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Abstract: Industrial processes involving manipulator robots require accurate positioning and ori-
enting for high-quality results. Any decrease in positional accuracy can result in resource wastage.
Machine learning methodologies have been proposed to analyze failures and wear in electronic and
mechanical components, affecting positional accuracy. These methods are typically implemented
in software for offline analysis. In this regard, this work proposes a methodology for detecting a
positional deviation in the robot’s joints and its implementation in a digital system of proprietary de-
sign based on a field-programmable gate array (FPGA) equipped with several developed intellectual
property cores (IPcores). The method implemented in FPGA consists of the analysis of current signals
from a UR5 robot using discrete wavelet transform (DWT), statistical indicators, and a neural network
classifier. IPcores are developed and tested with synthetic current signals, and their effectiveness is
validated using a real robot dataset. The results show that the system can classify the synthetic robot
signals for joints two and three with 97% accuracy and the real robot signals for joints five and six
with 100% accuracy. This system aims to be a high-speed reconfigurable tool to help detect robot
precision degradation and implement timely maintenance strategies.

Keywords: FPGA; positional accuracy; discrete wavelet transform; industrial robot; degradation;
neural networks

1. Introduction

Robotic systems have revolutionized the manufacturing industry by providing un-
precedented accuracy, precision, and speed. Accuracy is critical to ensure the robot can
position and orient itself to the required locations and repeat the task over a long time with
minimal error. One way to enhance the positioning accuracy of the robot is by focusing
on the design stage. For instance, Kelaiaia et al. [1], present a comprehensive review of
optimal design aspects for parallel manipulators and propose a methodology for achieving
the optimal design of such manipulators. Additionally, improving robot performance
indices can contribute to better accuracy. Brahmia et al. [2], propose a new dimensionless
sensitivity index for Parallel Kinematic Manipulators (PKM), based on the definition of the
local sensitivity index (LSI). This index aids in identifying the contribution of error sources
to the positioning error of the manipulator for a given task. By reducing geometric errors
in PKMs, this index can significantly enhance the positioning accuracy of the robot.

Despite their advanced capabilities, robots can still experience accuracy degradation
due to several factors such as environmental conditions, assembly errors, manufacturing
defects in the structure, backlash, and component wear [3]. Therefore, it is essential to
monitor and maintain the accuracy of robotic systems to ensure optimal performance over
time. Different factors involved in the positional degradation of industrial robots and
failures caused by wear in electrical and mechanical components are frequently studied. In
this regard, methods based on machine learning techniques have been proposed to identify
failures, such as in [4] where the wavelet packet transform (WPT) and the hidden Markov
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model (HMM) are used to analyze acoustic emissions (EA) and identify failures in a rotate
vector reducer (RV). A method based on artificial failure data, random forest regression
(RFR), support vector regression (SVR), and deep neural network regression (DNNR) is
proposed in [5] to identify overload anomalies in the robot’s end effector and their effect on
the joints. Moreover, in [6], a simulation of the torque degradation of the actuator of an
industrial robot is carried out, where it is determined that the robot controller cannot deal
with failures of this type. Other works related to methodologies that deal with mechanical
failures in robots can be consulted for gears [7–10] and RV [11].

Recent research on deep learning and fault detection techniques for robots includes
several noteworthy works. In [12], the authors propose a method that combines a sparse
auto-decoder with a support vector machine (SVM) to construct a fault detection model
for the robot’s reducer. They utilize signals obtained from an attitude sensor composed
of an accelerometer, gyroscope, and magnetometer. Another study, presented in [13],
introduces a method based on a one-dimensional convolutional neural network (1DCNN)
with matrix kernels. This approach is designed to diagnose faults in harmonic reducers
used in industrial robots by analyzing vibration signals. In addition, [14] describes a fault
diagnosis method that employs Deep Convolutional Neural Networks (DCNN) to detect
faults in the robot’s joints. The model is trained using a database generated by modeling
the actuators and sensors. Meanwhile, Ref. [15] presents a data-driven approach utilizing
Deep Residual Neural Networks (DRNN) to detect faults in robot joints, also based on
sensor and actuator modeling. Furthermore, Jiao and Zheng [16] propose a method for
detecting joint bearing failures in industrial robots. They utilize deep belief networks (DBN)
to analyze the robot joint vibration signals and identify potential issues.

On the other hand, there have been works that directly address the problem of posi-
tional degradation of industrial robots, e.g., in [3], the dependent errors present in the robot
produced by non-ideal deflections of the structure and movement are characterized using
polynomials of Chebyshev for an advanced error model. Taha et al. [17] use multivariable
regression adjustment (MRA) and deep long short-term memory (DLSTM) to predict and
model the displacement of an industrial robot and to estimate the residual error on the
end-effector. An expert system for detecting a deviation in the joints of a robot is proposed
in [18] and is based on DWT analysis, neural networks, and fractal and energy features.
Additionally, methods based on artificial vision systems to carry out studies on the de-
viation of the robot have been proposed in [19–22], they have even been complemented
with re-calibration methods through kinematic analysis of the robot as the work presented
in [23].

