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Abstract: Landslide detection is crucial for natural disaster risk management. Deep-learning-based
object-detection algorithms have been shown to be effective in landslide studies. However, advanced
algorithms currently used for landslide detection require high computational complexity and memory
requirements, limiting their practical applicability. In this study, we developed a high-resolution
dataset for landslide-prone regions in China by extracting historical landslide remote sensing images
from the Google Earth platform. We propose a lightweight LP-YOLO algorithm based on YOLOv5,
with a more-lightweight backbone that incorporates our designed PartitionNet and neck equipped
with CSPCrossStage. We constructed and added the vertical and horizontal (VH) block to the back-
bone, which explores and aggregates long-range information with two directions, while consuming a
small amount of computational cost. A new feature fusion structure is proposed to boost information
flow and enhance the location accuracy. To speed up the model learning process and improve the
accuracy, the SCYLLA-IoU (SIoU) bounding box regression loss function was used to replace the
complete IoU (CIoU) loss function. The experimental results demonstrated that our proposed model
achieved the highest detection performance (53.7% of Precision, 49% of AP50 and 25.5% of AP50:95)
with a speed of 74 fps. Compared to the YOLOv5 model, the proposed model achieved 4% improve-
ment for Precision, 2.6% improvement for AP50, and 2.5% for AP50:95, while reducing the model
parameters and FLOPs by 38.4% and 53.1%, respectively. The results indicated that the proposed
lightweight method provides a technical guidance for achieving reliable and real-time automatic
landslide detection and can be used for disaster prevention and mitigation.

Keywords: landslide detection; remote sensing image; deep learning; LP-YOLO; YOLOv5

1. Introduction

Landslides are severe geological hazards that widely occur in mountainous environ-
ments with slopes and frequently lead to chain reactions such as mountain collapses and
debris flows, which can pose serious risks to human life and property. Therefore, enhancing
the detection and early warning systems for landslide-related geological catastrophes holds
considerable implications in the context of China’s endeavors towards disaster mitigation
and risk reduction [1,2].

Traditional landslide detection methods primarily rely on geologists, which often
entails significant manpower and financial investments. However, the effectiveness of
these methods may not always meet expectations. In light of the advancements in satellite
imaging accuracy, researchers have increasingly proposed landslide detection approaches
that leverage optical image data. Concurrently, machine learning has become increasingly
popular in the field of landslide detection. Besides, the emergence of convolutional neu-
ral networks (CNNs) has led to the successful application of deep-learning-based object
recognition algorithms in landslide detection, and they have gradually become mainstream.
In contrast to machine learning approaches, deep learning techniques abandon the compli-
cated artificially designed features, which adopt deeper convolutional neural networks to
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automatically acquire distinguishing characteristics. Furthermore, the data sample capacity
of deep learning for landslide detection can be extensive, rendering it more appropriate
for large-scale landslide identification and endowing it with a more-robust generalization
capability. Although deep-learning-based algorithms have shown success in detecting land-
slides, they still face some challenges: These models necessitate substantial computational
resources and numerous parameters, leading to diminished inference efficiency. As a result,
employing them in power-limited contexts or embedded platforms with the objective of
achieving real-time detection becomes challenging. Moreover, the scarcity of open-source
repositories containing high-spatial-resolution images of landslides hampers the effective
training and validation of these models.

To tackle these challenges, we constructed a landslide dataset utilizing the Google
Earth platform in this study. This paper presents a lightweight framework named LP-YOLO,
which achieves real-time landslide detection. Our contributions are as follows:

(1) We propose the Partition module and form a new feature extraction network named
PartitionNet to replace the backbone of YOLOv5, which brings better performance, while
reducing drastically the redundant parameters and computational complexity.

(2) A new feature-exploiting module named the VH block is constructed and added
to the backbone to retain the information after down-sampling and to explore long-range
information with a small computational cost.

(3) We designed a new feature fusion structure and propose a CSPCrossStage module
instead of C3 in the neck of the model to boost information flow and enhance the location
accuracy of multi-scale landslides with less computing resource.

(4) The SIoU loss function and the attention mechanisms were introduced to expedite
the convergence speed during training and enhance the detection accuracy of the model.

2. Related Work

Landslide detection can generally be categorized into two approaches: traditional
methods of landslide identification and automatic identification methods based on machine
learning algorithms.

Traditional methods of landslide detection often rely on field surveys conducted by
experienced geologists, complemented by instrumental imaging techniques for analysis.
These methods involve on-site inspections, geological mapping, and the collection of
ground truth data, for example using interferometry synthetic aperture radar (InSAR)
technology to obtain multi-temporal data to observe whether the slope is deformed, which
can be used as a basis to infer potential landslides [3]. While traditional methods have
been widely practiced and have proven effective, they have the limitations of being time-
consuming and resource-intensive.

