
Citation: Nowoświat, A.
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Abstract: In the measurements of reverberation time, measurement methods of different accuracy are
used depending on the room. For ordinary rooms, the measurements are made using the interrupted
noise method, which consists of determining the decay curve after switching off the excitation
source of the room. The measurements are made for different source arrangements and different
receiver arrangements, and at least three repetitions are made at each of such points. Due to such a
realization of measurements, several dozen different reverberation curves are obtained, from which
the reverberation time is read out. This article demonstrates the differences between reverberation
time readouts, depending on the averaging method of reverberation curves. The first analyzed
method is based on reading out the reverberation times for each obtained curve and on averaging
the results obtained in this way. The second analyzed method involves averaging the reverberation
curves using the linear regression method and then determining a simple regression on the basis
of which the reverberation time is read out. For each method, different average reverberation time
values and different standard uncertainties were obtained. The difference for the 500 Hz frequency
band in a teaching room for the measurement uncertainty is 0.28 s. The results obtained in the article
are extremely important when designing interiors intended for the reception of verbal sound, in
particular teaching rooms.

Keywords: room acoustics; reverberation time measurement; decay curve; measurement uncertainty

1. Introduction

When staying in various types of interiors on a daily basis, we are always exposed
to sound reception. Acoustic properties of the interiors have a large impact on the way
people perceive sound [1]. The basic parameter used to describe interior acoustics is the
reverberation time. Reverberation time has two definitions:

Definition 1. Reverberation is a phenomenon of gradual decay of sound energy after the source is
turned off.

Definition 2. Reverberation time is the time measured from the moment the source is turned off,
after which the sound pressure level in the room decreases by 60 dB [2].

There are many historical models of reverberation time estimation. They are still
used today [3], and yet the estimation issue is of interest to many researchers [4–6], and
research studies on new methods of reverberation time estimation are also carried out at
present [7]. The reference pattern for measuring reverberation time in ordinary rooms is
contained in ISO 3382-2: 2008 [8], which is used for 1/3 octave spectrum range from 100 Hz
to 5000 Hz. The standard describes the measurement procedure using interrupted noise.
It states that the test signal should be a broadband random noise, and the source should
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be able to produce a sound level sufficient to provide a decay curve at least 25 dB higher
than the background noise. It should be noted that the measurement procedure does not
distinguish between frequencies, i.e., it is the same for each band, and the reverberation
times are calculated on the basis of the average of decays in a given band [9]. Low
frequencies are not taken into account in this procedure, and for such frequencies, the
sound decay is strongly non-linear due to the presence of more resonant frequencies in
one band, whereof each has its own decay curve [10]. Such an approach entails high
measurement uncertainties (the percentage relative standard deviations are in the order of
20–60%), and thus it provides inaccurate reverberation time values [11–13]. In cubature,
or in highly reverberant rooms, humidity and temperature conditions are also a source of
uncertainty [14]. According to Hopkins [15], the accuracy of the measured reverberation
time is determined by a combination of the acoustic system under test, the measurement
procedure, signal processing and the evaluation of the decay curve. Alternatively, Davy [16]
found that the uncertainty was mainly related to the variance between the repeated decays.
Although the reverberation time is a widely used parameter in the assessment of indoor
acoustics, we should allow for the fact that it is defined assuming a diffused sound field.
Therefore, well below the Schroeder frequency, its application as well as the adherence to
standardized measurement procedures is questionable [17]. In recent years, the demand
has increased for appropriate measurement procedures for acoustic quantities at low
frequencies [18–20] and with complex geometries [21–23]. The review of the literature
shows that the assessment of sound decay at low frequencies is still of interest to many
scientists, and reverberation parameters affect many other acoustic quantities, such as
sound absorption coefficient or sound reduction index. Some scientists claim that the
reverberation parameters in low frequency range and for sound in a non-diffused field
should be assessed using modal analysis [24,25].

In the present paper, less advanced methods were used, but certainly useful for simple
measurements for interior designers. The objective of the paper is to demonstrate the
impact of the averaging method of decay curves on the values of reverberation time and
measurement uncertainties. The test measurement was carried out in the reverberation
chamber of the laboratory of the Faculty of Civil Engineering of the Silesian University of
Technology, and it was performed based on the standard EN-ISO 3382 [8]. To verify the
mentioned method, the measurement of reverberation time in a room intended for teaching
purposes was also presented.

