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Abstract: The main cause of ground subsidence accidents in urban areas is cavities formed by
damage to underground utilities. For this reason, the attribute information of underground utilities
should be used to prepare against ground subsidence accidents. In this study, attribute information
(pipe age, diameter, burial depth, and density) of six types of underground utilities (water, sewer,
gas, power, heating, and communication) and history information of ground subsidence were
collected. A correlation analysis was conducted using the collected data, and a prediction model of
vulnerability to ground subsidence was developed through the ordinary least squares (OLS) method
and spatial regression analysis (spatial lag model (SLM) and spatial error model (SEM)). To do
this, the target area was divided into a grid of 100 m × 100 m. Datasets were constructed using
the attribute information of underground utilities included in the divided grid and the number of
ground subsidence occurrences. To analyze the OLS of the constructed data, the variance inflation
factor (VIF) of the attribute information of underground utilities was studied. An OLS analysis was
conducted using the appropriate factors, and the results show that the spatial data were autocorrelated.
Subsequently, SEM and SLM analyses, which were spatial regression analyses, were conducted. As
a result, the model using SLM was selected as suitable for analyzing the vulnerability of ground
subsidence, and the density of six types of underground utilities was found to be the highest
influencing factor. In addition, a vulnerability map of ground subsidence in the target area was
prepared using the model. The vulnerability map demonstrates that regions with frequent ground
subsidence can be predicted to be highly vulnerable.

Keywords: OLS analysis; spatial regression; SEM; SLM; ground subsidence

1. Introduction

The causes of ground subsidence, which mainly occur in urban areas, are highly com-
plex. However, the main reported cause of ground subsidence is damage to underground
utilities (such as water and sewage). The occurrence of ground subsidence can lead to
potentially catastrophic accidents, raising public anxiety [1]. For this reason, it is very
important to analyze the causes of ground subsidence and be prepared. Several studies
were conducted analyzing the causes of ground subsidence. Ground subsidence occurs
when underground structures are damaged and develop discontinuities, which can be due
to a range of causes, such as external impact, water pressure, and degradation. When this
damage occurs, water paths are formed, primarily around the damaged areas, through
infiltration and changes in groundwater levels. Surrounding soil particles are lost and
transported into underground structures, leading to the formation of holes. As these holes
progressively expand, the upper layers of the ground eventually collapse, demonstrating
the mechanism of ground subsidence [2–8].
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To support preparation for ground subsidence, studies on the prediction of ground
subsidence risk were steadily conducted. To predict the risk level of ground subsidence,
the main factors influencing ground subsidence must first be selected. According to
the literature review and analytic hierarchy process analysis studies, the main factors
influencing the occurrence of ground subsidence in urban areas are cavity, surcharge
load, depth, thickness, soil type, shear strength, relative density, and soundness and
history of underground utilities [9–11]. To predict ground subsidence caused by damage to
underground utilities, finite element analysis was used to analyze the ground’s behavior
according to the amount of settlement and the affected area, and it was found that the
location of damage, the relative density of the ground, and stratigraphic conditions were
significant factors influencing the ground subsidence [12,13]. Furthermore, the attribute
data of underground utilities were built using a geographic information system (GIS)
program and a model, etc., to predict the risk level of ground subsidence based on machine
learning, and regression analysis was developed [14–16].

The occurrence of ground subsidence is affected by spatial characteristics such as the
location of underground utilities and geotechnical information. Thus, spatial correlation
should be considered in the analysis to systematically predict the vulnerability to ground
subsidence. For this reason, research on ground subsidence focused on indoor model
experiments for mechanism determination, AHP analysis, and ground subsidence risk
factor analysis, as well as risk prediction using machine learning techniques. However,
there is no research using statistical techniques for spatial characteristics. Therefore, this
study used GIS to develop a database by selecting the attribute information of underground
utilities that are reported as the cause of ground subsidence and the history information of
ground subsidence as influencing factors through a spatial regression model analysis for
the purpose of developing a ground subsidence occurrence prediction model.