The second category predominantly utilizes pre-existing datasets of landslides and
facilitates automatic identification through the construction of algorithmic models. Gener-
ally, automatic landslide detection techniques can be categorized into machine learning
approaches and deep learning approaches. Machine learning algorithms encompass meth-
ods such as Bayesian, logistic regression, support vector machines (SVMs), random forests,
and artificial neural networks [4–7], which can utilize various features related to landslide
occurrence, such as texture and terrain information for classification and prediction. For in-
stance, Pourghasemi [8] applied random forest to evaluate the sensitivity of landslides,
and Tien [9] utilized SVM and kernel logistic regression for landslide recognition. Arti-
ficial neural networks, including pulse-coupled neural networks (PCNNs) and spiking
neural networks, have been shown to possess outstanding capabilities in image fusion and
computer vision applications [10,11].

Owing to the swift advancements in hardware equipment and artificial intelligence,
deep learning techniques have emerged as an additional potent data-driven approach for
detection. Consequently, a multitude of sophisticated object-detection algorithms have
surfaced, including two-stage object-detection algorithms represented by region-based
convolutional neural networks (RCNNs), Fast R-CNN, and Faster R-CNN [12,13] and
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single-stage object detection networks represented by the SSD algorithm [14] and the
YOLO algorithm series [15–18]. For instance, Ju [19] selected the YOLOv3 and Mask RCNN
algorithms to achieve automatic recognition of loess landslides, with an optimal average
precision of 18.9%. Ji [20] proposed an enhanced convolutional neural network for landslide
detection of Bijie City, which demonstrated the effectiveness of a new landslide prediction
based on the dataset. Hou [21] incorporated a coordinate attention mechanism [22] to
enhance the YOLOX [23] object-detection model, effectively tackling the problem of the
poor detection of complex mixed landslides. Tang [24] proposed SegFormer, a model based
on the Transformer architecture, which is capable of automatically detecting landslides.

In recent years, various lightweight neural architectures such as MobileNetV1-3 [25–27],
ShuffleNet [28], GhostNet [29], and FasterNet [30] have followed, aiming to achieve fewer
parameters, a fast inference speed, and high performance. In brief, MobileNet incorpo-
rates depthwise separable convolution and an inverted residual structure to decrease the
computational expense while simultaneously improving the detection performance. Shuf-
fleNet substitutes the 1 × 1 convolution with group convolution and incorporates a shuffle
operation to facilitate information flow among various groups. In GhostNet, to avoid
redundant features maps, the spatial features are only captured by inexpensive operations
for half of the features. FasterNet proposes a partial convolution to extract features with
an efficient and parameter-friendly manner. Besides, residual connections [31] and dense
connections [32] are widely used in these network designs to alleviate gradient degradation
problems and aggregate features with diverse receptive fields. Inspired by these works,
our method LP-YOLO proposes a novel Partition module and Partition block to construct a
lightweight feature-extraction backbone by combining the residual and dense connections,
which is used to diminish the computational overhead and fulfill the demands of real-time
detection tasks.

3. Method

In this section, we begin by reviewing our baseline model YOLOv5 and then provide
a comprehensive description of the LP-YOLO model (Figure 1). We discuss the network
structure, the VH block, the new PAN feature fusion structure, the loss function, and the
attention module.

3.1. A Brief Review of YOLOv5

YOLOv5 is composed of three primary elements: the CSPDarkNet backbone with the
C3 block, the path aggregation network (PAN) [33] neck with the spatial pyramid pooling
feature (SPPF) layer [34], and the detection head. The C3 block contains three general
convolutional and bottleneck modules and was inspired by CSPNet [35]. Within this
block, the feature map is bifurcated into two sections: one segment traverses the bottle-
neck module, while the other is conveyed to the convolutional module and subsequently
merged with the first portion. The PAN structure facilitates information flow and fea-
ture aggregation from bottom to top, and the SPPF layer in YOLOv5 serves to aggregate
multi-scale contextual information from feature maps. Various data augmentation methods,
such as mosaic augmentation, are employed within the model to mitigate data imbalance
issues associated with small, medium, and large objects present in the dataset. In addi-
tion, the model employs the complete intersection over union (CIoU) [36] bounding box
regression loss function for optimizing the model’s ability to accurately localize objects.

3.2. Lightweight LP-YOLO Model

As shown in Figure 1, the following characteristics can be identified from our proposed
LP-YOLO model.
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Figure 1. Framework of our proposed LP-YOLO. The backbone is PartitionNet; the neck is the
new path aggregation network. The VH block is proposed to enhance information flow after the
down-sampling layer.

3.2.1. Backbone

Given that the original YOLOv5 model utilizes CSPDarkNet as its backbone for
feature extraction, which comprises numerous regular convolutional layers and demands
significant computational resources, we propose a lightweight network called PartitionNet
to supplant CSPDarkNet.

