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Abstract: Few‑shot named entity recognition requires sufficient prior knowledge to transfer valuable
knowledge to the target domainwith only a few labeled examples. Existing Chinese few‑shot named
entity recognition methods suffer from inadequate prior knowledge and limitations in feature repre‑
sentation. In this paper, we utilize enhanced Span and Label semantic representations for Chinese
few‑shot Named Entity Recognition (SLNER) to address the problem. Specifically, SLNER utilizes
two encoders. One encoder is used to encode the text and its spans, and we employ the biaffine at‑
tention mechanism and self‑attention to obtain enhanced span representations. This approach fully
leverages the internal composition of entity mentions, leading to more accurate feature representa‑
tions. The other encoder encodes the full label names to obtain label representations. Label names
are broad representations of specific entity categories and share similar semantic meanings with en‑
tities. This similarity allows label names to offer valuable prior knowledge in few‑shot scenarios.
Finally, our model learns to match span representations with label representations. We conducted
extensive experiments on three sampling benchmark Chinese datasets and a self‑built food safety
risk domain dataset. The experimental results show that our model outperforms the F1 scores of
0.20–6.57% of previous state‑of‑the‑art methods in few‑shot settings.

Keywords: natural language processing; Chinese named entity recognition; few‑shot learning;
feature representation; label semantics; neural network; deep learning; attention mechanism;
low‑resource domain dataset

1. Introduction
Named entity recognition (NER) aims to identify specific, meaningful entities from

text, such as LOCATION and ORGANIZATION, and classify them into predefined cate‑
gories, as shown in Figure 1. NER is an essential prerequisite task for many natural lan‑
guage processing task, such as information extraction [1], question‑answering systems [2],
and machine translation [3].

Figure 1. Example of anNER task. The entities to be recognized are highlightedwithin dashed boxes,
and different colors represent different entity types.

Appl. Sci. 2023, 13, 8609. https://doi.org/10.3390/app13158609 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13158609
https://doi.org/10.3390/app13158609
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app13158609
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13158609?type=check_update&version=1


Appl. Sci. 2023, 13, 8609 2 of 19

In recent years, neural‑network‑based techniques have beenwidely applied inNER [4,5].
However, neural networks are data‑driven machine learning methods, and the quantity
of training data often limits their performance. Unfortunately, annotated data used for
training are often scarce and expensive, especially in specific domains (e.g., the food safety
risk domain). Therefore, there has been widespread interest in a challenging yet practical
research field: few‑shot NER.

One of the challenges of few‑shot NER is how to accurately incorporate prior knowl‑
edge to effectively classify unseen entity types when confronted with a few examples. Re‑
cently, similarity‑based methods such as prototype networks have been extensively stud‑
ied and achieved great success for few‑shot learning [6–8]. The core idea is to classify input
examples from a new domain based on the similarity between their representations and
those of each class in the support set. However, this approach experiences a significant
drop in performance in a few‑shot setting due to the limited representativeness of the data.
The prompt‑based approach [9,10], by manually or automatically adding prompt words
to sentences, guides the model to learn more quickly and accurately while reducing the
gap between pretraining and fine tuning. This approach has shown remarkable perfor‑
mance in few‑shot learning. However, these methods do not directly leverage the rich
prior knowledge contained in label semantics.

In addition, Chinese NER is more challenging than English NER due to the relatively
ambiguous entity mentions in Chinese, which limits feature representation and affects
the accuracy of NER. Zhang and Yang [11] addressed this issue by using lattice LSTM
to represent the entity in sentences and by incorporating the potential lexical informa‑
tion into a character‑based LSTM‑CRF model. While this character‑based representation
effectively solves the segmentation error problem, it requires the introduction of a com‑
plex external lexicon. Some more recent attempts have switched to span‑based feature
representations for Chinese NER [12,13], explicitly utilizing span‑level information to ad‑
dress token‑wise label dependency and better handle nested entities. However, these span‑
based feature representations only perform simple concatenation of the start and end po‑
sitions of the span without fully exploiting the internal information of the span, which
limits the feature representation of the named entity. For example, when the named entity
“伊河谷食品科技有限公司 (Yihegu Food Technology Limited Company, Urumqi, China)”
has the internal information “科技有限公司 (Technology Limited Company)”, it becomes
easier to classify it as an ORGANIZATION entity.