2. Methodology
2.1. Measuring Devices

The measuring mode consisted of the following elements:

1. The transmission part of the test system consisted of the following elements: an
omnidirectional sound source, a generator of pink and white noise, together with an
amplifier manufactured by Svantek.

2. The reception part of the test system comprised the following elements: a four-channel
sound level gauge SVAN 958 made by Svantek; two 1/200 microphones, type SV22,
made by Svantek; two 1/200 microphone preamplifiers, type SV22, made by Svantek;
an acoustic calibrator, type SV03A, made by Svantek; a PC computer with the software
SvanPC + Software Official 1.0.21e. The tools had valid calibration certificates. They
were Class 1 free-field microphones.

2.2. Reverberation Chamber

The measurement was made in the reverberation chamber of the Laboratory of the
Faculty of Civil Engineering of the Silesian University of Technology in Gliwice, Poland
(Figure 1).
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phones, a preamplifier, an acoustic calibrator and a computer with installed software. 
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Figure 1. Reverberation chamber: (a) cross-section of the reverberation chamber, (b) projection of the
reverberation chamber [26].

The volume of the reverberation chamber of 192.7 m3 and its shape meet the condition
of the standard lmax < 1.9V1/3 [8], where lmax—the length of the longest section of a
straight line inside the chamber (e.g., in a rectangular chamber, it is the longer diagonal),
given in meters, and V—volume of the chamber. In the case of the described chamber,
the following quantities were determined: lmax = 9.12 m, 1.9V1/3 = 10.97 m. In order to
ensure a diffused acoustic field, fixed suspended diffusers were used. The microphones
used for the measurement had an omnidirectional characteristic, while the sound source
had an omnidirectional radiation characteristic. The measurements were made at two
positions of the sound source. Two microphone arrangements were used for each source
position. Six measurement repetitions were performed for each microphone arrangement.
All combinations allowed to obtain 4 spatially independent measurement points. In total,
4 × 6 = 24 measurements were made, and the same number of measurement curves was
acquired. Consistent with the standard [8], the positions of the microphones during the
measurements were at least 1.5 m apart and at least 2 m from the sound source. The
measurements were carried out using the interrupted noise method. The transmitting path
consisted of a white and pink noise generator with an amplifier and a loudspeaker column
with a spherical radiation pattern. The reception part consisted of an acoustic analyzer,
microphones, a preamplifier, an acoustic calibrator and a computer with installed software.
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2.3. Measurement in the Classroom

The measurements were made in a classroom with the following dimensions: length
12.6 ± 0.1 m, width 6.7 ± 0.1 m. They were carried out in an empty room using the
interrupted noise method. The interior of the room was excited with a broadband noise,
ensuring an approximately pink spectrum of steady-state reverberation for the range of 1/3
octave band. In the tested room, the measurements were made at 6 measurement points
(Figure 2).
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Figure 2. Illustrations with two locations of the sound sources P1 and P2 and the arrangement of
measurement points [27].

The measurements were made for two sound source arrangements, and each mea-
surement was repeated six times. In total, 72 reverberation curves were analyzed. The
reverberation time was measured in accordance with the precise method described in ISO
3382-2, 2008 [8]. Figure 3 presents an empty classroom during the research study.
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Figure 3. View of the classroom during the measurement with an exemplary location of the sound
source and two measurement points [27].

2.4. Determination of Reverberation Time
2.4.1. The First Averaging Method

The measurement consists of the recording of sound pressure level. At the moment
when it becomes stable, the sound source is turned off, and the meter measures the time
when the background noise level is reached. The measurement can be applied with
different dynamics. The most frequently recorded measurement is with the dynamics of
30 dB (Figure 4).
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Figure 4. Exemplary decay curve for the frequency of 500 Hz.

For each frequency, n decay curve measurements are made. The reverberation time is
determined in line with the following algorithm:

1. We find the sound pressure level reduced by 5 dB from the initial value, which is the
level of sound pressure at the moment when the sound source is turned off. The value
is referred to as Lp, and time tp is read out for it (horizontal axis).