The Partition module is shown in Figure 2b. Firstly, we make a comparison with the
Ghost module and simplify the Ghost module in Figure 2a, where C1 and C2 represent
the quantity of the input channels and output channels, respectively. The Ghost module
aims to reduce the number of 1 × 1 convolutional kernels by half during the convolutional
operations, followed by an inexpensive operation that generates a set of transformed fea-
tures. The remaining half of the feature maps and transformed features are concatenated to
generate output features, thereby reducing the number of nonlinear operations and signifi-
cantly diminishing the computational resources and parameters. However, the intrinsic
features are just produced by half of pointwise convolution, and the spatial information is
only captured by inexpensive operations with depthwise convolution. This method may
lead to weak spatial information capturing, which could hinder detection performance.

To address this challenge, we propose a module in a partitioned way, named the
Partition module. It consists of three components: pointwise convolution, max-pooling
layer, and depthwise convolution. We set a kernel size of 3 and a stride of 1 in the max-
pooling layer, designed to eliminate redundant information and enhance the robustness
of extracted features. In order to avoid feature compression and make the subsequent
concatenation convenient, we set a padding of 1. Besides, we leveraged the 3 × 3 depthwise
convolution and 1 × 1 convolution to decrease the parameters in our network. More
importantly, we separated the C2 into four parts, with a C2 ratio of 1 × 1 convolution, a
max-pooling layer, and 3 × 3 depthwise convolution being 1, 1, and 2, respectively. This
allowed us to use only a quarter of the convolutional kernels to produce features instead of
half of the Ghost module and adding the max-pooling layer to alleviate the information
loss caused by direct splicing with the original feature map. Through this approach, we
alleviated the computational burden and achieved improved performance, as demonstrated
by our experiments.
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Figure 2. The Partition module and Partition block.

Inspired by MobileNetV2, our Partition block is also an inverted bottleneck. It is
shown in Figure 2c and composed of two Partition modules stacked in series. The first
Partition module functions as an amplification layer to augment the number of channels,
while the second one squeezes the output channels to align with the residual connection.
We incorporated a down-sampling function utilizing a 3 × 3 depthwise convolution with a
stride of 2. In addition, we utilized the sigmoid-weighted linear unit (SiLU) [37] activate
function to introduce nonlinearity into the network to enhance the network’s generalization
ability. Compared to ReLU, SiLU has self-stability and absorbs the advantages of ReLU,
which is smoother around zero so that negative values also have slight activation, and at
the same time, it plays a balancing role on the gradient with a larger value. The formula of
SiLU is defined as:

SiLU(x) = x · sig(x) (1)

where sig and x are represented as the sigmoid function and input value, respectively.
Finally, the backbone of LP-YOLO is constructed by stacking the Partition block and VH
block, named PartitionNet. The specific details are provided in Table 1, which contains six
columns.

Table 1. The architecture of the backbone of LP-YOLO. P-Block denotes the Partition block; Exp Size
and Out Size refer to the size of the expansion channels and output channels, respectively. SE [38]
denotes whether or not an SE block is employed in P-Block.

Input Operator Exp Size Out Size SE Stride

640² × 3 Conv2d 3 × 3 - 8 - 2
320² × 8 P-Block 16 8 - 1
320² × 8 P-Block 48 16 - 2
160² × 16 P-Block 72 16 - 1
160² × 16 VH block - 16 - -
160² × 16 P-Block 72 24 1 2
80² × 24 P-Block 120 24 1 1
80² × 24 VH block - 24 - -
80² × 24 P-Block 240 40 - 2
40² × 40 P-Block 184 40 - 1
40² × 40 P-Block 480 56 1 1
40² × 56 P-Block 480 56 1 1
40² × 56 VH block - 56 - -
40² × 56 P-Block 672 80 - 2
20² × 80 P-Block 960 80 - 1
20² × 80 P-Block 960 80 1 1
20² × 80 P-Block 960 80 - 1
20² × 80 P-Block 960 80 1 1
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3.2.2. VH Block for Feature Enhancement

In PartitionNet, the down-sampling layer is achieved by depthwise convolution.
Depthwise convolution is a type of group convolution where the convolutional kernel is
responsible for capturing information only from specific channels in the input feature map.
This result in no information interaction between groups and a loss of feature information
to some extent, especially at the edges. To address this limitation, we propose a VH block
(shown in Figure 3), which was inspired by cross-convolution [39]. As shown in Figure 4,
the VH block explores long-range information for feature enhancement in the horizontal
and vertical axes, compensating for the lack of information exchange between groups
and consuming few computational resources. By integrating the VH module into every
down-sampling layer of the backbone, we can improve landslide detection performance,
as landslide recognition heavily relies on texture and edge features.