In response to these challenges, we propose a model called SLNER with enhanced
span and label semantic representations to tackle the challenges of Chinese few‑shot NER.
Specifically, SLNER utilizes two encoders. One encoder is used to encode the text and
its spans. This module captures the head and tail information of spans using the biaffine
attention mechanism and incorporates self‑attention to capture the internal information
of spans. Ultimately, these representations are fused to obtain enhanced span representa‑
tions. This approach fully utilizes the internal composition of entity mentions to achieve
more accurate feature representations. In contrast to traditional span‑based methods that
concatenate the start and end positions of entity mentions, our approach fully exploits the
information of each token within entity mentions, providing sufficient and essential clues
for entity recognition.

The other encoder is used to encode full label names. Label names are highly gen‑
eralized specific entity categories and exhibit similar semantics to entities, which can pro‑
vide additional prior knowledge in few‑shot scenarios. Compared to traditional similarity‑
basedmethods (e.g., prototype networks), label semantics provide more generic similarity
representations, especially in situations where the target domain has a scarcity of samples.

Ultimately, ourmodel learns tomatch span representationswith label representations.
We employ a two‑stage training strategy using source and target domains, enabling the
model to transfer knowledge from the high‑resource source domain to the low‑resource
target domain.



Appl. Sci. 2023, 13, 8609 3 of 19

Furthermore, to promote research and applications in low‑resource domains, we de‑
veloped an NER dataset named RISK, which was specifically designed for the food safety
risk domain. RISK comprises 5 coarse‑grained and 20 fine‑grained entity types, each la‑
beled and organized in a hierarchical structure of coarse‑grained + fine‑grained. We also
conducted a performance evaluation of ourmodel on the RISK dataset, and the experimen‑
tal results demonstrate the challenging nature of the RISK dataset. Constructing an NER
dataset in the food safety domain can drive advancements in related research areas such as
food traceability and food safety regulation. Additionally, this dataset can serve as a foun‑
dation for the development of applications in food safety, including food safety warning
systems and food recall management.

We have documented the experimental results on three sampling benchmark Chinese
NER datasets and a self‑built food safety risk domain dataset. Our contributions can be
summarized as follows:
• We propose a simple and effective model named SLNER, which leverages enhanced

span representations and label semantics to address the issues of inadequate prior
knowledge and limitations in feature representation in Chinese few‑shot named en‑
tity recognition;

• We created a challenging food safety risk domain dataset, RISK, which is divided into
5 coarse‑grained and 20 fine‑grained entity categories. This dataset provides data
support for the development of named entity recognition applications in the domain
of food safety;

• Our proposed model achieved promising performance on the four sampling Chinese
NER datasets (including our self‑built dataset). Specifically, our model outperformed
previous works with F1 scores ranging from 0.20% to 6.57% in different few‑shot
settings (following the settings of PCBERT) on the Ontonotes, MSRA and Resume
datasets. It also achieved promising F1 scores on our self‑built RISK dataset.

2. Related Work
2.1. Few‑Shot NER

Compared to traditional standard NER [14,15], few‑shot NER aims to learn how to
recognize named entities with limited data. Currently, research on few‑shot named en‑
tity recognition based on the traditional standard NER framework primarily focuses on
two aspects: incorporating prior knowledge (external information) at the data level and
enhancing model generalization at the model level.

In the first aspect, Tong et al. [16] proposed a model, Mining Undefined Classes from
Other‑class (MUCO), that can automatically induce different undefined classes from the
other class to improve few‑shot NER. On the other hand, Cui et al. [9], Lee et al. [17], and
Chen et al. [18], using a prompt‑based approach, treated named entity recognition as a
generation task. By manually or automatically adding templates to the training data, the
model is trained to predict the [MASK] positions within the templates. This method re‑
duces the gap between pretraining and fine tuning, allowing the model to perform better,
even with limited data. Based on multitask instructions, Wang et al. [19] enhanced the
knowledge of the training data by adding different auxiliary tasks and corresponding in‑
structions and options; this allowed the model to accurately identify entity information,
even with few samples. Additionally, Chen et al. [20] effectively leveraged illustrative in‑
stances to precisely transfer knowledge from external resources by describing both entity
types and mentions using a universal concept set.