It is important to note that some of the presented methods involve performing analysis
on personal computers (PCs) after the necessary data acquisition, thus operating offline.
Therefore, integrating robot failure or position degradation analysis methods into reconfig-
urable processing systems, such as Field Programmable Gate Arrays (FPGAs), provides the
opportunity to perform non-invasive information analysis, online or offline, quickly and ef-
ficiently. In this sense, it is worth noting that numerous FPGA-based approaches have been
developed tailored for robotics. For example, Sun et al. [24] propose an FPGA-based torque
predictor control focused on legged robots. The torque estimation is performed considering
the delay in the calculation and measurement, improving the prediction and period of the
controller, and obtaining a better controller performance. The acceleration of the kinematic
models of a 6-degree-of-freedom (DOF) robot arm implemented in FPGA is presented
in [25], emphasizing the inverse kinematic model required in the robot motion. The speed
and accuracy of the processing of the proposed method demonstrate its effectiveness in
real-time robot motion. Besides, the implementation in FPGA of a control system for a
3DOF robot with pneumatic actuators is presented in [26]. Proportional integral derivative
controllers (PID) are used for air valve management and position control of the robot. As
well as a neural network is used to tune the position controller gains, and although it
obtains some disturbances attributed to the ANN tuning process, the results are satisfactory.
Liu et al. [27] introduced a balance controller for a humanoid robot. The system, imple-
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mented on an FPGA, comprises several stages, including external force detection, recovery
balance control, trajectory planning, and inverse kinematics. Their method enables the hu-
manoid robot to effectively recover its balance after experiencing external force. In addition,
in [28], a method based on artificial vision is proposed to detect the deviation in a conveyor
belt in real time using FPGAs and the Line Segment Detection algorithm (LSD), obtaining a
high value of images processed per second, which improves the performance in real-time
of the fault detection method. There have also been developed works focused on modular,
reconfigurable robots (MRR) as [29], where a distributed computing system for multiple
object tracking based on FPGA and Kalman filters is presented. It uses specialized compu-
tational cores (SCCs) and a strategy to use the least amount of FPGA resources for real-time
motion control tasks of MRR. They reconfigure the FPGA by replacing complex models
with simpler SCCs to reduce power consumption. The results show better performance,
resource usage, and computational accuracy than high-performance CPUs. Furthermore,
Plancher et al. [30] propose implementing the dynamic model of robots on CPU, GPU,
and FPGA through the Recursive Newton-Euler Algorithm (RNEA) computation. The
results demonstrate the superior performance of the GPU and FPGA over the CPU as
the number of computations increases. Furthermore, works have also been developed
on manufacturing equipment such as computer numerical control machines (CNC); for
example, Ref. [31] proposes an anomaly detection system in the milling process based on
FPGA. The extraction of features in the frequency domain of machine vibration signals is
performed using discrete Fourier transform (DFT), and this information is used to enter
an auto-associative neural network (AANN) for anomaly detection, reporting satisfactory
results offline. Other recent FPGA applications in robotics are agricultural robots [32],
reactive robotics [33], and grasping recognition [34], among others. The works presented
have demonstrated the usefulness and advantages of using FPGA processing systems in
robotics problems.

Considering the importance of the robot to perform tasks without losing its accuracy,
some of the mentioned works that address the issue of positional degradation and fault
detection require the use of external sensors such as cameras, lasers, or microphones to
acquire the signals for analysis. These external sensors can work correctly in controlled
environments, but in real environments, they are affected by various conditions such
as sensor size, noise, illumination, temperature, and humidity This makes it difficult
to implement in an industrial environment; however, a portable device of a small size
equipped with the necessary components to perform signal acquisition and real-time
processing presents an alternative to traditional methods of signal acquisition where data
processing is performed offline. In this sense, FPGA-based digital systems are an option to
perform the task of data acquisition and processing in a single, non-invasive device and
have the advantages of reconfiguration and high processing speed

In this context, the contribution of this work lies in proposing a methodology to
detect positional degradation in industrial robot joints that is suitable for implementation
in FPGA-based digital systems. The approach involves analyzing the current signals
of their actuators to identify any anomalous behaviors that may result in end-effector
deviation. For this purpose, the current signals from the robot actuators are generated
synthetically by modeling the UR5 robot dynamics. The synthetic dataset contains signals
with and without deviation. Then different noise levels (5 dB, 10 dB, 15 dB, and 20 dB)
are added to the signals to enhance the method’s robustness. Subsequently, the current
signal is processed for a time-frequency analysis using the DWT. Then statistical indices
are computed for the two last levels of decomposition. Finally, a neural network is trained
using the indices data to classify each robot joint. The proposed method is implemented
in a digital system board FPGA-based proprietary design and validated using a real UR5
robot dataset. For the synthetic case, the results show that the proposed method can classify
the states of the robot’s operation with and without deviation for the joints with more
significant intervention in the task. The results obtained with the real-world dataset (joint
five) are supported by results reported in the literature. Implementing the method in
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FPGA allows a quick classification of less than one second for all the joints of the robot,
providing a functional system with the advantage of being a high-frequency operating
system, reconfigurable, portable, and energy efficient.

2. Materials and Methods

The techniques used to carry out the proposed methodology and its implementation
in a digital system based on FPGA are presented below. A general review of robot theory,
the DWT time-frequency analysis technique, statistical indicators, and a quick look at
neural networks are conducted. On the other hand, a general description of the FPGA
device used for this work is made.

2.1. Robot Overview

The robot used for this paper is the UR5 robot by Universal Robotics; a graphic
representation of the robot is presented in Figure 1a,b.

Figure 1. (a) UR5 robot arm (figure generated using the library Robotics Toolbox for Python [35]).
(b) DH parameters for robot link lengths (c) Standard DH graphical representation.

It comprises six rotational joints providing six degrees of freedom. To approximate the
robot motors’ currents, the robot’s dynamic model and the torque-current relationship are
proposed to estimate the currents synthetically.

The Denavit-Hartenberg (DH) parameters presented in Table 1 allow the description
of the robot through four characteristics that enable the calculation of the positions of the
different joints of the robot using transformation matrices obtaining the kinematic model,
for which it is recommended to review the following source for the forward and inverse
models [36].

For Table 1 values, using DH notation Figure 1c:

• θi is the angle between the axes xi−1 and xi around zi−1, taken as positive in a counter-
clockwise rotation. The yi axis is located according to the right-hand rule.

• di is the coordinate of O′i along the axis zi−1.
• ai is the distance from Oi to O′i .
• αi is the angle between zi−1 and zi around xi, taken positive in a counter-clockwise

rotation.
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Table 1. Denavint-Hatenberg parameters for a UR5 manipulator.

Joint θi (rad) di (m) ai (m) αi (rad)

1 θ1 0.089159 0 π/2
2 θ2 0 −0.425 0
3 θ3 0 −0.039225 0
4 θ4 0.10915 0 π/2
5 θ5 0.09465 0 −π/2
6 θ6 0.0823 0 0

On the other hand, the dynamic model of the robot allows for estimating the robot’s
behavior considering the forces present in the system. Equation (1) describes the motion of
the robot

D(q)q̈ + C(q, q̇)q̇ + g(q) = τ, (1)

and it is composed by the inertia matrix D(q), Coriolis and centrifugal matrix C(q, q̇),
gravity vector g(q), torque vector τ,the articular position q, velocity q̇, and acceleration q̈
vectors. To implement the model, it is necessary to know additional information about the
physical properties of the joints and motors.

Table 2 shows each joint’s mass parameters, the center of mass coordinates, and the
corresponding inertia tensor.

Table 2. Dynamic parameters for the links of a UR5 robotic arm.