2. We find the value of the sound pressure level reduced by 25 dB from the Lp value,
which is referred to as Lk, and time tk is read out for it (horizontal axis).

3. The reverberation time is determined based on the following relationship:

T =
60
d

(1)

where

d—sound decay rate in dB/s, d = ∆L
∆τ ;

∆L—difference in sound levels;
∆τ—increment of sound decay time.

4. The reverberation times for all measurements are arithmetically averaged, and the
standard uncertainty is determined.

2.4.2. The Second Averaging Method

When many measurement points are obtained, the parameters of one averaged decay
curve should be determined. It should be noted that the moment of turning off the source
may vary, and it depends on the researcher, as shown in Figure 5.

In such a case, for each of the curves, points that correspond to the same time moments
should be found. Technically, it is very difficult to perform, and for that reason, a principle
was adopted according to which the first three time moments were applied for further
approximations, starting from the second point occurring after the moment of sound
pressure level drop by 5 dB as well as the last three moments (each moment accounts for
6 measurements) that defined the moment of a drop by 30 dB, which is shown in Figure 6.
As it can be observed in Figure 6, these points are approximately arranged on a straight
line. Such a straight line is determined using the linear regression method. In this way, we
determine the equation of a straight line averaging all decay curves.
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Figure 5. Exemplary decay curves for the frequencies. Each line represents a new measurement
repetition.
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Based on the regression equation, ∆L is determined. The linear regression function
has the following form:

y = β0 + β1x + ξ (2)

where β0 and β1 are structural parameters of the regression function, and ξ is the random
component. As for the random component, it is based on several assumptions. To be
precise, the random component has a normal distribution, its expected value is equal to
zero, its variance is constant and it is independent of the independent variable x. An
appropriate fit of the regression function to the data is made using the least squares method,
i.e., the task is reduced to the problem where the sum of the squared deviations of the
empirical values from the theoretical ones is the smallest. Having estimated the assessments
of structural parameters, we obtain a regression model for the measurement consistent
with the second averaging method in the following form:

Lp = b0 + b1x (3)
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where Lp is the sound pressure level, b0 and b1 are the estimated regression coefficients, while
x is the number of the point on the decay curve selected as explained in Figures 5 and 6. The
statistical significance of the linear relationship should be ensured by the value of the test
probability p, which should be lower than the significance level of 0.05.

2.5. Measurement Uncertainty
2.5.1. Measurement Uncertainty According to the First Averaging Method

For each frequency band from the measurement, we obtain a decay curve. Since we
determine the reverberation time from each decay curve (for a given frequency band), we
obtain N reverberation time results determined as the product of sound source arrange-
ments by the number of measurement points and the number of measurement repetitions
at each point. Thus, we have a finite set of measured values T1, T2, . . . , TN from which we
find the best approximation for T and σ (standard deviation). As the best approximation,
we adopt the numbers that provide the greatest probability of obtaining T1, T2, . . . , TN ,
i.e., the numbers that provide the greatest value of the probability given by the formula:

PT,σ(T1, . . . , TN) =
1

σN e−∑ (Ti−T)2/2σ2
(4)

Obviously, it can be easily evidenced that the best approximation of the true value T is
the average of N measurements (trivial proof) expressed by the formula:

T =
∑ Ti

N
(5)

By calculating the derivative of the function (4) with respect to σ and equating it to
zero, we obtain the value of σ which ensures the maximum probability of Equation (4) and
is the best approximation of σ.

σ =

√√√√ 1
N

N

∑
i=1

(Ti − T)2 (6)

Since the true value T is unknown, in practice this value is replaced by the best
approximation described by Equation (5), and the following is obtained:

σ =

√√√√ 1
N

N

∑
i=1

(
Ti − T

)2 (7)

Naturally, it is often argued that the best approximation of σ is not described by

Equation (7) but by its multiplication by
√

N
N−1 , which ultimately yields the estimate:

σT = u(T) =

√√√√ 1
N − 1

N

∑
i=1

(
Ti − T

)2 (8)

The following is assumed in all mathematical formulas:
N—number of measurements;
Ti—i-th measurement of reverberation time;
T—average reverberation time;
σ—sample standard deviation.
Therefore, it can be concluded that the standard deviation expressed by the Formula (8)

characterizes the average uncertainty of the measurement results.
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2.5.2. Measurement Uncertainty According to the Second Averaging Method