For the second aspect, methods based on meta‑learning [21] aim to enable machines
to “learning to learn”. The essence of these methods is to train the network model to learn
a more robust initialization, allowing it to quickly generalize to new tasks with only a few
examples. Methods based on contrastive learning also focus on learning shared features
among instances of the same class and distinguishing differences between instances of
different classes. Das et al. [22] trained an encoder that produces similar encodings for
instances of the same class while ensuring that the encodings of different classes are as
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dissimilar as possible. This approach reduces the limitations of generalization in the target
domain, thereby improving performance in the few‑shot setting [23], which augments the
distribution of entity labels by assigning k‑nearest neighbors retrieved from the training
set. This strategy makes the model more capable of handling long‑tail cases, along with
better few‑shot learning abilities.

2.2. Span‑Based Method
Previously, the majority of research work treated NER as a sequence‑labeling task,

where entity classification is performed at the token level. These methods often employ
the BIO tagging scheme, where each character’s category is determined to achieve entity
recognition for Chinese NER tasks, as shown in Figure 2. As a representative example,
Huang et al. [24] utilized BiLSTM as an encoder to learn contextual representations, then
employed a conditional random field (CRF) as a decoder to label tokens. Additionally,
leveraging the power of pretrained language models such as ELMo [25] and BERT [5] sig‑
nificantly improved the performance of NER.

Figure 2. Traditional sequence‑labeling NER method.

While the aforementioned token‑basedNERmethods have achieved considerable suc‑
cess, they suffer from two inherent limitations: token‑wise label dependency and difficulty
handling nested entities. As shown in Figure 2, this method may fail to correctly classify
nested entities such as “Taojie greengrocer” and “Hami Melon”. Additionally, if errors oc‑
cur during the labeling process, incorrect beginning tags (B) or internal tags (I) may affect
subsequent labeling, resulting in the erroneous tagging of the entire entity.

Therefore, recent work has increasingly embraced span‑based approaches to address
NER tasks. This method involves partitioning all possible spans in a sentence into prede‑
fined types (e.g., PER or LOC) and determining whether a given text span belongs to a
particular category, as shown in Figure 3. Yu et al. [26] adopted a biaffine attention model
to assign scores to all potential spans and achieved state‑of‑the‑art performance on both flat
and nested English NER datasets. Shen et al. [27] also employed a span‑based framework
for Chinese NER datasets, effectively addressing the issue of nested entities. Yu et al. [28]
andWang et al. [29] proposed span‑level metric learning to bypass the token‑wise label de‑
pendency problem while still explicitly utilizing phrase representations. Wang et al. [30]
introduced a span‑based prototype network and a global boundarymatrix to learn explicit
span boundary information.
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Figure 3. Span‑based NER method.

In this study, we also utilize a span‑based approach for named entity recognition and
extensively explore the internal information of entity word spans to obtain enhanced span
feature representations.

2.3. Label Semantics
In the task of few‑shot text classification, Luo et al. [31] directly appended the label

name to the text input in BERT, obtaining feature vectors with more enriched semantic
information, thus demonstrating the effectiveness of label semantics in few‑shot scenar‑
ios. Cui et al. [9] employed a similar approach by reconstructing the input text template,
reframing NER as a cloze task, and using a sequence‑to‑sequence model to fill the en‑
tity label names in predefined templates, achieving few‑shot named entity recognition
through a prompt‑based method. Ma et al. [32] abandoned the template construction pro‑
cess while retaining the word prediction paradigm of pretrained models to predict class‑
related pivot words (or label words) at entity positions. Inspired by prompt‑tuning meth‑
ods, Zhong et al. and Ye et al. [33,34] initialized markers in the NER task not with random
initialization butwithmeaningfulwords (such as label names), resulting in a certain degree
of improvement in model performance. Our proposed model leverages the connection be‑
tween label semantics and entity spans (Figure 4) to learn aligning span representations
with label representations, exhibiting promising results.

Figure 4. Different entity labels. (a) The label ‘Location’ and its associated entities. (b) The label
‘Organization’ and its associated entities.



Appl. Sci. 2023, 13, 8609 6 of 19

3. Method
This chapter first formalizes theproblemof few‑shot namedentity recognition (Section 3.1).

Then, we propose our model, SLNER, for Chinese few‑shot NER (Section 3.2). The model
consists of two encoders: one for encoding the text and its span to obtain better feature
representations (Section 3.3.1) and another for encoding the full label name to capture
additional prior knowledge (Section 3.3.2). Additionally, we adopt a two‑stage training
strategy using source and target domains (Section 3.4). The details are outlined as follows.