VH block

Conv[1,1] Horizontal_Conv Vertical_Conv

Figure 3. The framework of VH block.

(a) P-Block 

(b) VH Block

Figure 4. The feature visualization of VH block.

3.2.3. Using New PAN Feature Fusion Structure and CSPCrossStage

The PAN (Figure 5a) serves as a neck to extract multi-scale feature maps in the YOLOv5
model. The homogeneity of landslide areas and their surroundings, often characterized by
similar color, brightness, and texture, presents challenges for accurate landslide detection.
However, for landslide detection, texture and edge features extracted by shallow convo-
lutions are more important than other objects. To alleviate potential losses of landslide
edge information, we enhanced the existing PAN feature structure by incorporating the
feature maps from after the second subsampling layer P2 and reducing the dimensionality
of the P3 layer for convenient feature concatenation in the next stage. Additionally, the
dual-concatenate operation was used in the layer of P5 for feature enhancement, and the
dual-concatenate operation involves concatenating the up-sampling layer of P5 twice in the
feature fusion layer. We found that it demonstrated significant effectiveness in detecting
medium- and small-sized landslides. In comparison to the previous PAN, the enhanced
feature fusion structure, NewPAN (Figure 5b), improved the location accuracy of multi-
scale landslides and achieved a 0.1% Precision improvement, a 0.8% Recall improvement, a
0.6% AP50 improvement and a 0.4% AP50:95 improvement, with a detection performance
of 49% AP50 and 25.5% AP50:95.

In addition, as shown in Figure 6, we replaced the C3 module with CSPCrossStage
in the neck to further reduce the computation and parameters. The structure is similar to
C3, the channel split and cross-stage dense connections were used for CSPCrossStage to
improve the network’s feature representation capability.
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Figure 5. (a) PAN structure. (b) NewPAN structure.
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Figure 6. The framework of BottleNeck, C3, and proposed cross-block, CSPCrossStage.

The compression ratio of the parameters (ignoring the weights of the BN layer) of
CrossBlock and BottleNeck can be calculated as:

r =
CrossBlockParams
BottleNeckParams

=
2 · Cin · Cout · k · 1

Cin · Cout · 1 · 1 + Cin · Cout · k · k

=
2k

k2 + 1

(2)

Table 2 compares the parameter counts of C3 and CSPCrossBlock under similar con-
ditions. We set k (kernel size) to 3 in our model, and then, the compression ratio r = 0.6
means that CrossBlock has 40% fewer parameters than C3.

Table 2. Comparison of the parameters of C3 and CSPCrossBlock. Input/Output Size means the
number of input/output channels. Numbers means the number of modules.

Module Numbers Input Size/Out Size Parameters (M)

C3 1 256/256 0.296
CSPCrossBlock 1 256/256 0.230

BottleNeck 1 256/256 0.656
CrossBlock 1 256/256 0.394
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3.2.4. Using SIoU Loss Function and Attention Mechanism

To further improve the accuracy, the box regression loss function is another aspect to
be considered. The intersection over union (IoU) is a metric utilized in object detection tasks
to quantify the similarity between two bounding boxes. The IoU loss function (IoU loss),
derived from the IoU metric, is employed as the regression loss function for bounding boxes
in object-detection models. The IoU metric serves two primary functions: distinguishing
positive and negative samples and assessing the correlation between the predicted box and
ground truth box (GT box). For better bounding box regression of the model, a series of
metrics (GIoU [40], DIoU, CIoU) have been developed. The YOLOv5 model incorporates
the CIoU loss as the bounding box regression loss function to assess the predicted results.
The CIoU metric considers factors such as the distance, overlap area, and aspect ratio
between the predicted and the GT boxes. However, it does not account for the direction of
the mismatch between the predicted and GT box, which can result in slower convergence
during the training process [41]. Therefore, to make up for these deficiencies, we introduced
the SIoU loss in LP-YOLO. In detail, the SIoU loss consists of 4 cost contributions: angle
cost, distance cost, shape cost, and IoU cost. The formula of the SIoU loss is defined as:

LS = 1 − IoU +
∆ + Ω

2

= 1 − IoU +
∑t=x,y(1 − e−γρt) + ∑t=w,h(1 − e−ωt)θ

2

(3)

where Ω = ∑t=w,h(1 − e−ωt)θ ; this denotes the shape cost, which is used to consider the
differences in the aspect ratio between the predicted and GT box. ωt means the ratio of
the difference between the width of the GT box and the predicted box to the maximum
width. The value of θ regulates the degree of emphasis placed on the shape loss. In the
LP-YOLO model, we set θ equal to 4. ∆ = ∑t=x,y(1 − e−γρt), γ = 2 − ϕ; this denotes the
distance cost and is based on penalty metrics of the angle cost. The metric of the angle cost
can be defined as:

ϕ = 1 − 2 · sin2(arcsin(x)− π

4
) (4)

where x = Ch
σ = sin(α), as shown in Figure 7, B and Bgt represent the centroids of the

predicted and the GT box, respectively, where σ denotes the Euclidean distance between
the points, and α represents the angle between α and the X axis. ch denotes the difference
in height between the centroids of the two bounding boxes. When the predicted box
does not intersect with the GT box, the model endeavors to align the prediction with the
nearest axis (if α < β, minimize α; otherwise, minimize β) before adjusting it to prevent
model confusion.