The uncertainty of measurement for the averaging method presented in this way is
determined as the uncertainty expressed by the following formula:

uc =

√(
∂T(∆L, ∆τ)

∂∆L

)2
u2(L) +

(
∂T(∆L, ∆τ)

∂∆τ

)2
u2(τ) (9)

Using the estimated model (3), we determine ∆L, which depends only on the direction
coefficient b1. Thus, we can adopt the estimated standard error for this coefficient as the
estimation uncertainty u(L). And to estimate the uncertainty u(τ), which is the average of
the averages from all reverberation curves, we use the following relation:

u(τ) =
στ√

N
(10)

where στ—standard deviation of sound decay time measurements for a 30 dB drop;
N—number of measurements of the decay curve.

2.5.3. Proof of Formula (10)

It is generally known that the best approximation of measurement results is the
average, which was demonstrated on the example of average reverberation time described
by Formula (5). Thus, the calculated quantity described by Formula (11),

τ =
τ1 + . . . + τN

N
(11)

is a function of the measured quantities τ1, . . . , τN . Thus, we can easily find the distribution
of the variable τ using the error transfer rule. An interesting feature of the function
described by Formula (11) is that all the measurements τ1, . . . , τN are the measurements of
the same quantity with the same true value τ and the same width στ . Each of the measured
quantities τ1, . . . , τN is subject to normal distribution in the same way as τ. Taking all this
into account, it can be concluded that the true value of the function defined by Formula (11)
is equal to

τ =
τ + . . . + τ

N
(12)

The width of the distribution of results remains to be estimated. According to the
relationship (9), which we write down for N variables, the said width is

στ =

√(
∂τ

∂τ1
στ1

)2
+ . . . +

(
∂τ

∂τN
στN

)2
(13)

Given the fact that τ1, . . . , τN are the results of the measurements of the same quantity τ,
the corresponding widths are identical, and they equal στ1 = . . . = στN = στ . It follows from
Formula (11) that all partial derivatives of Formula (13) are equal ∂τ

∂x1
= . . . = ∂τ

∂xN
= 1

N .
As a result, Formula (13) is narrowed down to the expression:

στ =

√(
1
N

στ

)2
+ . . . +

(
1
N

στ

)2
=

√
N

σ2
τ

N2 =
στ√

N
(14)

3. Results and Discussion

Two experiments were carried out in rooms with significantly different reverberation
times. The first experiment was carried out in the reverberation laboratory lined with sound-
absorbing material. The second room was a classroom with a long reverberation time.
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3.1. Results of Laboratory Measurements

The experiment was carried out in the reverberation chamber shown in Figure 1.
The test sample was in the chamber, hence the appropriately low reverberation times.
This paper presents the results of the reverberation time for the frequencies of 500 Hz,

1000 Hz and 2000 Hz. All the results were processed in the STATISTICA program.

3.1.1. Results of the First Method

The measurement results in seconds for the first method and for 24 measurements in
accordance with the methodology described in Sections 2.1 and 2.3 are as follows:

500 Hz

T1 = 1.176; T2 = 1.519; T3 = 1.117; T4 = 1.371; T5 = 1.429; T6 = 1.277; T7 = 1.429; T8 = 1.250;
T9 = 1.326; T10 = 1.484; T11 = 1.399; T12 = 1.304; T13 = 1.084; T14 = 1.091; T15 = 1.118;
T16 = 1.304; T17 = 1.311; T18 = 1.371; T19 = 1.319; T20 = 1.484; T21 = 0.921; T22 = 1.543;
T23 = 1.200; T24 = 1.364.

1000 Hz

T1 = 1.180; T2 = 1.099; T3 = 1.104; T4 = 1.233; T5 = 1.077; T6 = 0.963; T7 = 1.077; T8 = 1.117;
T9 = 1.321; T10 = 1.077; T11 = 1.117; T12 = 1.224; T13 = 0.955; T14 = 1.059; T15 = 1.123;
T16 = 1.214; T17 = 1.329; T18 = 1.207; T19 = 1.420; T20 = 1.091; T21 = 1.111; T22 = 1.356;
T23 = 1.099; T24 = 1.111.