3.1. Few‑Shot NER Task Formalization
For the few‑shot NER task, assume that we have a resource‑rich source domain NER

dataset,
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 𝑖௪ିଵ
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Next, the token-embedding sequence obtained from the LSTM layer is used to con-
struct the span-level feature vector representation (ℎ௦) through a span extractor (details 
in Section 3.3.1). The dimension of ℎ௦ is finally expanded to ℝேೞ×ௗ through a feed-
forward layer. 

R = {[T1, L1], · · · , [Tn, Ln]}, where Ti = {t1, tl} represents the i‑th text (i ∈ [1, n]),
ti represents the i‑th token (i ∈ [1, l]), and Li represents the labels corresponding to the en‑
tity spans in the i‑th text (i ∈ [1, n]). We useCR to denote the label set of the source domain
dataset. Then, given a resource‑scarce target domaindataset,
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Next, the token-embedding sequence obtained from the LSTM layer is used to con-
struct the span-level feature vector representation (ℎ௦) through a span extractor (details 
in Section 3.3.1). The dimension of ℎ௦ is finally expanded to ℝேೞ×ௗ through a feed-
forward layer. 

T = {[T1, L1], · · · , [Tm, Lm]},
the number of texts in the target domain dataset is limited (i.e., m≪ n), and the label types
in the target domain may differ from those in the source domain (i.e., CR ̸= CT). We aim
to leverage the knowledge from the source domain dataset to improve the model’s perfor‑
mance on the target domain dataset.

3.2. Overall Structure
The overall architecture of the SLNER model is illustrated in Figure 5. For span rep‑

resentation, given a sentence (T = {t1, · · · , tl}) of length l, we use BERT as our encoder,
which encodes the context of the i‑th token in the sentence as follows:

hi = BERT(ti) ∀ti, ti ∈ T (1)

where dh is the hidden dimension of the encoder, and the output dimension after passing
the original sentence through the encoder is Rl×dh .

To further enhance the modelling of the sequential order of the text, the embedding
representation obtained fromBERT is then passed through a bidirectional LSTM layer. The
forward LSTM network captures the hidden forward states (historical features), while the
backward LSTM network captures the hidden backward states (future features), resulting
in a context‑aware encoding representation:

xi =

[ −−−−→
LSTM (hi, xi−1) ;

←−−−−
LSTM (hi, xi+1)

]
(2)

At this stage, the output dimension of the original sentence through the bidirectional
LSTM layer is Rl×dx .

We predefine an n‑gram value (w), which represents the maximum length of spans
that can be formed in a text. The number of possible spans that can be formed in a sentence
of length l is given by:

Ns =


w[l − (w− 1)] +

w−1

∑
i=1

i l ≥ w

w−1

∑
i=1

i l < w

(3)

Next, the token‑embedding sequence obtained from the LSTM layer is used to con‑
struct the span‑level feature vector representation (hspan) through a span extractor (details
in Section 3.3.1). The dimension of hspan is finally expanded to RNs×dh through a feed‑
forward layer.
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Figure 5. The overall structure of SLNER. The grey module on the left learns span representations,
while the grey module on the right learns label representations. The model’s final predictions are
calculated through distance matching. Ns represents the number of spans, and Nc represents the
number of entity categories.

For label representation (details in Section 3.3.2), we manually define the appropriate
full label name for each label. Similarly, we use BERT as the encoder and directly encode
the label using Equation (1) to obtain the global semantic feature (h[CLS]). The difference
from span encoding is that we further pass h[CLS] through a pooler layer to obtain the
semantic feature vector representation (hlabel), which serves as the final representation of
the label:

hlabel = Tanh
(

W(p) × h[CLS] + b(p)

)
(4)

where W(p) represents the weight parameters in the pooler layer, b(p) represents the bias
parameters, and Tanh is the activation function. The dimension of hlabel needs to be ex‑
panded to Rdh×Nc , where Nc is the number of entity categories.

