Scholar] [CrossRef]
- Sothornvit, R.; Krochta, J.M. Water Vapor Permeability and Solubility of Films from Hydrolyzed Whey Protein. J. Food Sci. 2000, 65, 700–703. [Google Scholar] [CrossRef]
- Bátori, V.; Jabbari, M.; Åkesson, D.; Lennartsson, P.R.; Taherzadeh, M.J.; Zamani, A. Production of Pectin-Cellulose Biofilms: A New Approach for Citrus Waste Recycling. Int. J. Polym. Sci. 2017, 2017, 9732329. [Google Scholar] [CrossRef] [Green Version]
- Narayanan, V.; Mani, M.K.; Thambusamy, S. Electrospinning preparation and spectral characterizations of the inclusion complex of ferulic acid and γ-cyclodextrin with encapsulation into polyvinyl alcohol electrospun nanofibers. J. Mol. Struct. 2020, 1221, 128767. [Google Scholar] [CrossRef]
- Diyana, Z.N.; Jumaidin, R.; Selamat, M.Z.; Suan, M.S.M. Thermoplastic Starch/Beeswax Blend: Characterization on Thermal Mechanical and Moisture Absorption Properties. Int. J. Biol. Macromol. 2021, 190, 224–232. [Google Scholar] [CrossRef]
- Cox, K.A.; McGhie, T.K.; White, A.; Woolf, A.B. Skin Colour and Pigment Changes during Ripening of “Hass” Avocado Fruit. Postharvest Biol. Technol. 2004, 31, 287–294. [Google Scholar] [CrossRef]
- Lancaster, J.E.; Lister, C.E.; Reay, P.F.; Triggs, C.M. Influence of pigment composition on skin color in a wide range of fruit and vegetables. J. Amer. Soc. Hort. Sci. 1997, 122, 594–598. [Google Scholar] [CrossRef] [Green Version]
- Sierra, N.M.; Londoño, A.; Gómez, J.M.; Herrera, A.O.; Castellanos, D.A. Evaluation and Modeling of Changes in Shelf Life, Firmness and Color of ‘Hass’ Avocado Depending on Storage Temperature. Food Sci. Technol. Int. 2019, 25, 370–384. [Google Scholar] [CrossRef]
- Aguiló-Aguayo, I.; Oms-Oliu, G.; Martín-Belloso, O.; Soliva-Fortuny, R. Impact of Pulsed Light Treatments on Quality Characteristics and Oxidative Stability of Fresh-Cut Avocado. LWT 2014, 59, 320–326. [Google Scholar] [CrossRef]
- Goulao, L.F.; Oliveira, C.M. Cell Wall Modifications during Fruit Ripening: When a Fruit Is Not the Fruit. Trends Food Sci. Technol. 2008, 19, 4–25. [Google Scholar] [CrossRef] [Green Version]
- Sakurai, N.; Nevins, D.J. Relationship between Fruit Softening and Wall Polysaccharides in Avocado (Persea americana Mill) Mesocarp Tissues. Plant Cell Physiol. 1997, 38, 603–610. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Robinson, P.W.; Madore, M.A.; Witney, G.W.; Arpaia, M.L. “Hass” Avocado Carbohydrate Fluctuations. II. Fruit Growth and Ripening. J. Am. Soc. Hortic. Sci. 1999, 124, 676–681. [Google Scholar] [CrossRef]
- Blakey, R.J.; Tesfay, S.Z.; Bertling, I.; Bower, J.P. Changes in Sugars, Total Protein, and Oil in “Hass” Avocado (Persea americana Mill.) Fruit during Ripening. J. Hortic. Sci. Biotechnol. 2012, 87, 381–387. [Google Scholar] [CrossRef]
- González, R.; Reguera, E.; Figueroa, J.M.; De La Luz Martínez, J. Study of the Influence of Nejayote and Other Additives on the Cohesive Strength and Electric Properties of Carbon Black Agglomerates. J. Appl. Polym. Sci. 2003, 90, 3965–3972. [Google Scholar] [CrossRef]