Link Mass (kg) Center of Mass xyz (m) Ixyz (kg m2)

1 3.7
[
0 −0.02561 0.00193

] [
0.00375 0.00765 0.00765

]
2 8.393

[
0.2125 0 0.11336

] [
0.0085 0.208 0.208

]
3 2.33

[
0.15 0 0.0265

] [
2.46× 10−4 0.00719 0.00719

]
4 1.219

[
0 −0.0018 0.01634

] [
9.09× 10−4 0.00119 0.00119

]
5 1.219

[
0 0.0018 0.01634

] [
9.09× 10−4 0.00119 0.00119

]
6 0.1879

[
0 0 −0.00159

] [
1.22× 10−4 8.21× 10−5 8.21× 10−5]

Table 3 shows the parameters corresponding to the motor inertia Jm, gear ratio G,
drive viscous friction B, and Coulomb friction Tc.

Table 3. Dynamic parameters for the motors of a UR5 robotic arm.

Link Jm (kg m2) G B (Nms rad−1) Tc [−,+] (Nm)

1 1.87× 10−8 101 1× 10−4 [
0.076 −0.076

]
2 1.87× 10−8 101 1× 10−4 [

0.083 −0.082
]

3 1.87× 10−8 101 1× 10−4 [
0.078 −0.077

]
4 2.7× 10−5 101 1× 10−4 [

0.014 −0.014
]

5 2.7× 10−5 101 1× 10−4 [
0.020 −0.019

]
6 2.7× 10−5 101 1× 10−4 [

0.020 −0.021
]

Note that the manufacturer provides all the parameters, except the drive viscous
friction B, in different media and can be consulted in summary form in [37]. Parameter B
has been proposed in a heuristic way since the calculation and modeling of the friction for
the joints of the robot are outside the main objective of this work.

From the Equation (1) τ also can be expressed in terms of the relationship between
torque and current (2):

τ̂ = Ktiiai, (2)

where τ̂ is the estimated torque of the model considering the effects of friction and without
the intervention of external forces, Kti and iai are the torque constants, and the motor
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current for the joint i, respectively. To estimate the motor current from the torque, a linear
model proposed in [38] is used, where the torque constants and an offset are obtained,
with which they establish a relationship between the modeled torque and the measured
current. These parameters are proposed to compute the inverse process and estimate the
motor current from a modeled torque. Equation (2) is reformatted as Equation (3):

τ̂ = KT
ti iai + bi, (3)

where the term bi represents the offset of the linear model for the respective joint i.
The values of the parameters for KT

ti = [7.5, 6.8, 7.1, 2.8, 3.2, 3.4], and for bi = [−0.61, 16,
4.5, 0.84, 0.064, 0.099].

The UR5 robot is commonly utilized in cooperative tasks and robotics research projects.
Additionally, there are toolboxes available for different platform software which facilitates
programming and controlling the robot. Moreover, there exists a publicly accessible dataset
specifically based on this robot, which has been utilized for exploring and studying robot
accuracy degradation.

2.2. Discrete Wavelet Transform

The discrete wavelet transform (DWT) is a mathematical method that gives time-
frequency information of a signal [39]. The signal is separated into different frequency
bands by passing through a filtering process. The process involves convolving the signal
of interest with a transform function known as the mother wavelet, which determines the
parameters of the high-pass and low-pass filters. In simpler terms, DWT allows a signal to
be separated into its frequency components, which makes it possible to identify frequency
changes over time. The complete process consists of two stages; first, the calculation of the
approximation and detail coefficients is made, and second, the signal at the required level
of decomposition is reconstructed using the coefficients of the previous stage in a process
known as inverse DWT.

Equation (4) defines the DWT of a discrete-time signal x(k) with k samples, and ψ
represents the discrete mother wavelet used for decomposition level i

DWTik = ∑ x(k)ψi,k(t). (4)

The selection of the wavelet mother family depends on the application; the most
common families are Meyer, Haar, and Daubechies, among others. The Daubechies family is
used in this work due to its characteristics of the higher number of vanishing moments [40],
compact support in the frequency domain, and conserving the energy of the signal [41].

DWT algorithm consists of the following steps and is represented in Figure 2a,b:

• Define the wavelet mother function or wavelet basis and the decomposition level i to
be used.

• The wavelet mother function provides the high-pass g[n] and low-pass h[m] filter
coefficients.

• Perform the convolution operation between the signal x[n] and the filters to separate
the signal into high and low-frequency bands.

• Downsample by two filtered signals obtained in the previous step, keeping the even-
indexed samples.

• The outputs of filtering and downsampling the signal provide the detail vector di
and the approximation vector ai of the high-pass and low-pass filtering, respectively,
at each decomposition level i.

• Repeat the filtering and downsampling process using the previous approximation
output as input for the next decomposition level until all levels are completed.

• To reconstruct the approximation and detail branches of the signal for a specific level i,
upsample the corresponding coefficient vectors ai and di by a factor of 2 (adding zeros
in the positions of the removed samples in the downsampling process, if necessary).
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• Apply the corresponding time-inverse high-pass g′[n] or low-pass h′[m] filter coeffi-
cients.

• The signal reconstruction x′[n] is obtained by the inverse process using the last ap-
proximation vector ai and all the detail vectors di, i = 1, 2, . . . , i.

Figure 2. Block diagram of (a) DWT decomposition process of a signal x[n]. (b) Inverse DWT
reconstruction diagram of a signal x′[n].

DWT’s recent applications include condition monitoring of slew bearings [42], evalua-
tion of plant growth status [43], and wind power prediction [44].

Robot operating conditions in industrial environments involve different factors such
as disturbances, noise, temperature, humidity, and others. The acquisition of robot signals
in a noisy environment requires the use of signal processing techniques to handle the
noise. In this sense, it is necessary to perform an analysis of the signal of interest to
determine, depending on its characteristics, which type of techniques to use, such as high-
pass or low-pass filtering. On the other hand, time-frequency analysis techniques such
as DWT allow the separation of the original signal into different parts that are already
filtered while preserving the original characteristics of the signal. DWT is used in this
work because it allows for the decomposition of a signal into different frequency bands
using a series of filters, which is useful when dealing with noisy signals. Each frequency
band can be independently analyzed, compressing the signal information and reducing
the computational burden for further analysis. Additionally, the DWT algorithm and its
inverse can be converted to matrix operations, facilitating its implementation in FPGA-
based digital systems.