The study also removed missing data and outliers from the database that was built.
Using the database, an independent t-test was performed on the spatial information of
underground utilities and the occurrence of ground subsidence, and a correlation analysis
was performed. In addition, an ordinary least squares (OLS) analysis was performed to
determine the influence relationship between ground subsidence-related influencing factors
(independent variables) and the history information of ground subsidence occurrences
(dependent variable), through which spatial autocorrelation was verified. Additionally, a
prediction map of ground subsidence in the target area was created based on the regression
equation of underground utilities and ground subsidence history information derived
through the spatial regression analysis. It is expected that ground subsidence accidents can
be prevented by using ground penetrating radar (GPR) and other types of equipment to
explore the ground holes in the high-risk areas presented in the ground subsidence risk
prediction map created in this study.

2. Flow and Data of the Study
2.1. Flow of the Study

In this study, an urban area in South Korea was selected as the target area. To develop
a prediction model of ground subsidence in the target area, the target area was divided
into cells with a size of 100 m × 100 m using GIS to extract the ground subsidence history
information and the attribute information of underground utilities (water pipelines, sewer
pipelines, communication pipe, power cables, heating pipelines, and gas pipes). After
removing the missing data and outliers from the extracted data, a correlation analysis
between the attribute information of underground utilities and the history information
of ground subsidence was performed. Missing values in the data are values that were
left blank because the survey was not fully completed. Outliers are error values, such as
negative (-) or 0 values for the buried depth and age of the pipes. Then, the study singled
out influencing factors that exhibited a significant correlation with ground subsidence
through the correlation analysis and performed OLS analysis using the selected factors.
Furthermore, after verifying multicollinearity using the variance inflation factor (VIF) and
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spatial autocorrelation through the OLS analysis results, SEM and SLM analyses were
performed to verify the results. Finally, the study selected an appropriate prediction model
of ground subsidence vulnerability by comparing the OLS, SEM, and SLM results, and
verified the attribute information of underground utilities that were significantly corre-
lated with ground subsidence through the selected model. A map of ground subsidence
vulnerability in the target area was also created. Figure 1 shows the flow chart of this study.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 13 
 

influencing factors that exhibited a significant correlation with ground subsidence 
through the correlation analysis and performed OLS analysis using the selected factors. 
Furthermore, after verifying multicollinearity using the variance inflation factor (VIF) and 
spatial autocorrelation through the OLS analysis results, SEM and SLM analyses were 
performed to verify the results. Finally, the study selected an appropriate prediction 
model of ground subsidence vulnerability by comparing the OLS, SEM, and SLM results, 
and verified the attribute information of underground utilities that were significantly cor-
related with ground subsidence through the selected model. A map of ground subsidence 
vulnerability in the target area was also created. Figure 1 shows the flow chart of this 
study. 

 
Figure 1. Flow chart. 

2.2. Data 
In this study, historical information on ground subsidence and attribute information 

on underground utilities were extracted using GIS. The target area was divided into a total 
of 61,707 cells with a size of 100 m × 100 m, and the number of ground subsidence incidents 
contained in each cell and the attribute information of six types of underground facilities 
were used as data. The six types of underground facilities were grouped into one type to 
extract data.  

The history information of ground subsidence was data generated from 2008 to 2020, 
which consist of 9478 cases. The six types of underground utilities in the target area were 
water pipelines, sewer pipelines, power cables, communication pipes, heating pipelines, 
and gas pipes, and their attribute information was collected. The attribute information, 

Figure 1. Flow chart.

2.2. Data

In this study, historical information on ground subsidence and attribute information
on underground utilities were extracted using GIS. The target area was divided into a total
of 61,707 cells with a size of 100 m × 100 m, and the number of ground subsidence incidents
contained in each cell and the attribute information of six types of underground facilities
were used as data. The six types of underground facilities were grouped into one type to
extract data.

The history information of ground subsidence was data generated from 2008 to 2020,
which consist of 9478 cases. The six types of underground utilities in the target area were
water pipelines, sewer pipelines, power cables, communication pipes, heating pipelines,
and gas pipes, and their attribute information was collected. The attribute information,
the diameter, average depth, age, and density of the pipes were selected. The collected
data of diameter and average depth were used without any change, and the age data were
calculated based on the year of burial. The density was calculated through linear density
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analysis using GIS. The density was calculated based on the length of pipes per unit area
using GIS. It was calculated through a linear density analysis.