2000 Hz

T1 = 1.023; T2 = 1.123; T3 = 1.061; T4 = 1.099; T5 = 1.084; T6 = 1.000; T7 = 1.212; T8 = 1.160;
T9 = 1.129; T10 = 1.055; T11 = 1.011; T12 = 1.118; T13 = 1.099; T14 = 1.129; T15 = 1.160;
T16 = 1.148; T17 = 1.082; T18 = 1.105; T19 = 1.200; T20 = 0.952; T21 = 0.943; T22 = 1.088;
T23 = 1.186; T24 = 1.040.

The result together with the standard uncertainty for each frequency is as follows:
T500 = 1.30± 0.153 s; T1000 = 1.15± 0.114 s; T2000 = 1.09± 0.070 s.

3.1.2. Results of the Second Method

For each of the 24 decay curves (see Figure 7), we determine three time moments from
the second point after the moment of sound pressure level drop by 5 dB and the last three
moments (each moment accounts for six measurements) which marked the drop by 30 dB.
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The approximation of this fragment of the decay curve was adopted using linear
regression, as shown in Figure 8.
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Figure 8. Regression function from 24 fragments of sound decay curves for the frequency of 500 Hz.

The regression equation averaging the fragments of twenty-four decay curves based
on six points on each of them has the following form:

Lp = −3.873 · x + 98.4117 (15)

where x is the number of the point lying on the curve.
The test probability for linear estimation is of the order of p� 0.05, which means that

all regression parameters are statistically significant.
Using Equation (11), we obtain L1 = 94.5 dB, L6 = 75.2 dB, which yields ∆L = 19.3 dB.
Since the rate of sound level drop is described by the direction coefficient of a straight

line expressed with Equation (15), the standard uncertainty involving the estimation of
this coefficient can be accepted as the uncertainty resulting from the averaging of all decay
curves u(L) = 0.13 dB.

The average time increment is ∆τ = 0.39 s, while the mean standard deviation is
στ = 0.055 s. When determining the standard uncertainty on the basis of (10), we obtain
u(τ) = 0.011 s.

Taking these calculations into account, we obtain the reverberation time determined on
the basis of Formula (1) T500 = 1.21 s and the combined uncertainty based on Formula (9)
equal to uc = 0.036 s.

Ultimately, we can write T500 = 1.21± 0.036 s.
A similar approach can be used for the frequency of 1000 Hz (Figure 9).
The regression equation averaging the fragments of twenty four decay curves based

on six points on each of them has the form:

Lp = −3.8742 · x + 99.7908 (16)

where x is the number of the point lying on the curve.
The test probability for linear estimation is of the order of p� 0.05, which means that

all regression parameters are statistically significant.
Using Equation (16), we obtain L1 = 95.5 dB, L6 = 76.5 dB, which yields ∆L = 19.0 dB.
Since the rate of sound level drop is described by the direction coefficient of a straight

line expressed with Equation (16), the standard uncertainty involving the estimation of
this coefficient can be accepted as the uncertainty resulting from the averaging of all decay
curves u(L) = 0.12 dB.
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Figure 9. Regression function from 24 fragments of decay curves for the frequency of 1000 Hz.

The average time increment is ∆τ = 0.34 s, while the mean standard deviation is
στ = 0.04 s. When determining the standard uncertainty on the basis of (10), we obtain
u(τ) = 0.007 s.

Taking these calculations into account, we obtain the reverberation time determined
on the basis of Formula (1) and the combined uncertainty based on Formula (9) equal to
uc = 0.023 s.

Ultimately, we can write T1000 = 1.07± 0.023 s.
Similar calculations are performed for 2000 Hz (Figure 10).
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Figure 10. Regression function from 24 fragments of decay curves for the frequency of 2000 Hz.

Regression equation:
Lp = −3.903 · x + 99.45, (17)

where x is the number of the point lying on the curve.



Appl. Sci. 2023, 13, 8607 12 of 15

The test probability for linear estimation is of the order of p� 0.05, which means that
all regression parameters are statistically significant. In this case:

L1 = 95.5 dB, L6 = 76 dB, ∆L = 19.5 dB, u(L) = 0.12 dB.
The average time increment is ∆τ = 0.34 s, while the mean standard deviation is

στ = 0.034 s. When determining the standard uncertainty from (10), we obtain
u(τ) = 0.007 s.