According to our approach, there is a correlation between labels and spans appearing
in the text. Therefore, we capture this correlation through the dot product:

H = hLST × hspan (5)

where the similarity matrix (H) has dimensions of RNs×Nc . We use a standard linear clas‑
sifier with a softmax function to predict the entity type for each span, resulting in the final
predicted output (ŷspan):
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ŷspan = So f tmax
(

W(c) × hspan + b(c)
)

(6)

where W(c) is the trainable parameter of the classifier, and b(c) is the bias. Finally, we use
the cross‑entropy loss function to compute the loss, whichmeasures the difference between
the predicted results and the ground truth labels:

LPSNNER = −∑ yspan log
(
ŷspan

)
(7)

3.3. Specific Structure
3.3.1. Enhanced Span Representation

In previous span‑based NER models [35], it was common practice to concatenate the
embedding information of the start‑position token and the end‑position token of the entity
(referred to as the “outer span”) to represent the span of that entity, which is then used for
the final classification decision:

hspan = [xstart; xend] (8)

This approach lacks interaction between the start and end tokens and fails to fully uti‑
lize the informative content within the span. Moreover, this span representation is coarse‑
grained. To address these limitations, Yu et al. [26] proposed a biaffinedecoder that utilizes
two fully connected layers to enable interaction between the start and end tokens while si‑
multaneously predicting the span type. However, in this biaffine method, the information
within the span is still ignored.

To fully utilize the informative content within the span, we employ enhanced span
to generate the final span representation (as shown in Figure 6). Specifically, we pass the
token‑embedding information through the outer and inner span modules. The outer span
module, similar to the biaffine decoder method, utilizes the biaffine attention mechanism
to obtain the outer span representation:

houter span = hT
startUhend + W(hstart ⊕ hend) + b (9)

where hstart and hend represent the start and end token embedding of spans in a text, respec‑
tively; U and W are learnable parameters; and b is the bias. The dimension of houter span is
expanded to RNs×dx .

Figure 6. Different ways of span representation. (a) Simple start‑ and end‑token concatenation as
a span representation. (b) Span representation using the biaffine decoder method, which allows
for information interaction between the start and end tokens (indicated by blue arrows). (c) Span
representation method used in our model, which incorporates the interaction between the tokens
within the span (indicated by yellow arrows).

We designed the inner span module to capture the token‑level information within
the span. For this purpose, we use linear attention to generate information interaction
for each token. Specifically, this module uses span and the start‑ and end‑position in‑
dices of the span as input. It starts by applying a feed‑forward neural network (FFNN) to
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non‑linearly transform the input representations, obtaining context‑aware representations.
Then, it computes normalized scores for each position. Finally, these representations are
fed into a self‑attention layer, which combines the representations of each position with
those of other positions, weighted by the attention scores. This allows the model to cap‑
ture potential relationships between the tokens within the span. The result is the inner
span representation:

ai = W( f ) × xi + b( f ) (10)

si =
exp(ai)

∑m
k=n exp(ak)

(11)

hinner span =

m

∑
i=n

si × xi (12)

where xi represents the hidden representation from the bidirectional LSTM, and W( f ) and
b( f ) are the learnable weights and biases of the feed‑forward neural network, respectively.
The indices i ∈ {n, n + 1, · · · , m} correspond to the token indices within the span, where
n and m represent the start and end indices of the span, respectively. When n = m (indi‑
cating a span of length 1), we do not extract additional features and simply use the hidden
representation (xi).

To predict the entity type, we integrate the outer span representation and inner span
representation in a gate network to obtain the weight coefficient (γ) (as shown in Figure 7):

γ = σ
(

U(g)
[
houter span; hinner span

]
+ b(g)

)
(13)

where U(g) and b(g) are trainable parameters of the gate network, and σ represents the
sigmoid function. The dimension of γ is RNs×1.

Figure 7. Enhanced span representation.
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The final enhanced span representation is obtained by weighting the inner span rep‑
resentation and outer span representation using γ:

hspan = γ⊙ houter span + (1− γ)⊙ hinner span (14)

where ⊙ represents element‑wise multiplication, and the resulting hspan has dimensions
of RNs×dx .

3.3.2. Label Representation
We believe that label semantics can provide additional prior knowledge. Label seman‑

tics carry the semantic information of entities in the same category, as this information is
manually summarized and induced from a large amount of data. Therefore, when data
are limited, especially in small‑sample scenarios, we can introduce label semantics to al‑
low our model to make generalizations from the available data. Furthermore, full label
names themselves are mentions that appear in various contexts within the text. Their fre‑
quencies are synchronized to some extent with the corresponding entity words of their
respective categories. Thus, there exists a semantic correlation between label names and
the span tokens appearing in the text, and this correlation can be leveraged and utilized.