2.3. Statistical Indicators

Statistical indicators are used to find characteristics that help to know the behavior of a
dynamic system. For this, they are applied to the signals of interest, and through these, it is
possible to determine if there are changes or variations in the system at different moments
in time. In this sense, the statistical indicators proposed in this work are the root mean
square (RMS) value and the variance.

The RMS and variance metrics are useful for identifying patterns or anomalies within
a signal. On one hand, RMS provides information about the signal’s amplitude or en-
ergy, while variance focuses on the signal’s dispersion around the average amplitude.
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Additionally, the calculation of both metrics is similar and can be easily implemented in
an FPGA-based system. This allows for the optimization of the structure to perform the
calculations of both metrics without the need for separate structures.

These indicators have been widely used in applications such as fault diagnosis in
transformers [45] and bearings [46], among others.

The Root Mean Square (RMS) defined by Equation (5) value of a dataset or a discrete-
time waveform is the square root of the arithmetic mean of the squares of the values

RMS =

√√√√ 1
N

N

∑
i=1

x2
i . (5)

The variance measures the dispersion of a data set with respect to the mean and is
defined by the Equation (6)

σ2 =
1
N

N

∑
i=1

(xi − µ)2. (6)

2.4. Artificial Neural Network

Artificial neural networks (ANN) emulate the computational processes performed by
neurons in the human brain, using mathematical models. At the core of an ANN is the
fundamental building block known as a simple perception and its structure is shown in
Figure 3a.

Figure 3. (a) General diagram of a simple perceptron. (b) Simplified diagram of an artificial neural
network, the connections between layers represent a multi-layer perception network.

A simple perceptron is a mathematical unit that represents a neuron. It takes in a vector
input x of size m and performs a series of operations. First, the input vector is multiplied
by a weight vector w, and the products are then summed together with a bias coefficient
b. The resulting value is then passed through an activation function f (·), such as binary
step, linear, sigmoid, or hyperbolic tangent, to produce the output y. An Artificial Neural
Network (ANN) consists of a collection of interconnected basic perceptions. The most
common is the multi-layer perceptron (MLP), which is a network where all the neurons in
the input, hidden, and output layers are interconnected. This configuration is shown in
Figure 3b.

ANNs find utility in classification, learning, and pattern recognition tasks and are
extensively employed across various scientific domains. For instance, some of their recent
uses are the early diagnosis of breast cancer [47] and the combination with bio-inspired
algorithms to improve the ANN training process [48].

Specifically, MLP possesses favorable attributes such as straightforward implementa-
tion, efficient training time, and the ability to generate high-quality models [49]. Addition-
ally, the hardware implementation of MLP is relatively simple compared to other neural
network architectures. Consequently, this work proposes the utilization of MLP based on
these advantageous characteristics.
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2.5. Proposed Methodology

The proposed methodology to determine if there is a deviation in the joints of a
manipulator robot through the analysis of its motor currents is presented in a general way
in Figure 4.

Figure 4. General diagram of the proposed methodology.

In this work, it is considered that the calibration conditions of the robot, as well as
its electromechanical components, are in optimal operating conditions. However, robot
calibration is a procedure that is performed with external sensors or with the tools provided
by the manufacturers. In this sense, the implementation of robot calibration algorithms
in FPGA involves not only the implementation of these but also the development and
implementation of control or communication systems to operate the robot along with all
subsystems that this entails, this aspect is subject to the limitation of the logical resources
of the FPGA device and the resolution of the processing of fixed point operations and it is
beyond the scope of this work.

The proposed method starts with the database of the robot to be analyzed; for this,
a synthetic and a real-world dataset are used. The current signals of the robot motors are
required when performing a repetitive trajectory or task for a prolonged time. Signals are
acquired at two different moments: at the beginning of the trajectory or task and hours after
the task’s start. In this way, the dataset contains signals with different operating conditions,
named cold operation (CO) for the initial state and hot operation (HO) for the second state.
Figure 5a–f shows the real-world dataset motor current signals of joints one to six during
the CO state.

In the pre-processing of the signals to provide robustness to the method, different
noise levels are added to the signals in the dataset. These noisy signals are then employed
in subsequent process stages as a dataset. The noise levels used are 5 dB, 10 dB, 15 dB,
and 20 dB. Figure 6a,b show the current signal for CO and HO states from the real-world
dataset, respectively, both with 5 dB of noise.
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Figure 5. Real-world dataset current joints signal. Plots (a–f) show the signal for joints one to six.

Figure 6. Real-world dataset joint one signal with 5 dB of noise. (a) CO state signal. (b) HO state signal.

Subsequently, the signals are divided into windows of 256 samples. In this point
according to Figure 4, there are two branches; the first branch involves the implementation
of the proposed method through software simulation, and its description is provided
below. The second branch focuses on the hardware implementation of the method using
an FPGA-based system, and this aspect is covered in the subsequent section. Since the
DWT maintains the characteristics of the original signal through the different frequency
bands, the windowed signals are processed with the DWT to find differences associated
with the joint deviation of the robot. The wavelet mother Daubechies order six is used to
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perform the analysis. However, as shown in [18], only the first four levels are considered
relevant for the analysis due to the amplitude and narrow frequency bands of the last two
decomposition levels. Additionally, due to the FPGA system memory resources, and the
DWT soft-core functionality, only levels three and four are used for the analysis. Figure 7
presents the DWT decomposition at level four for the joint one, with 5 dB noise added from
the real-world dataset. Figure 7a,b represent the approximation and details of the CO state,
respectively. On the other hand, Figure 7c,d display the results for the HO state.

CO Aproximations HO AproximationsCO Details HO Details

Figure 7. Real-world dataset joint one with 5 dB of noise DWT decomposition level 4. (a) CO state
signal approximation components. (b) CO state signal details components. (c) HO state signal
approximation components. (d) HO state signal details components.

Afterward, for the approximations and details of levels 3 and 4 of each signal, the RMS
and variance indices are calculated; this process is repeated with each window that makes
up the original signal. Subsequently, the indicators corresponding to each signal are
averaged over the number of windows. This process is applied to each signal in the dataset,
and the obtained indices are used for training, validation, and testing of a classifier based
on ANN. To perform the complete robot analysis, the above process is replicated for each
robot joint exploiting the FPGA’s concurrent processing capability. In this case, for a UR5
robot, there are six classifiers based on ANN. In this way, each classifier keeps a simple
configuration and the resource consumption for the hardware implementation of the whole
process is kept below the capacity of the proprietary FPGA board.