B

Bgt

α

β σ

Cw

Ch

Figure 7. Angle cost contribution.

The experiments demonstrated that the overall error of the SIoU loss function was
more heavily influenced by the number of iterations and ultimately attained a lower value.
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Applying the SIoU loss to the landslide dataset can achieve a faster convergence speed
during the training process and improve the detection performance.

In order to increase the model’s capacity to prioritize crucial landslide information,
suppress redundant background information, and improve detection performance, we
incorporated the lightweight CBAM module [42] into the backbone before the SPPF layer.
As illustrated in Figure 8, the CBAM module integrates both the spatial attention and chan-
nel attention mechanisms to enable the model to selectively attend to pixel regions in the
image that are critical for accurate classification. By incorporating CBAM into the backbone,
the model is better able to focus on landslide regions and enhance detection accuracy.

CBAMInput Feature Refined Feature

Channel Attention Module Spatial Attention Module

[MaxPool, AvgPool]

Conv

Spatial Attention

Spatial Attention Module

Channel Attention
S & E： Squeeze and Excitation

Channel Attention Module

MaxPool

AvgPool
S & E

Figure 8. The framework of CBAM.

4. Experiments
4.1. Datasets’ Collection

The study area is situated at the junction of southern Gansu Province and eastern Qing-
hai Province, characterized by a dry climate, low average annual precipitation, and sparse
vegetation. To identify landslides in this region, we obtained remote sensing images from
the Google Earth Engine platform. As the original images were too large and did not
meet the requirements for object detection, we used a Python library to crop them into
JPEG format images with a size of 2000 × 2000 px. As shown in Figure 9, each image was
then annotated and visually explained for landslide identification. In this study, a total of
15,301 landslides were marked.

Figure 9. Original datasets. GT boxes denote the real landslide area.

The cross-cutting method refers to dividing an image into several overlapping patches
with a certain stride, and each patch can be regarded as a small image for further processing.
In this study, the cross-cutting method was used to divide the 2000 × 2000 px images into
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several 640 × 640 px images to maintain the integrity of the image texture. This method-
ology effectively enhances the utilization of image information and avoids information
loss caused by image compression. After processing, the dataset was partitioned into
training and validation sets at an 8:2 ratio, with 5434 for the training set and 1461 for
the validation set obtained after screening. It comprised two categories: landslides and
non-landslides. Figure 9 showcases the processed remote sensing images with resolutions
of 2000 × 2000 px (left) and 640 × 640 px obtained by cropping (right).

4.2. Evaluation Metrics

To evaluate the detection performance of the model on landslide images, a series of
evaluation metrics was utilized in the experiments. These metrics included the Precision
(P), Recall (R), AP50, AP50:95, floating point operations (FLOPs), Latency, and the number
of parameters (Params).

Precision (P) and Recall (R) are essential decision scores used to assess the quality
of detection models. The scores are typically defined in terms of three metrics. These are
defined as:

P =
TP

TP + FP
, R =

TP
TP + FN

(5)

where TP means true positive (number of correctly predicted landslide samples), FP means
false positive (the number of predicted non-landslide objects regarded as landslides), and
FN denotes false negatives (the number of undetected landslides). P indicates the ratio of
true positive predictions to the total number of landslide samples predicted as positive,
which can evaluate the false detection rate. R denotes the ratio of true positive predictions
to all actual positive samples in the dataset, which is used to detect how sensitively the
model identified the landslide. The average precision (AP) can be obtained by the PR
curve, and it is defined as:

AP =
∫ 1

0
P(R)d(R) (6)

AP50 represents the AP calculated at an intersection over union (IoU) threshold of 50%.
On the other hand, AP50:95 refers to the calculation of the AP under threshold conditions
ranging from 50% to 95%, and it is defined as:

AP50:95 =
1

10 ∑
n

APn (7)

The number of parameters (Parmas) is an essential indicator of the model’s space
complexity, which influences the amount of memory used. FLOPs refers to the num-
ber of floating point operations performed by the model, which is used as a metric of
computational complexity. Latency represents the inference time on a single image for
the model.