Table 1 presents the data characteristics (minimum, maximum, average, and standard
deviation) where missing values and outliers were removed from the attribute information
data of the collected underground utilities. The outliers were found mainly in the age data.
If the burial year of the pipeline was difficult to identify, data marked as 103 years or older
were deleted.

Table 1. Characteristics of the data.

Category MIN MAX M SD

Water pipeline

Density 0.00 0.08 0.03 0.02
Diameter (cm) 15.00 2400.00 318.77 417.83

Average depth (m) 0.10 25.00 1.44 0.76
Age (years) 1.00 68.00 28.18 11.05

Sewer pipeline

Density 0.00 0.05 0.02 0.01
Diameter (cm) 150.00 3000.00 609.45 231.36

Average depth (m) 0.02 21.55 1.27 1.03
Age (years) 2.00 77.00 40.92 27.30

Power cable

Density 0.00 0.05 0.01 0.01
Diameter (cm) 50.00 300.00 164.72 27.12

Average depth (m) 0.10 11.00 1.14 0.50
Age (years) 1.00 42.00 11.62 7.63

Communication
pipe

Density 0.00 0.09 0.02 0.01
Diameter (cm) 1.00 1000.00 92.16 18.51

Average depth (m) 0.20 1500.00 2.42 39.30
Age (years) 1.00 63.00 29.51 11.48

Heating pipeline

Density 0.00 0.07 0.00 0.01
Diameter (cm) 20.00 1100.00 322.17 230.68

Average depth (m) 0.50 6.70 1.48 0.28
Age (years) 2.00 38.00 20.81 10.10

Gas pipe

Density 0.00 0.06 0.02 0.01
Diameter (cm) 20.00 750.00 162.62 93.78

Average depth (m) 0.10 6.50 1.10 0.50
Age (years) 1.00 49.00 25.28 8.99

All six types of
underground

facilities

The density of all six
types of

underground
facilities

0.00 0.25 0.09 0.05

3. Data Correlation Analysis

To derive the attribute information of underground utilities that affected ground
subsidence involving six types of underground utilities, Pearson correlation analysis was
conducted between the presence, density, diameter, average depth, and age of the six
types of underground utilities, the density of all six types of underground utilities, and the
occurrence of ground subsidence.

Correlation analysis is an analysis that determines the degree of the linear relationship
between independent and dependent variables, and the correlation coefficient has a value
between −1 and 1. The correlation coefficient between the variables can be calculated
through Equations (1) and (2) [17,18].

Corr(X, Y) = ρ(X, Y) =
Cov(X, Y)
σxσy

(1)
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r =
sxy

sxsy
=

∑n
i=1(Xi −

−
X)
(

Yi −
−
Y
)

√
∑n

i=1 (Xi −
−
X)

2

∑n
i=1 (Yi −

−
Y)

2
(2)

sxy: Covariance of X and Y variables, sx: standard deviation of variable X, sy: and standard
deviation of variable Y.

After obtaining the correlation coefficient, hypotheses of correlation in the population
through Equation (3) were conducted to determine whether the correlation coefficient
between two variables is statistically significant. If the test statistic is less than or equal to
0.05, there is a significant correlation between the two variables [19,20].

t = r
√

n − 2
1 − r2 (3)

Table 2 presents the results of the Pearson correlation analysis. All factors, except
the average depth of sewer pipelines, the average depth and age of communication pipes,
the average depth of heating pipelines, and the average depth of gas pipes, were found
to be significantly correlated with ground subsidence among the attribute information of
underground utilities. However, most influencing factors (attribute information) did not
show a high correlation with ground subsidence. This was because ground subsidence
occurred due to complex causes, such as damage to underground utilities, disturbance of
the surrounding ground by excavation, and poor compaction [21]. As a result, it is desirable
to predict the vulnerability of ground subsidence in urban areas using influencing factors of
ground subsidence as much as possible. However, as it was difficult to collect such diverse
data, only the attribute information of underground utilities was used as data in this study.