Considering that our label encoder is based on BERT and incorporates prior knowl‑
edge from pretraining, our label representation module allows any form of text to be used
as input. This design not only enables easy and rapid expansion to unseen label sets in
low‑resource domains but also prevents the model from forgetting prior knowledge. We
experimented with different label forms and analyzed their effects (Section 5.1). Table 1
presents the final forms of full label names used in this study (for the non‑entity type in
each dataset, we uniformly use “其他 (other)” as the label name).

3.4. Training Strategy
Compared to the previous work of traditional NER neural architecture, our model

does not require a new randomly initialized top‑layer classifier for new datasets with new
unseen label names. Therefore, our model allows domain transfer for different label cate‑
gories, which is very beneficial for few‑shot learning. On this basis, we adopt a two‑stage
training program. In the first stage, we pretune our model on the source dataset to obtain
a prior knowledge‑rich source domain model. In the second stage, we fine tune the source
model from the previous stage as the initial model on the target domain dataset. During
model training, two encoders are updated at each iteration of the two stages, which helps
align the span‑embedding space with the label‑embedding space.

Table 1. The full label name format of the four datasets we used.

Dataset Entity Label Full Label Name

Ontonotes

PER 人名 (person name)
ORG 组织 (organization)
LOC 位置 (location)
GPE 地名 (geographic name)

MSRA
NS 位置 (location)
NR 姓名、名字 (person name)
NT 组织 (organization)

Resume

CONT 国籍 (nationality)
EDU 教育背景、学历 (educational background)
LOC 位置、地名 (location)
NAME 姓名、名字 (person name)
ORG 组织 (organization)
PRO 专业 (profession)
RACE 民族 (race)
TITLE 职称、职业 (title and occupation)
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Table 1. Cont.

Dataset Entity Label Full Label Name

RISK

LOC‑PROV 省 (province)
LOC‑PREF 市、区 (city, district)

LOC‑COUNT 县 (county)
FOOD‑VEG 蔬菜 (vegetable)
FOOD‑FRUIT 水果 (fruit)
FOOD‑MEAT 肉 (meat)
FOOD‑GRAIN 粮食 (foodstuff)
FOOD‑DAIRY 奶制品、饮品 (dairy products and beverages)
CO‑PROC 加工生产方式 (processing and production methods)
CO‑PROD 公司、厂 (company, factory)
CO‑TRAD 售卖商店 (sales store)
CO‑CATE 饭店 (hotel)
CO‑MATE 超市 (supermarket)
ORG‑REGU 监督局 (supervisory authority)
ORG‑ADMI 管理部门 (management department)
ORG‑LEGA 法律机构 (legal agency)
ORG‑SOCI 社会组织 (social organization)
RISK‑HIGH 病毒 (virus)
RISK‑MID 化学物质、细菌 (chemicals, bacteria)
RISK‑LOW 添加剂 (additive)

4. Experiments
4.1. Datasets
• Target Domain Datasets

To validate the effectiveness of ourmodel, we used three benchmark Chinese datasets
and a self‑built dataset as target domain datasets:

Ontonotes 4.0 [36]: This dataset comprises corpora from the news and broadcast do‑
mains, covering four entity types.

MSRA [37]: This dataset comprises corpora from the news domain and includes
three entity types.

Resume [11]: This dataset consists of abstracts from resumes of senior managers in
publicly listed companies. It encompasses eight entity types.

RISK: This dataset was created by us and focuses on food safety risk‑related corpora.
We hierarchically categorized the dataset into 5 coarse‑grained and 20 fine‑grained entity
types, as shown in Figure 8. The entity count for each fine‑grained category is illustrated
in Figure 9. The distribution of entity categories is not uniform, making RISK challenging
at the fine‑grained level.

The detailed statistics of the target domain datasets are presented in Table 2. To en‑
sure the comparability of experimental results, we followed the sampling approach of
PCBERT [10] to simulate a few‑shot scenario (see Section 4.4 for details). Compared to
the N‑way K‑shot setting, we believe that this sampling approach is more representative
of realistic few‑shot scenarios. We further divided the datasets into scenarios with even
fewer examples and tested our model, demonstrating its effectiveness even in scenarios
with fewer data.



Appl. Sci. 2023, 13, 8609 12 of 19

Figure 8. Hierarchy chart of the RISK dataset.

Figure 9. Statistical chart of the number of various entity types in the RISK dataset.

Table 2. Detailed statistical table for the target domain dataset.