4.3. Training Strategy

In the experiment, an input image size of 640 × 640 was used, with an initial learning
rate of 0.01 and a batch size of 16, and the Adam optimizer was selected. The Mosaic
data augmentation technique was employed for data pre-processing, which involves
concatenating four images and randomly applying scaling, cropping, and shuffling the
images. The number of training epochs was set to 150, as it was found that stability
could be achieved after around 130 epochs based on the experimental results from the
landslide dataset. We performed all the experiments using the PyTorch 1.8 deep learning
framework on a Linux system with hardware equipped with an NVIDIA Tesla P100-16GB
GPU. The training process of LP-YOLO is shown in Algorithm 1.
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Algorithm 1: Pseudocode of LP-YOLO algorithm.
Input: landslide remote sensing images, labels for bounding box coordinates

object class, Bx, By, width Bw, height Bh
Output: Class probabilities Pc and predicted bounding box coordinates

1 Initialize landslide dataset = train images (80%) + validation images (20%);
2 batch size = 16;
3 epochs E = 150;
4 data augmentation = true;
5 Training stage:
6 foreach epoch in E do
7 Load YOLO hyperparameters;
8 Randomly select batch size images;
9 Training on the landslide images with LP-YOLO algorithm (Figure 1);

10 Calculate the loss and update the parameters by backpropagation;
11 Evaluating detection performance of the algorithm using validation images;
12 end
13 save optimal bestweight.pt
14 Testing stage:
15 Use the trained LP-YOLO model to predict the test images;
16 predict Pc, Bx, By, Bw, and Bh;
17 display class Pc and predicted bounding box

5. Results
5.1. Ablation Experiments’ Results

The detection performance changes caused by modifications in the network structure
were evaluated through ablation experiments, and the results are presented in Table 3.

Table 3. Ablation study of LP-YOLO on landslide dataset val.

Model AP50(%) AP50:95(%) Params (M) FLOPs (G)

YOLOv5s
baseline model 46.4 23.0 7.02 15.9

YOLOv5s
baseline model +

SIoU loss
47.9 (+1.5) 24.4 (+1.4) 7.02 15.9

LP-YOLO +
PartitionNet
(backbone)

46.8 (+0.4) 24.6 (+1.6) 4.51 6.9

+VH block and
attention

mechanism
48.4 (+1.6) 25.1 (+0.5) 4.53 7.2

+NewPAN
(+CSPCrossStage) 49.0 (+0.6) 25.5 (+0.4) 4.34 7.4

In contrast to the YOLOv5s model, our experiments showed that using the SIoU
loss function could achieve better location results and accuracy, for which the Precision
increased from 49.7% to 51.9%, AP50 increased from 46.4% to 47.9%, and AP50:95 increased
from 23.0% to 24.4%. Additionally, using only our proposed network PartitionNet to replace
the backbone of the model led to a 38.2% reduction in the quantity of parameters and a
53.4% reduction in the FLOPs, while increasing the Precision, AP50, and AP50:95. With the
introduction of the CBAM attention module and our proposed VH block, we obtained a
1.6% AP50 improvement and a 0.5% AP50:95 improvement with slightly increased Params
and FLOPs compared to the model of the backbone of PartitionNet. Furthermore, using
the NewPAN feature fusion structure and CSPCrossStage resulted in a 38.1% reduction in
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the quantity of parameters compared to the YOLOv5s baseline model and a 4.2% reduction
compared to the proposed model that used the previous PAN structure.

In addition, using NewPAN in the proposed model could achieve a 0.6% improvement
for AP50 and a 0.4% improvement for AP50:95.

With the simultaneous improvement of the backbone, neck, and feature fusion struc-
ture and the introduction of the attention module, the proposed model achieved a reduction
of 38.1% and 53.4% in the number of parameters and FLOPs, respectively, when compared
to the baseline model. Furthermore, the model’s accuracy was significantly improved,
achieving an AP50 and AP50:95 of 49.0% and 25.5%, respectively.

5.2. Comparison of Experiments’ Results with Different Backbones

To provide a more quantitative validation of the detection accuracy of our proposed
method, we conducted a set of experiments comparing it to existing mainstream lightweight
object-detection algorithms. We tested several lightweight backbone architectures, includ-
ing ShuffleNet, PP-LCNet [43], EfficientNetB0 [44], MobileNetV3(Small), repVGG [45],
GhostNet, and our PartitionNet with the same neck structures and loss functions.

As shown in Table 4, while the models with ShuffleNet, MobileNetV3, and PP-LCNet
as backbones exhibited favorable performance with respect to the number of parameters,
FLOPs, and Latency metrics on the landslide dataset, our algorithm outperformed them in
terms of the P, R, AP50, and AP50:95 accuracy metrics.