Finally, the soft-cores for DWT, statistical features calculation, and neural network
classifier are developed to validate the method implementation in an FPGA system, and the
classifier results are displayed to the user in a command line terminal. The proposed
methodology is tested in two synthetic and one real scenario for this work. For the synthetic
scenario, the robot’s database is obtained through the dynamic modeling of the robot and
its simulation, performing a parametric trajectory as shown in Figure 8a.
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Figure 8. Trajectories followed by the robot. (a) Synthetic case. (b) Real case.

The trajectory parameters presented in Equation (7) are the radius of the helix r = 0.1 m,
the final height b = 0.025 m, the frequency of the helix f = 2, and time t = 8.1920 s.

x = 0.6 + rcos(2π f t), y = rsin(2π f t), z = 0.1 + bt. (7)

The sampling frequency of the UR5 robot is 125 Hz; therefore, with the above pa-
rameters, the synthetic signals of the simulated robot have a total of 1024 samples. In
the synthetic scenario, one data set consists of the trajectory signals without deviation,
which is the initial CO state. Six different data sets are generated for the HO state, and the
deviation at each of the different joints of the robot is added. A sinusoidal signal is added
to the robot’s joint position signal obtained by following the helix trajectory to simulate the
deviation. The sinusoidal signal has a randomly generated amplitude of 1 to 10% of the
maximum amplitude value of the robot’s joint position signal, a frequency of f = 2, and a
time of t = 8.1920 s. This way, six HO datasets with 50 synthetic signals are obtained; each
set contains random deviation levels in different joints. Each signal in the dataset generates
ten additional signals for each noise level by adding white Gaussian noise (5 dB, 10 dB,
15 dB, and 20 dB), resulting in 2000 signals for each HO state dataset. For the CO dataset,
one signal without deviation is processed similarly to obtain 500 signals per noise level.
Combining the HO and CO datasets gives 4000 signals for the cases with joint deviation.

On the other hand, for the real case, a public-access dataset provided by the National
Institute of Standards and Technology (NIST) is used [50]. Different speed levels test for
the robot are provided in the dataset (50% and 100% speed). In this work, the dataset
corresponding to the 100% speed of the robot is used. Like the synthetic case, the robot
used is the UR5. The signals from the robot actuators were received at the controller level.
The frequency was 125 Hz.

Figure 8b presents the trajectory used in this dataset. The robot continuously follows
the trajectory with a weight of 4.5 lb on its end-effector for approximately 2 h. The CO
status signals are captured when the robot has just started, and the HO status signals are
obtained after 2 h of continuous operation. Three signals are provided for each robot’s
operation state: CO and HO, and the size of the signals was adjusted to obtain exact powers
of 2 and to divide each signal into three parts of 2048 samples for a set of nine signals for
each CO and HO state.

As was done with the synthetic dataset and to augment the dataset size, 50 new signals
are generated from each of the nine original signals by applying white Gaussian noise
at each noise level. This results in 3600 signals, with 1800 for each HO and CO data set.
For each signal in the data set, the approximation and details of levels three and four are
used to calculate the variance and RMS features, which means that each signal has eight
features that are used as input to the neural network. So the datasets have a size of 4000 × 8
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and 3600 × 8. For the neural network classifier, the datasets are split as follows: 70% for
training, 15% for validation, and 15% for testing. The neural network comprises one input
layer of size eight, a hidden layer of 16 neurons, and an output layer of size two. Besides,
it is trained for 1000 epochs, using the Adam optimizer and the mean square error loss
function. The activation function for the hidden and output layers is sigmoid.

With the dataset of the synthetic and real scenarios prepared, we proceed to describe
the hardware implementation of the proposed method.

2.6. Positional Accuracy Degradation FPGA Implementation

Figure 9 shows a block diagram of the hardware implementation of the proposed
methodology to determine if there is a deviation in the joints of the robot through the
analysis of motor currents.

Figure 9. General scheme of the FPGA implementation of the proposed method.

Starting from the fact that there is a dataset of current signals from the robot’s mo-
tors, as previously mentioned, the signal to be processed is divided into windows; these
windowed signals are stored in the RAM of the processing card. The signal information
corresponding to its first window is loaded into the FPGA. Then DWT coefficients corre-
sponding to the first stage are loaded, and the DWT process is performed in the FPGA for
that particular stage. Subsequently, information on the frequency band obtained in this
process is moved to the calculation process of the RMS and variance statistical indicators.
The indicators obtained are saved in the device’s RAM at the end of the calculation. Later,
the previously described procedure is repeated until the four stages, which correspond to
the approximation and detail of decomposition levels three and four, are completed.

When the calculation and storage of the statistical indicators of the approximations
and details of levels three and four have been completed, they are moved to the FPGA
processing of the classifier based on neural networks, where the classification obtained
with the network is stored in the memory of the device. Subsequently, the window signal
for the next joint is loaded, and the entire process is repeated until all six articulations have
been completed.
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Figure 10 shows the general configuration of the system used to carry out the hard-
ware implementation.

Data Bus

16-bit
uP

Data
cache

Inst.
cache

DMA
SRAM

DWT Stats. NNet

Data processing

Firmware processing

Hardware processing

Figure 10. General diagram of the FPGA system.

The system comprises firmware processing containing 16-bit microprocessor modules,
direct memory access (DMA), and Static Random Access Memory (SRAM). Whereas the
hardware processing part comprises the DWT, statistical, and neural network models
connected to the firmware processing through the data bus. Below are the modules corre-
sponding to the main processes implemented in the FPGA, such as the DWT, the calculation
of statistical indicators, and the neural network.

The proposed methodology was implemented in a digital system using a low-cost
proprietary designed board that is based on an FPGA. This framework is specifically
designed for in-situ online data processing, eliminating the need for external communi-
cation with other systems for data processing. The board is equipped with a low-cost
Spartan 6 XC6SLX45 FPGA with a clock frequency of 48 MHz; it also features static
random-access memory (RAM), communication ports such as the universal serial bus
(USB), and universal asynchronous receiver transmitter (UART), power management,
and flash memory. A 16-bit xQuP01v0 processor is embedded in the FPGA, besides an
interconnection in-system bus (ISB), both proprietary designs; a broader description of the
applications of the FPGA-based proprietary board can be found in [51,52]. The input data
used in the system is scaled to an input range of [−2, 2), and signal data are converted to a
binary stream in 2.14 fixed-point format saved in onboard flash memory. As the process
is executed, the microprocessor embedded in the FPGA uploads the data from the flash
to the hardware calculation units and, when finished, reports the result via a USB to a
user interface.