Treatments | Beeswax (g/100 g) | Glycerin (g/100 g) | Potato Starch (g/100 g) | Nejayote (g/100 g) | Pericarp (g/100 g) |
---|---|---|---|---|---|
P | 1.5 | 2 | 4 | 0 | 0.5 |
NP | 1.5 | 2 | 4 | 0.25 | 0.25 |
N | 1.5 | 2 | 4 | 0.5 | 0 |
Film | L* | a* | b* |
---|---|---|---|
P | 94.75 ± 2.21 b | −1.96 ± 0.16 a | 29.4 ± 1.13 a,b |
NP | 85.26 ± 2.09 a | 1.90 ± 0.10 b | 31.85 ± 1.67 b |
N | 86.39 ± 1.25 a | 5.68 ± 0.40 c | 26.71 ± 2.18 a |
Film | M (g/100 g) | T (mm) | WS (g/100 g) | WA (g/100 g) | Tensile Strength (MPa) | Elastic Modulus (MPa) | Toughness (J/m3) |
---|---|---|---|---|---|---|---|
P | 10.97 ± 0.79 a | 0.27 ± 0.02 b | 22.62 ± 1.78 a | 162.60 ± 14.05 c | 0.21 ± 0.001 b | 0.004 ± 0.001 a | 2.25 ± 0.25 a |
NP | 12.18 ± 0.87 a | 0.21 ± 0.01 a | 23.92 ± 0.77 a | 136.36 ± 8.87 b | 0.36 ± 0.08 c | 0.003 ± 0.001 a | 2.15 ± 0.33 a |
N | 11.77 ± 0.12 a | 0.20 ± 0.01 a | 39.23 ± 2.66 b | 105.39 ± 1.89 a | 0.05 ± 0.01 a | 0.003 ± 0.001 a | 1.50 ± 0.01 b |
Total Sugar (g/100 g) | ||||
Week | Control | Pericarp | NP | Nejayote |
0 | 66.3 ± 2.20 a | |||
1 | 59.6 ± 0.86 b | 59.40 ± 2.12 bc | 52.30 ± 3.11 e | 62.5 ± 3.17 ab |
2 | 71.0 ± 1.24 d | 67.10 ± 5.68 acd | 42.50 ± 0.59 f | 60.00 ± 0.67 b |
4 | 22.70 ± 0.38 g | |||
Reducing sugar (g/100 g) | ||||
0 | 2.53 ± 0.15 a | |||
1 | 2.38 ± 0.03 a | 1.19 ± 0.15 d | 1.19 ± 0.15 d | 1.54 ± 0.22 cd |
2 | 0.69 ± 0.02 e | 1.4 ± 0.06 d | 1.39 ± 0.11 d | 2.04 ± 0.19 b |
4 | 1.84 ± 0.09 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas-Candelas, L.E.; Díaz-Ramírez, M.; Rayas-Amor, A.A.; Cruz-Monterrosa, R.G.; Méndez-Méndez, J.V.; Salgado-Cruz, M.d.l.P.; Calderón-Domínguez, G.; Cortés-Sánchez, A.d.J.; González-Vázquez, M. Development of Biodegradable Films Produced from Residues of Nixtamalization of Popcorn. Appl. Sci. 2023, 13, 8436. https://doi.org/10.3390/app13148436
Rojas-Candelas LE, Díaz-Ramírez M, Rayas-Amor AA, Cruz-Monterrosa RG, Méndez-Méndez JV, Salgado-Cruz MdlP, Calderón-Domínguez G, Cortés-Sánchez AdJ, González-Vázquez M. Development of Biodegradable Films Produced from Residues of Nixtamalization of Popcorn. Applied Sciences. 2023; 13(14):8436. https://doi.org/10.3390/app13148436
Chicago/Turabian StyleRojas-Candelas, Liliana Edith, Mayra Díaz-Ramírez, Adolfo Armando Rayas-Amor, Rosy Gabriela Cruz-Monterrosa, Juan Vicente Méndez-Méndez, Ma. de la Paz Salgado-Cruz, Georgina Calderón-Domínguez, Alejandro de Jesús Cortés-Sánchez, and Marcela González-Vázquez. 2023. "Development of Biodegradable Films Produced from Residues of Nixtamalization of Popcorn" Applied Sciences 13, no. 14: 8436. https://doi.org/10.3390/app13148436
APA StyleRojas-Candelas, L. E., Díaz-Ramírez, M., Rayas-Amor, A. A., Cruz-Monterrosa, R. G., Méndez-Méndez, J. V., Salgado-Cruz, M. d. l. P., Calderón-Domínguez, G., Cortés-Sánchez, A. d. J., & González-Vázquez, M. (2023). Development of Biodegradable Films Produced from Residues of Nixtamalization of Popcorn. Applied Sciences, 13(14), 8436. https://doi.org/10.3390/app13148436