Furthermore, compared to the CIoU loss function, we found that employing the
SIoU loss function in YOLOv5s resulted in a 1.5%, 1.4%, and 2.2% improvement for AP50,
AP50:95, and Precision, respectively. When comparing YOLOv5s-SIoU-PAN with LP-
YOLO-PAN, we observed a decrease in AP50, but not exceeded 1.1%, and an increase in
Latency, but a decrease in the parameters and FLOPs of 35.6% and 56.3%, respectively.
Finally, we found that incorporating a VH block and attention module to the backbone,
as well as replacing the PAN module with NewPAN resulted in an increase in the AP and a
decrease in the Params when compared to LP-YOLO-PAN.

Table 4. Detection performance comparison of different backbone networks. LF denotes loss function.

Model Backbone Neck LF AP50 AP50:95 P R Latency FLOPs Params
(%) (%) (%) (%) (ms) (G) (M)

YOLOv5-s CSPDarkNet PAN CIoU 46.4 23.0 49.7 49.8 8.7 15.8 7.02
YOLOv5-s CSPDarkNet PAN SIoU 47.9 24.4 51.9 48.6 8.8 15.8 7.02
YOLOv5-s ShuffleNet PAN SIoU 44.3 21.9 49.3 46.7 8.2 1.8 0.84
YOLOv5-s PP-LCNet PAN SIoU 43.9 20.8 50.3 46.1 9.4 5.8 2.96
YOLOv5-s EfficientNetB0 PAN SIoU 45.7 22.8 50.2 48.7 10.5 7.1 3.51
YOLOv5-s MobileNetV3 PAN SIoU 42.0 20.5 48.8 45.0 10.8 2.5 1.38
YOLOv5-s repVGG PAN SIoU 44.5 21.5 50.1 47.2 9.1 7.0 3.4
YOLOv5-s GhostNet PAN SIoU 45.6 22.3 50.9 49.5 12.0 7.6 4.75

LP-YOLO(ours) PartitionNet PAN SIoU 46.8 24.6 52.1 50.0 11.5 6.9 4.52

LP-YOLO(ours)
PartitionNet
+ VH block +
CBAM

PAN SIoU 48.4 25.1 53.6 49.0 13.9 7.0 4.52

LP-YOLO(ours)
PartitionNet
+ VH block +
CBAM

NewPAN SIoU 49.0 25.5 53.7 49.8 13.5 7.4 4.32

5.3. Performance Comparison Using Different Detection Networks

Table 5 provides a comprehensive comparison of the object detection accuracy be-
tween our proposed algorithm and other detection methods. Evidently, our algorithm
outperformed the other existing methods with respect to AP50. Furthermore, our analysis
revealed that the YOLOv8 model exhibited enhanced performance at higher IoU thresholds.
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Table 5. Comparing with different detection algorithms.

Model AP50 (%) AP50:95 (%)

SSD 38.0 18.5
Faster RCNN 42.5 21.3

YOLOv3 37.7 18.1
YOLOv4 38.1 18.6

YOLOv5-s 46.4 23.0
YOLOv5-m 48.0 25.1
YOLOX-s 43.6 22.8
YOLOX-m 44.6 24.7
YOLOv8-n 46.0 26.3
YOLOv8-s 44.5 26.8

LP-YOLO(ours) 49.0 25.5

5.4. Comparing with the SOTA Lightweight Model GhostNet

Serving as the feature extraction backbone of the detection model also, we made a
comparison between the LP-YOLO and the SOTA lightweight model GhostNet. Based on
Table 6, the following observations can be made: Our algorithm outperformed GhostNet as
backbone of the model in terms of AP50 and AP50:95 with smaller FLOPs on the landslide
dataset. We found that adding the VH block and CBAM module to the backbone resulted
in a 0.8% AP50 improvement and a 2% AP50:95 improvement for the YOLOv5-GhostNet
model. In correspondence with LP-YOLO, it could achieve a 1.6% and a 0.5% improvement
for AP50 and AP50:95, respectively. Furthermore, using the NewPAN structure simulta-
neously could make the model have better performance with a slight increase in FLOPs.

Table 6. Comparing with the SOTA lightweight model GhostNet.

Model Backbone Neck AP50 (%) AP50:95 (%) FLOPs(G)

YOLOv5 GhostNet PAN 45.6 22.3 7.6

YOLOv5 GhostNet + VH
block + CBAM PAN 46.4 24.3 7.6

YOLOv5 GhostNet + VH
block + CBAM NewPAN 47.7 25.0 7.9

LP-YOLO PartitionNet PAN 46.8 24.6 6.9

LP-YOLO PartitionNet + VH
block + CBAM PAN 48.4 25.1 7.1

LP-YOLO PartitionNet + VH
block + CBAM NewPAN 49.0 25.5 7.4

To summarize, in comparison to the original YOLOv5s model, our proposed model
in this study exhibited a considerable reduction in the number of parameters and FLOPs,
while simultaneously achieving an increase of 2.6% in AP50 and 2.5% in AP50:95. Besides,
the proposed model outperformed the mainstream lightweight object-detection algorithms.
Specifically, the model attained a detection precision of 49.0% for AP50, 25.5% for AP50:95,
and a Latency of 13.5 ms, which fulfilled the real-time detection performance require-
ments and detection accuracy of landslides, thereby enabling automatic identification of
landslides.