2.6.1. DWT Soft-Core FPGA Module

The DWT soft-core module calculates the decomposition of a signal in different ap-
proximation and detail frequency bands and performs the original signal reconstruction.
This process is realized through a matrices multiplications. Figure 11 shows the module’s
architecture for the DWT process.
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Figure 11. Architecture diagram of the DWT soft-core.

Within this module, the data corresponding to the windowed signal of 256 samples
and the coefficient module are read from RAM. The coefficients module contains the
wavelet matrices with wavelet filter values for approximations and details of levels three
and four of the mother wavelet Daubechies order six. The “W. coef.” module stores the
wavelet coefficient vectors obtained by multiplying the wavelet matrix with the input
signal. For reconstruction, the stored data in “W. coef.” is read and multiplied by the
transposed wavelet matrix corresponding to the respective level, approximation, or detail.
These matrices are stored in “coefficients” in RAM. The result of the decomposition and
reconstruction of the frequency bands is saturated at 16 bits and is stored in the “Data” and
“W. coef.” modules. Figure 11 depicts the bit size changes after each operation. A finite state
machine (FSM) controls the signal decomposition and reconstruction process selection. It is
done through the SEL signal and memory addresses of the coefficients, data, and wavelet
coefficients modules. The address counters contain this information, and the FSM chooses
the active module using the OPC signal. The STR signal indicates to FSM the beginning
of the process, and once it is completed, the RDY signal is activated. To write and read
memory, the modules use the WRC, WR, RD, and RDC signals. DWT module performs the
process for the approximations and details of levels three and four of the signal stored in
“Data”. Once the process is finished, the reconstructed frequency bands are transferred to
the statistical module for further processing.

2.6.2. Statistics Soft-Core FPGA Module

The Statistics soft-core module calculates a discrete input signal’s RMS and variance
features. The module comprises a single structure, and different indicators can be calculated
by changing the data path. Figure 12a shows the general diagram of the architecture of
the statistics module. It comprises three blocks: a first-input first-output memory storage
block, the Datapath block where the index calculation is carried out, and an FSM block that
conducts the operation of the process.
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Figure 12. Architecture Statistics soft-core. (a) General core diagram. (b) Datapath module.

In the initial process, when the STR signal is activated in the FSM, the choice of
the statistical indicator to be calculated is made with the OPC signal. At the end of the
calculation, the RDY flag is activated. The input data to the module (Din) is stored in
memory in the FIFO block to enter the Datapath block later, and the Do1 and Do2 outputs
obtain the calculation of the index.

The process carried out within the datapath block is shown in a general way in
Figure 12b; it consists of four sections: subtraction, powers, accumulation, and adjustment.
A subtraction is performed between the sample xi, or the absolute value of the sample
|xi|, and the mean of the input signal x̄. Subsequently, in the powers section, the result
obtained in the subtraction is raised to different powers, as the case may be, from the first
to the fourth power. The accumulated value of the previous operation is stored in the
accumulator and divided by the number of samples N. Finally, the result is saturated to
adjust the required bit size and is output by y1; if it is necessary to apply the square root,
the output is made by y2.

Figure 13a shows the module Datapath configured to calculate the variance for an
input signal x; the connection is highlighted in red, and the operation’s progress is observed
in the different sections of the module.
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Figure 13. Statistical features modules. (a) Variance module operation path. (b) RMS module
operation path.
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First, the difference between the sample and the mean of the signal is calculated;
second, it is squared in the powers section, the accumulation is divided by the number
of samples, and after saturation, the indicator completed by the output y1 is obtained. To
calculate the RMS index, the process is presented in Figure 13b, wherein the subtraction
section of the IPcore of the sample xi is subtracted with a zero, which does not modify
the value of the sample, then it is squared. In the powers section, the accumulated value
is divided by the number of samples; at saturation output, the square root is calculated,
and the result is delivered by y2. When the indicators of the approximation and detail
frequency bands of levels three and four have been calculated (eight indicators), they are
moved to the neural network-based classifier module.

2.6.3. Neural Network Soft-Core FPGA Module

The neural network soft-core module performs the process of a trained network for
classification; a description of its components is provided below. Figure 14a shows the
general diagram of a simple perceptron.
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Figure 14. (a) Architecture diagram of a simple perceptron. (b) Diagram of neural layer core.
(c) Neural network layer architecture diagram.

It is composed of a multiplier where input xi is multiplied by the weights wji, where
i represents the input number, and j is the weight number. A register accumulates the
result, and the bias bj is added. Afterward, the operation result is saturated to maintain
the required bit size, and the activation function, contained in a look-up table (LUT), is
continued. Finally, the output is delivered via yi.

Figure 14b shows a general diagram of a set of perceptrons composing a neural
network layer. This module comprises different blocks: a block of weights, a block of
counters, FMS, bias, and an activation function. The block of weights contains the weights
wMN corresponding to neuron M and N number of neurons in the layer. Furthermore,
the counters block counts the number of neurons and their corresponding weights. The
bias block contains the biases for M neurons. Additionally, the activation function block
performs the procedure described above in the perceptron, and the FMS directs the entire
layer process. Signal STR indicates the start of the calculation, RD and WR are signals for



Appl. Sci. 2023, 13, 8493 18 of 25

reading and writing data in memory, and the RDY signal indicates that the calculation
is complete. Figure 14c presents the general diagram of the classifier based on neural
networks. In this network configuration, an input layer stores the data xN that the network
will evaluate in the FIFO 0 register through the Din input and the WR signal to control
write enable in memory. The process starts when the STR signal is high, and the xi samples
enter the structure presented in Figure 14b through the RD signal. Moreover, the hidden
layer’s output is stored in FIFO 1 register by the signal WR. Once all the samples are
complete, the RDY signal goes high and activates the next layer. The output layer of the
network receives the data stored in FIFO 1 and performs the same process as mentioned
in the hidden layer. The layer’s output is stored in the FIFO 2 register as the input data is
processed. These are accessible when the output layer RDY signal is high and are readable
by Dout and the RD control signal. Weights and biases of the hidden and output layers
and the activation functions are stored in the device’s RAM. Neural network configuration
consists of an input layer with eight inputs, a hidden layer of 16 neurons, and an output
layer with two outputs; the activation functions are sigmoid. Neural network training was
carried out in software independently, and the values of weights and bias were stored for
use in the FPGA device.