Ultimately, we can write T2000 = 1.046 s, uc = 0.022 s, and hence T2000 = 1.07± 0.022 s.

3.2. Measurement Results of the Classroom

In this case, we present the results of 72 measurements of decay curves for one selected
frequency band of 500 Hz.

3.2.1. Results of the First Method

Measurement results in seconds for the first method and for 72 measurements (500 Hz)
made in the teaching room are described in Section 2.2 (Figure 11).
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Figure 11. Results of 72 reverberation time measurements—500 Hz.

The result together with the standard uncertainty for particular frequencies is
T500 = 2.19± 0.326 s.

3.2.2. Results of the Second Method

The measured 72 decay curves are presented in Figure 12.
Based on Figure 12, we can observe that the moment of switching off the sound source

is different for each measurement, but the decay curves should be arranged as a parallel
shift with respect to each other. Naturally, this is not the case due to various factors such
as measurement uncertainty, irregular shapes of the room or non-uniform structure of the
partitions delimiting the room. These factors have impact on different reverberation times
recorded for different measurement point arrangements (see Figures 2 and 3).

Proceeding in the same way as in the case of laboratory tests, we determine the
regression equation:

Lp = −3.1712 · x + 91.4848, (18)



Appl. Sci. 2023, 13, 8607 13 of 15

where x is the number of the point read out from the decay curve (Figure 13).
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Figure 12. Decay curves from 72 measurements for the frequency of 500 Hz. Each line represents a
new measurement repetition.
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Figure 13. Regression function from 72 fragments of decay curves for the frequency of 500 Hz.

The test probability for linear estimation is of the order of p = 0.05, which means that
all regression parameters are statistically significant. In this case,

L1 = 88.3 dB, L6 = 72.5 dB, ∆L = 19.5 dB, u(L) = 0.11 dB.
The average time increment is ∆τ = 0.67 s, while the mean standard deviation is

στ = 0.094 s. When determining the standard uncertainty from (10), we obtain
u(τ) = 0.011 s.

Ultimately, we have T500 = 2.544 s, uc = 0.046 s, and hence T500 = 2.544± 0.046 s.

4. Conclusions

In conclusion, it should be noted that the standards involving the measurement
of reverberation time do not indicate how to average the results or how to determine
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the measurement uncertainty. This is a major difficulty, since the reverberation time is
determined from an indirect measurement, i.e., from the decay curve. Of course, there
is another measurement method that uses the impulse response of the room, but that is
not the study area of this article. Based on the obtained results, it can be concluded that
the averaging method of the decay curve significantly affects the results of the estimated
reverberation time and the estimation of measurement uncertainty. The difference between
the averaging methods for a laboratory room where there is a uniform distribution of the
acoustic field is no more than 0.1 s. However, a significant difference can be observed in
the estimation of measurement uncertainty.

For a room with different geometry and different sound absorption of the partitions
delimiting the room, i.e., a room with a non-uniform distribution of the acoustic field, the
differences in reverberation time are significant. In the example given in this article, it is
over 0.3 s. Taking into account the restrictive requirements for the design of, e.g., teaching
rooms (T = 0.6 s), the averaging method may affect the qualification of the room. Therefore,
the problem is significant. The difference in estimating measurement uncertainty in a room
with a non-uniform distribution of the acoustic field is similar to that in a laboratory room.

Summing up, the following conclusions can be drawn:

• The averaging method of decay curves affects the reported reverberation time value.
This influence is so significant that it may affect the acoustic qualification of rooms for
which the reception of verbal sound and, above all, speech intelligibility are important.

• The proposed averaging method of decay curves using linear regression is innova-
tive and seems to be the best way to estimate the reverberation time based on the
measurement of decay curves.

• The applied estimation method of measurement uncertainty using Formula (10) for
the estimation of sound decay time averaged by means of the linear regression of
decay curves seems to be the most reasonable solution.

Subsequent works will concern the use of the uncertainties determined in this article
to determine acoustic parameters describing the reception of verbal sound.
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