Figures 10 and 11 depict the detection performance of YOLOv5s and LP-YOLO on
sparse landslide images. Figures 10 and 11 (middle) show the detection results obtained
by the YOLOv5s model, while Figures 10 and 11 (right) represent the detection results
obtained by the proposed LP-YOLO model. Comparing the two models, it is evident
that the YOLOv5s model exhibited a higher confidence score, indicating a greater level
of confidence in the detected objects. On the other hand, our proposed LP-YOLO model
detected landslides with a slightly lower confidence score„ but exhibited a relatively
low missed detection rate to strike a balance. Despite the model having a slightly lower
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confidence score, the LP-YOLO model displayed higher sensitivity, resulting in fewer
instances of missing real objects. This indicated that the model achieved a relatively low
false positive rate, even in complex situations, and provided more comprehensive detection
results.

Figure 10. Real landslide and predicted results of the YOLOv5s and LP-YOLO models. (Left) Ground
truth box for sparse landslide; (middle) YOLOv5s prediction; (right) LP-YOLO model prediction.

Figure 11. Real landslide and predicted results of the YOLOv5s and LP-YOLO models. (left) Ground
truth box for sparse landslide; (middle) YOLOv5s prediction; (right) LP-YOLO model prediction.

Figures 12 and 13 depict the detection performance of YOLOv5s and LP-YOLO on
dense landslide images. The detection results indicated that LP-YOLO exhibited superior
performance compared to YOLOv5s for dense landslides. However, it is worth noting that
the detection performance of LP-YOLO regarding small-area landslides required further
enhancement, as there existed a certain missed detection rate.

Figure 12. Real landslide and predicted results of the YOLOv5s and LP-YOLO models. (Left) Ground
truth box for dense landslide; (middle) YOLOv5s results; (right) LP-YOLO prediction.
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Figure 13. Real landslide and predicted results of the YOLOv5s and LP-YOLO models. (Left) Ground
truth box for dense landslide; (middle) YOLOv5s model prediction; (right) LP-YOLO prediction.

6. Discussion

Firstly, the detection results demonstrated that our proposed model exhibited higher
precision and average precision (AP) compared to the other models, indicating its ability to
achieve a relatively low false positive rate even in complex situations. However, it is worth
mentioning that the model detected landslides with relatively low confidence.

Secondly, regarding small target detection, the model designed in this study exhibited
limitations in detecting small objects, which is a known challenge in detection tasks. To ad-
dress this issue, further exploration in future work can involve incorporating multi-scale
structures into the model and adopting more-advanced data enhancement methods.

Thirdly, for landslide detection, the scarcity of datasets and the diversity of land-
slide types contributed to the challenges in achieving accurate identification. For instance,
in the case of loess landslides, their colors often closely resemble the surrounding environ-
ment, making it difficult for experts to accurately annotate landslide datasets and extract
distinctive features for model training.

Lastly, in terms of integration and application in landslide prevention and control sys-
tems, the lightweight design of our model offers advantages such as reduced computational
burden and memory consumption. These characteristics render it suitable for deployment
on power-constrained devices, including unmanned aerial systems (UASs). Integrating
the model with UASs would thereby enable efficient and comprehensive monitoring of
areas prone to landslides. This integration demonstrates promising prospects in augment-
ing early warning systems, facilitating real-time monitoring for landslide prevention and
management.

7. Conclusions

This paper presented LP-YOLO, a new lightweight landslide-detection model based
on the YOLO algorithm and a comprehensive landslide dataset. The proposed model
addressed the challenges of accurate landslide detection in remote sensing images with
varying spectral, texture, terrain, landslide type, and scale characteristics. LP-YOLO
comprises several key components that contribute to its superior performance, including the
PartitionNet backbone, the VH block, the new feature fusion structure, the CSPCrossStage
module, the SIoU loss function, and the CBAM attention mechanism. The experimental
results demonstrated that the proposed model outperformed YOLOv5 and the other models
in terms of the AP, parameters, and FLOPs. LP-YOLO has the potential to be deployed
on power-constrained devices for real-time automatic detection of landslides. However,
further research is needed to improve the detection frame rate and model accuracy and
expand the dataset to reduce error detection problems. Overall, this work provides a
promising solution to the problem of real-time landslide detection and contributes to the
development of lightweight detection models for landslides.
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