Table 2. Results of Pearson correlation analysis.

Category Ground Subsidence

Water pipeline presence 0.252 ***
Water pipeline density 0.221 ***

Water pipeline diameter 0.071 ***
Water pipeline average depth 0.023 ***

Water pipeline age 0.088 ***
Sewer pipeline presence 0.248 ***
Sewer pipeline density 0.237 ***

Sewer pipeline diameter 0.056 ***
Sewer pipeline average depth −0.058 ***

Sewer pipeline age −0.006
Power cable presence 0.254 ***
Power cable density 0.201 ***

Power cable diameter 0.073 ***
Power cable average depth −0.044 ***

Power cable age 0.084 ***
Communication pipe presence 0.272 ***
Communication pipe density 0.238 ***

Communication pipe diameter 0.079 ***
Communication pipe average depth 0.006

Communication pipe age 0.002
Heating pipeline presence 0.039 ***
Heating pipeline density −0.002

Heating pipeline diameter 0.075 ***
Heating pipeline average depth −0.006

Heating pipeline age −0.038 **
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Table 2. Cont.

Category Ground Subsidence

Gas pipe presence 0.252 ***
Gas pipe density 0.232 ***

Gas pipe diameter 0.133 ***
Gas pipe average depth 0.018

Gas pipe age 0.096 ***
All six types density 0.240 ***

** p < 0.01, *** p < 0.001.

4. OLS Analysis

To develop a model for predicting ground subsidence vulnerability in urban areas, a
multiple linear regression analysis was conducted to determine the influence of specific
ground subsidence influencing factors (underground utility attribute information) on
whether ground subsidence occurs. Multiple linear regression analysis represents the
relationship between multiple explanatory variables and the dependent variable (whether
or not ground subsidence occurred) as a regression equation, as presented in Equation (4),
and the coefficient of the regression equation is estimated through the OLS that minimizes
the sum of the squares of the residuals [22,23].

y = β0 + β1x1 + β2x2 + · · ·+ βnxn + ε (4)

y: Dependent variable, xi: independent variable (explanatory variable), βi: estimated
regression coefficient, and ε: error term.

To build a multiple regression model, it is necessary to check for multicollinearity,
which is the correlation between the explanatory variables. This is because the presence of
multicollinearity will distort the estimated regression coefficients of the multiple regression
model. Thus, multicollinearity is measured by the VIF. The VIF is generally based on a
value of 10; if it is less than 10, it can be considered that multicollinearity is not present.
Equation (5) presents the VIF calculation for the j-th regression coefficient estimate βj [24,25].

VIFj =
1

1 − Rj
2 (5)

The coefficient of determination calculated from a regression model with Rj
2 : Xj as

the dependent variable.
Table 3 presents VIFs of the attribute information of underground utilities used in this

study. The diameter, average depth, age of six types of underground utilities, and density of
all six types of underground utilities exhibited a VIF of 10 or less. Accordingly, all attribute
information was used to perform the OLS analysis. The Jarque–Bera and Breusch–Pagan
statistics were used to test for non-normality and heteroscedasticity in the OLS model.

Table 4 presents the OLS analysis results. When performing an OLS analysis, it is
necessary to consider assumptions about the presence of spatial effects, such as spatial
autocorrelation. To do this, the distribution of residuals is identified using Moran’s I value.
Moran’s I is a measure to verify the spillover effects that occur in spatial proximity. It
is an indicator to check the correlation between events in a specific region and events in
neighboring regions based on a spatially weighted matrix, such as Equation (6) [26].