3. Results and Discussion

The results of the proposed methodology to determine joint deviation in the robot
using motor current analysis are presented below. The results are shown in the form of con-
fusion matrices, and a summary in tabular form is provided to help interpret the findings.
The confusion matrix chart has the correctly classified observations on its diagonal, while
the cells outside the diagonal show the incorrect observations. In both cases, the percentage
is shown. The last cell on the diagonal shows the average accuracy. Moving to the last
column, the first two cells specifically present the percentages of all samples that were
correctly and incorrectly classified for each class. These values correspond to precision and
false discovery rate, respectively. Lastly, focusing on the last row, the two cells highlight the
percentage of samples belonging to each class that were correctly and incorrectly classified.
These values are commonly referred to as recall and false negative rate, respectively. In
summary, the last cell of the confusion matrix diagonal shows the average number of
samples that the ANN correctly and incorrectly classified, providing an overall accuracy
measure for the classifier, this information for the real and synthetic cases is presented in
Table 4.

Table 4. Average accuracy obtained in the ANN validation process for the synthetic and real cases.

Accuracy Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

Synthetic case 82.7% 98.2% 97.7% 89.8% 100% 82.7%
Real case 93.5% 66.5% 78.8% 88.7% 100% 100%

To evaluate the operation of the proposed method, a computer software simulation
of the different techniques that make up the methodology was carried out. Additionally,
to evaluate the classifiers 600 samples from each dataset were used for each corresponding
joint; these samples account for 15% of the dataset for each of the six scenarios in the
synthetic case. These samples were then separated from the original dataset and are treated
as unknown samples for the ANN classifiers.

Figure 15 shows the confusion matrices obtained from the classifiers based on neural
networks for the synthetic scenario and a summarized version is presented in Table 4.
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Figure 15. Confusion matrices obtained in the ANN validation process for the synthetic cases where
the deviation is induced in one of the robot joints at a time. (a–c) confusion matrices correspond to
joints one to three. (d–f) confusion matrices correspond to joints four to six.

Figure 15a–c corresponds to the cases of joints one to three, while Figure 15d–f corre-
sponds to joints four to six. In this sense, it is observed that the classifiers can differentiate
between the states of operation when there is a deviation in the joints with a minimum
average accuracy of 82.7% corresponding to joints one and six, while joint four has an
average value of 89.8%, joints two and three have an average accuracy of around 97% and
joint five has an average accuracy of 100%. It should be noted that for the synthetic scenario,
each case includes a deviation in the respective joint. For instance, in case one, only joint
one contains a deviation, while the other five joints remain unaffected. In this regard, joints
two and three are well differentiated by their respective classifiers; this can be attributed to
the fact that in the trajectory carried out, these joints have a more significant intervention
than the rest.

In addition, in the motion equations of the robot, these joints are closely related;
therefore, since this test is synthetic, the deviation of one joint can affect the behavior of the
other. Regarding joint five, which presents 100% accuracy, this is attributable to its minimal
intervention in the trajectory; therefore, by inducing deviation in the joint, the change
between both operating states is differentiable by the proposed methodology. For joints,
one, four, and six, the difference between their accuracy levels and those of the joints with
the best ranking result can be inflated by their level of intervention in the trajectory and the
fact that the synthetically induced deviation has a random amplitude.

On the other hand, for the real case, 540 samples were used to test the classifier. As
in the synthetic case, these samples also represent 15% of the respective datasets used
for training the classifiers and the samples are unknown to the classifiers. The confusion
matrices obtained are presented in Figure 16, where Figure 16a–c correspond to articulations
one to three and Figure 16d–f correspond to joints four through six and a summarized
version is presented in Table 4.
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Figure 16. Confusion matrices obtained in the ANN validation process for the real case where
the deviation at joint five is known. (a–c) confusion matrices correspond to joints one to three.
(d–f) confusion matrices correspond to joints four to six.

Figure 16 shows that for joints two and three, an average accuracy of 66.5% and 72.8%
is obtained, respectively. Whereas for joints one and four, an average accuracy greater than
88% is obtained.

Furthermore, joints five and six present an average accuracy of 100%. These results
are obtained from a real-world dataset; however, the dataset does not provide information
on the condition of the robot at the time of obtaining the signals, so it is not possible
to determine if there is a mechanical, electrical, or wear failure that has caused a joint
failure deviation in the robot. In this sense, the results obtained for joints two and three
indicate that the signals of the robot CO and HO’s operating states are not different.
Additionally, the other joints have results greater than 90% accuracy, for which the classifier
can distinguish the two states of operation and indicate a deviation. Emphasize that this
dataset has a time difference of 2 h between the initial and final operating states, in addition
to the fact that this robot performs a trajectory continuously with a mass of 4.5 lb and
operates at 100% of its maximum speed, for which these results could be attributed to the
additional inertia caused by the extra weight and speed of operation. The results obtained
in the synthetic case and in the real case show that the proposed method can process signals
with different noise levels using the DWT, using the DWT, which allows the noisy signal
to be decomposed into different frequency bands without losing the characteristics of the
original signal, thus enabling the utilization of the frequency band of interest.

Regarding the results of the implementation in the physical system, validation is made
that the calculations made in the FPGA device correspond to those obtained in the software
simulation. In this sense, Table 5 shows the performance obtained in the main modules
used to implement the methodology on hardware. The information in the Table 5 consists
of the clock cycles necessary to calculate the module and complete processing of the module
(calculation and copy of data to the buffers), as well as the calculation time and complete
processing of each module. It is observed that the module that requires less time to perform
complete processing is the neural network, while the DWT is the module with the most
extended duration. The DWT module decomposes and reconstructs the window of the
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signal to be analyzed; the module’s error for calculating the approximation levels is 0.006%,
while for the details, it is 0.02%. The complete system implemented in FPGA includes
the DWT, statistical, and neural network modules, the embedded microprocessor, internal
data bus, and device drivers such as flash memory, USB, RAM, bootloader, debugger,
and programmer, among others.

Table 5. Module performance in hardware implementation.