I =
N ∑n

i=1 ∑n
j=1 wij

(
Yi −

−
Y
)(

Yj −
−
Y
)

(
∑n

i=1 ∑n
j=1 wij

)
∑n

i=1 (Yi −
−
Y)

2 (6)

N: No. of regions, Yi: attribute of region i, Yj: attribute of region,
−
Y: mean value, and wij:

weigh value.
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Values of Moran’s I usually range from −1 to +1. A value close to 1 indicates a
positive spatial autocorrelation, while a value close to −1 indicates negative spatial au-
tocorrelation [27]. The value of Moran’s I in the model proposed in this study is 0.127.
This means that there is a positive spatial autocorrelation that increases the occurrence
of ground subsidence as the number of six types of underground facilities increases. In
addition, the z-score was 44.359 (p-value < 0.001). The z-score is a criterion to determine the
statistical significance of Moran’s I. If the z-score is statistically significant (p-value < 0.05),
it confirms the existence of spatial autocorrelation in the model. Furthermore, both the
Jarque–Bera and Breusch–Pagan statistics are statistically significant, indicating that there
is non-normality and heteroscedasticity in the error term. Thus, since the OLS analysis
model exhibits non-normality and heteroscedasticity in the error term, and the spatial
autocorrelation of the residuals is confirmed, it is appropriate to conduct the analysis with
a spatial regression model using a spatially weighted matrix.

Table 3. VIF of the dependent variables.

Underground Facility Information VIF

Water pipeline diameter (cm) 1.555709
Water pipeline average depth (m) 2.338912

Water pipeline age (years) 2.712778
Sewer pipeline diameter (cm) 1.541930

Sewer pipeline average depth (m) 1.469795
Sewer pipeline age (years) 1.518273
Power cable diameter (cm) 5.369876

Power cable average depth (m) 4.826353
Power cable age (years) 1.356797

Communication pipe diameter (cm) 4.055690
Communication pipe average depth (m) 1.107161

Communication pipe age (years) 3.990815
Heating pipeline diameter (cm) 2.802712

Heating pipeline average depth (m) 3.911007
Heating pipeline age (years) 2.918603

Gas pipe diameter (cm) 2.085979
Gas pipe average depth (m) 1.150920

Gas pipe age (years) 2.768914
Density of all six types 1.758216

Table 4. OLS analysis results.

Underground Facility Information Linear Regression Model
(OLS)

Constant −0.0314207 ***

Underground facility
Information

Water pipeline diameter (cm) −0.0314207 ***
Water pipeline average depth (m) 0.000063 ***

Water pipeline age (years) −0.010811 ***
Sewer pipeline diameter (cm) 0.001171 ***

Sewer pipeline average depth (m) −0.000011 **
Sewer pipeline age (years) −0.0143429 ***
Power cable diameter (cm) 0.000140 **

Power cable average depth (m) 0.000807 ***
Power cable age (years) −0.033201 ***

Communication pipe diameter (cm) −0.000404
Communication pipe average depth (m) 0.000415 ***

Communication pipe age (years) −0.000119
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Table 4. Cont.

Underground Facility Information Linear Regression Model
(OLS)

Heating pipeline diameter (cm) 0.000183
Heating pipeline average depth (m) 0.000090 ***

Heating pipeline age (years) −0.021801 ***
Heating pipeline diameter (cm) −0.001326 ***

Gas pipe average depth (m) 0.000210 ***
Gas pipe age (years) 0.033765 ***

Density of all six types 0.000888 ***

Spatial autocorrelation of standardized
residuals

Global Moran’s I 0.326620
z-score 0.127047

Explanatory power of the model R2 44.358796 ***

Fit of the model
log−likelihood 0.130332

AIC −6183.22
SC 12406.4

Non-normality Jarque−Bera 12587.0

Heteroscedasticity Breusch−Pagan 104,760.6103 ***

Multicollinearity Multicollinearity conditional number 31,757.1448 ***

Spatial autocorrelation in spatial
regression models

LM−lag 11.309430
Robust LM−lag 2869.9710 ***

LM−error 84.5001 **
Robust LM−error 2807.7994 ***

** p < 0.01, *** p < 0.001.

5. Spatial Regression Analysis

The aim of this study was to develop a model to predict the vulnerability of ground
subsidence in the target area using the attribute information of six types of underground
utilities and the history information of ground subsidence. The OLS analysis results
demonstrate that there was spatial autocorrelation. Thus, a spatial regression model was
analyzed. To estimate a spatial regression model, spatial data were built first. Then, a
spatial distance was defined and a spatial weight matrix that set the relationship between
regions was constructed using the GeoDa 1.20 software [28]. For spatial distance, this study
chose the Queen method, which determines that in gridded data, neighbors are adjacent if
they share a side or corner of a given grid cell. The Queen method is used in geospatial
data consisting of administrative districts, and is suitable for considering the adjacency of
regions that share boundaries with each other [29].

The spatial regression analysis in this study employed SEM and SLM. SEM is a model
that considers the covariance of errors in the regression model when spatial autocorrelation
exists in the errors. SLM is a model that analyzes spatial dependence (spatial lagged
variables) by including them in the regression model as one explanatory variable [30]. In
addition, SEM and SLM were estimated through maximum likelihood. The SEM and SLM
are produced using Equations (7) and (8).

y = δ0 + δ1X1 + δ2X2 + · · ·+ u u = λWu + e (7)

y: Dependent variable, X: independent variable, U: error term with spatial autocorrelation,
W: spatial weight matrix, ∆, λ : estimation coefficient, and e:error term without spatial
autocorrelation.

y = ρWy + δ0 + δ1X1 + δ2X2 + . . . + ε (8)

y: Dependent variable, X: independent variable, W: spatial weight, ρ, δ: estimation coeffi-
cient, and ε : error term.
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R2 was used as a measure of explanatory power to compare spatial regression models.
To determine the fit of the model, log-likelihood, Akaike information criterion (AIC), and
Schwarz criterion (SC) were used. To determine the significance of the spatial autoregressive
coefficient (ρ, λ), the likelihood ratio test was used [31,32]. Table 5 presents the results of
SEM and SLM.

Table 5. Spatial regression analysis results.

Underground Facility Information Spatial Lag Model
(SLM)

Spatial Error Model
(SEM)

Constant 0.0235515 *** −0.033493 ***

Underground facility
Information

Water pipeline diameter (cm) 0.000063 *** 0.000071 ***
Water pipeline average depth (m) −0.010554 *** −0.009999 ***

Water pipeline age (years) 0.000899 *** 0.000957 ***
Sewer pipeline diameter (cm) −0.000013 *** −0.000012 **

Sewer pipeline average depth (m) −0.012026 *** −0.009926 ***
Sewer pipeline age (years) 0.000105 * 0.000134 **
Power cable diameter (cm) 0.000644 *** 0.000657 ***

Power cable average depth (m) −0.021835 *** −0.015158 ***
Power cable age (years) −0.000489 −0.000689 *

Communication pipe diameter (cm) 0.000383 *** 0.000426 ***
Communication pipe average depth (m) −0.000115 −0.000120

Communication pipe age (years) −0.000039 −0.000182
Heating pipeline diameter (cm) 0.000093 *** 0.000100 ***

Heating pipeline average depth (m) −0.019548 *** −0.017253 **
Heating pipeline age (years) −0.001199 *** −0.001354 ***

Gas pipe diameter (cm) 0.000209 *** 0.000243 ***
Gas pipe average depth (m) 0.021559 *** 0.024353 ***

Gas pipe age (years) 0.000644 *** 0.000735 ***
Density of all six types 0.114037 *** 0.397172 ***

Spatial dependence Likelihood ratio

Spatial effect Rho (ρ) 0.326620
Lambda (λ) 0.127047

The explanatory power of the
model R2 44.358796 ***

Fit of the model
log-likelihood 0.130332

AIC −6183.22
SC 12,406.4

* p < 0.05, ** p < 0.01, and *** p < 0.001.

Statistics were checked to determine which model out of SLM or SEM was more
appropriate for predicting ground subsidence vulnerability. The model’s explanatory
power, R2, showed that the SLM model was 0.173390 and the SEM model was 0.174061,
indicating that the explanatory power of SEM was relatively higher. To determine the fit of
the model, log-likelihood, AIC, and SC were reviewed, and the log-likelihood values of
SLM and SEM were −5046.05 and −5053.52, respectively, indicating that the value of SLM
was relatively higher. Both values of AIC and SC of SLM were smaller. Thus, the overall
statistics exhibited that R2 of SEM was higher, although the difference was minimal, while
log-likelihood, AIC, and SC values of SLM were all more fit. Thus, the SLM model was
finally selected as the most-fit model.