Soft-Core
Complete
Processing

(Clock Cycles)

Calculation
Processing

(Clock Cycles)

Complete
Processing

(Time)

Calculation
Processing

(Time)

DWT 265,577 178,280 5.53 ms 3.71 ms
Statistical 7970 5400 166 µs 112.5 µs

Neural Network 3940 3590 82 µs 78.8 µs

Table 6 presents the resources of the FPGA device used for the implementation; it
should be noted that this is a low-cost device and that, with the resources used, it is capable
of calculating the entire process in less than a second. The resources are referred to in the
“logic utilization” column. Specifically, the columns “Used”, “Available”, and “Utilization”
indicate the total number of elements implemented, available elements, and the percentage
of elements used, respectively. In general, according to the information in Table 6, it is
possible to say that the device used half of its resources for this implementation.

Table 6. System resource utilization.

Logic Utilization Used Available Utilization

Number of Slice Registers 10,090 54,576 18%
Number of Slice LUTs 12,521 27,288 45%
Number of fully used LUT-FF 4662 17,949 25%
Number of bonded IOBs 128 218 58%
Number of Block RAM/FIFO 59 116 50%
Number of BUFG/BUFGCTRLs 1 16 6%
Number of DSP48A1s 32 58 55%

The hardware-software execution time for the complete system is 564,720 ms. Before
the neural network classifier, the average error between the software (e.g., Matlab) and
the FPGA calculation for the modules before the classifier amounts to 0.87%. However,
the accuracy obtained by the neural network module reaches 83% compared to the accuracy
obtained in the software implementation. It should be noted that the accuracy obtained by
the neural network and the average error are attributable to the fixed point representation.
The results obtained from the hardware implementation validate the use of the proposed
method to detect deviations in the robot’s joints through the analysis of the motor currents.

Regarding the results obtained in this work, it should be noted that specifically for
joint five of the real case, the results coincide with those reported in [53], where the same
dataset was used, and a manual analysis of velocity and position graphs of the joint was
conducted without a systematic approach. In another study [17] MRA and DLSTM are used
to obtain the residual error of the end-effector of the robot. However, it is not determined
in which joint exhibited deviation causing the error in the end-effector. On the other hand
in [18] an expert system based on two neural networks, dimension reduction, and energy
and fractal indicators was presented. This system aimed to accurately detect deviations
in the robot’s joints. However, implementing the fractal approach in FPGA was found to
be more complex than the statistical indicators proposed in this current study. It’s worth
noting that the aforementioned studies were performed using software simulation and
offline analysis, which didn’t pose resource limitations or fixed-point operation issues,
in contrast with an FPGA system. The method proposed identifies in which joint of the
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robot there is deviation, uses techniques and algorithms that are easy to implement on
FPGA systems, and employs a low-cost self-designed board that operates independently
without the need for external systems which allows for systematic in-situ analysis.

4. Conclusions

The importance of robotic systems in modern manufacturing processes requires high
accuracy and precision to perform tasks with high-quality standards, such as painting,
welding, and machining. Achieving this level of precision is critical for the robot’s per-
formance, but various factors can degrade it, such as wear and failure of mechanical and
electrical components or environmental conditions. In this sense, a methodology for the
detection of joint deviation of the robot through the current analysis of the actuators and its
implementation in a digital system based on an FPGA is introduced in this work. Synthetic
signals, both with and without deviation, are generated using the dynamic model of a
UR5 robot. Real-world data from a UR5 robot validates the methodology. To enhance the
method’s robustness, the signals are contaminated with different noise levels. Then the
signals are processed using DWT to separate them into approximation and detail frequency
bands, and statistical indicators such as RMS and variance are calculated for each band.
Finally, the indicators are used to train and validate a classifier based on neural networks.
From the results is concluded that:

• The proposed method is able to work with signals containing noise due to the use of
the DWT to decompose the signal into different frequency bands, which allows an
analysis of the signals with a smaller amount of information than the original signal.
Its implementation in hardware allows the decomposition and reconstruction of the
signal with a single module, which allows better management of FPGA resources.

• The statistical indicators used have proven to be effective in the detection of non-visible
features in the analyzed signals, they are simple and their hardware implementation
has been carried out through a module with a versatile architecture that allows the
calculation of other statistical indicators if necessary.

• The classifier, based on an MLP network, showed its effectiveness in differentiating
between the different operating states of the signals provided by the statistical indica-
tors. In this sense, the classifier structure is simple with a reduced number of neurons
in the hidden layer, which makes its implementation in hardware not complex.

• For the particular case of joint five of the real case, the result is in line with the findings
reported in [53], which also highlights the deviation in that joint.

• The designed modules and architectures have been implemented in a low-cost pro-
prietary FPGA-based digital system and have demonstrated the feasibility of the
proposed method using about 50% of the resources. In addition to achieving a high
processing speed for all joints (less than one second) with minimal error attributed to
truncation and fixed point operations. Moreover, the use of an FPGA system allows
for concurrent execution and reconfiguration of the device; if an additional module is
required, it can be incorporated into the system.

Future work proposes the hardware implementation of a method capable of perform-
ing the analysis of the positional degradation of the robot using only a classifier based on
neural networks, as well as analyzing the classifier’s behavior when multiple joints deviate
simultaneously. Furthermore, the proposal includes the exploration of other non-linear
indicators, signal processing techniques, and methodologies based on machine learning
and deep learning.
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Abbreviations
The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
BUFG Global Buffer
BUFGCTRLs Global Clock Control Buffer
CO Cold Operation
Din Data input
DMA Direct Memory Access
Do1 Data output 1
Do2 Data output 2
Dout Data output
DSP48A1s Digital Signal Processing element included on certain FPGAs
DWT Discrete Wavelet Transform
FIFO First-input First-output
FPGA Field Programmable Gate Array
FSM Finite State Machine
HO Hot Operation
IOBs Input Output Blocks
IPcore Intellectual Propriety Core
ISB In-System Bus
LUT Look-Up Table
LUT-FF Look-Up Table-Flip-Flop
MLP Multi-layer Perceptron
OPC Option Control signal
OPR Option Register signal
RAM Random Access Memory
RD Read signal
RDC Read Coefficient signal
RDY Ready signal
RMS Root Mean Squared
SEL Select signal
SRAM Static Random Access Memory
STR Start signal
UART Universal Asynchronous Receiver-Transmitter
Win Window input
Wout Window output
WR Write signal
WRC Write Coefficient signal
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