The finally selected SLM model was analyzed, and the results show that the diameter
and age of water pipelines; the age of sewer pipelines; the diameter of power cables; the
diameter of communication pipes; the diameter of heating pipelines; the diameter, average
depth, and age of gas pipes; and the density of all six types of pipes had a positive (+) effect
on the occurrence of ground subsidence. On the other hand, the average depth of water
pipelines, the diameter and the average depth of sewer pipelines, the average depth of
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power cables, and the average depth and age of heating pipelines were found to have a
negative (-) effect on the occurrence of ground subsidence. Additionally, the age of power
cables and the average depth and age of the communication pipes were not found to be
significant in terms of the occurrence of ground subsidence.

Because the likelihood ratio statistic of the SLM model is significant (p < 0.001), it can
be concluded that the fit of the model is improved by applying spatial effects. In addition,
the value of ρ, the spatial effect, is 0.31534 (p < 0.001). This means that the occurrence of
ground subsidence in a specific area that has spatial autocorrelation is affected by about
31.5% of the occurrence of ground subsidence in the surrounding ground.

6. A Map of Ground Subsidence Vulnerability

A map of ground subsidence vulnerability in the target area was created using the
SLM model where spatial dependence was applied. To create a map of vulnerability, a
program called GeoDa 1.20, which can perform spatial data and modeling, was used. A
Queen-based spatial weight matrix was used and the target area was divided into a 100 m
× 100 m grid. Figure 2a shows the map of ground subsidence vulnerability predicted by the
SLM model, in which the vulnerable spots are indicated with red while the relatively safer
spots are indicated with blue. Figure 2b shows a map of points where ground subsidence
actually occurred in the target area. The figures indicate that the vulnerability of ground
subsidence was highly well predicted in the central and eastern parts, where ground
subsidence occurred frequently. On the other hand, in the western part where there was no
significant ground subsidence, the SLM model did not predict vulnerability well. This is a
problem caused by the model’s inaccuracy. In the case of the western part, it is estimated
that the number of occurrences of ground subsidence caused by factors other than damage
to underground utilities was included. Therefore, it is expected that a high-accuracy
ground subsidence vulnerability map will be achieved by securing information on various
underground spaces, such as ground information, the groundwater level, and subway, and
reflecting it in the model in the future.
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7. Conclusions

This study employed the attribute information of six types of underground facilities
and the history information of ground subsidence in the target area to select factors influ-
encing ground subsidence through correlation analysis and present a model of ground
subsidence vulnerability through OLS and spatial regression analysis. In addition, a map
of ground subsidence vulnerability in the target area was created through the selected
optimal model.



Appl. Sci. 2023, 13, 8603 11 of 12

The global Moran’s I was checked through OLS analysis and the results show that the
spatial data exhibited autocorrelation. Thus, the model of ground subsidence vulnerability
in the target area employed spatial regression models (SEM and SLM). The results of
analysis using the spatial regression models show that the model estimated by SLM was
more fit. The results of an analysis of correlation coefficients regarding the attribute
information of six types of underground utilities in the SLM model show that the correlation
of the density of all six types of underground utilities was the highest. This is a similar
finding to those of previous studies, which showed that the density of underground utilities
is strongly correlated with ground subsidence [10,33]. Furthermore, the ρ value of the
SLM model verified that the ground subsidence is influenced by underground utilities and
spatial ripple effects.

Using the attribute information of underground utilities in the same target area,
the map of ground subsidence risk prediction based on machine learning and the map
of ground subsidence vulnerability in this study were compared [15]. The comparison
results show that the central and eastern parts of the target area where ground subsidence
frequently occurred had the same high vulnerability to ground subsidence. Thus, the
central and eastern parts of the area and regions with a high density of underground
utilities should be checked as a priority to prepare for a ground subsidence accident in the
target area.

In this study, a model to predict ground subsidence vulnerability was developed using
the attribute information of only six types of underground utilities. However, ground
subsidence can have more complex causes. Thus, a model that more reliably predicts
ground subsidence vulnerability can be developed in the future by securing high-quality
ground subsidence, influencing factor data (subway, underpass, high-rise building infor-
mation, etc.).
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