Dataset Train Dev Test Entity Types

Ontonotes 15.7 k 4.3 k 4.3 k 4
MSRA 41.7 k 4.6 k 4.3 k 3
Resume 3.8 k 0.46 k 0.48 k 8
RISK 1.2 k 0.26 k 0.26 k 5 (20) 1

1 5 (20) representing 5 coarse‑grained and 20 fine‑grained entity types of the RISK dataset.

• Source Domain Dataset

We adopted the source domain dataset used in the PCBERT to ensure experimen‑
tal consistency and reliability. This high‑resource dataset is a combination of multiple
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datasets, including CLUENE [38], CNERTA [39], RenMinRiBao [40], and datasets from
unknown sources.

4.2. Implementation Details
We adopted a two‑stage training approach, starting with 5 epochs of pretraining on

the source domain dataset, followed by 100 epochs of fine tuning using the pretrained
model as the initial model in the target domain. For the upstream (BERT) part, we used the
standard BERT‑wwm‑ext pretrained language model with 768‑dimensional hidden repre‑
sentations for character embeddings and the learning rate set to 1 × 10−5. For the down‑
stream model, the learning rate was set to 1 × 10−4. The hidden state size of the BiLSTM
encoder was set to 200. We used the Adam optimizer [41]. We performed three different
random samplings for all datasets to reduce randomness and reported the average perfor‑
mance as the final experimental result. All experiments were conducted on a computer
with an Intel Core i9 13900K/F CPU®5.8 GHz and a GeForce RTX 3090 GPU with 24 GB of
memory. The models were implemented using the PyTorch 1.12.0 framework.

4.3. Baseline
BERT [5] is the fundamental BERT‑based NER method that adds a token classifier

layer to the downstream of BERT.
BERT‑LC is an effective baseline method for handling Chinese NER. It extends the

regular BERT by adding a BiLSTM layer and employs a CRF layer as a decoder to predict
token types.

Lattice LSTM [11] is a character‑based Chinese NER method that introduces lexicon
information by using a lattice‑structured LSTM model.

FLAT [42] is a lattice‑structured NER method based on a transformer. It constructs
a flat‑structured transformer to fully utilize lattice information and leverage parallel com‑
puting on GPUs.

LEBERT [43] addressesChinese sequence‑labeling tasks using lexicon‑enhancedBERT.
It incorporates lexical information into the encoding process of BERT’s underlying layers
using lexicon adapter layers.

LEBERT‑LC is an extension of LEBERT that further adds a BiLSTM layer after the
BERT output layer to facilitate a comparison with our proposed SLNER model.

PCBERT [10] is a prompt‑based Chinese few‑shot NER model. It consists of the P‑
BERT component and the C‑BERT component, integrating lexical features and implicit
label features.

4.4. Experimental Results
Our model was thoroughly evaluated on four sampled Chinese NER datasets. Specif‑

ically, we sampled K = 250, K = 500, K = 1000, and K = 1350 examples from the Ontonotes,
MSRA, and Resume datasets, respectively, as training sets to cover different levels of data
scarcity and comprehensively evaluate the training effectiveness and robustness of the
model. The standard F1 score is used as the evaluation metric to measure the final per‑
formance of the model.

Table 3 shows the experimental results of our proposed model and the baseline
models on three benchmark NER datasets. The results indicate that, except for the
1350‑shot setting in the resume dataset, our method outperforms the state‑of‑the‑art
models by 0.2–6.57 percent, demonstrating the excellent performance of our method in
few‑shot settings.

Table 4 presents the experimental results of our proposedmodel on the RISKdataset.
Compared to coarse‑grained classification, the model shows a maximum decrease of
3.64–6.11 percent in F1 score under fine‑grained classification. This indicates that the
dataset is more challenging in fine‑grained classification.
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Table 3. F1 scores for the four Chinese sampling NER datasets. The best results are highlighted
in bold.

Dataset Method K = 250 K = 500 K = 1000 K = 1350

Ontonotes

BERT 63.85 69.50 71.33 72.42
BERT‑LC 65.69 73.54 74.97 77.19

Lattice LSTM 39.71 45.46 54.54 57.48
FLAT 49.01 46.35 49.34 57.44

LEBERT 69.48 69.01 73.78 74.84
LEBERT‑LC 70.26 69.89 73.83 76.01
PCBERT 74.42 75.62 78.33 81.52

SLNER (ours) 77.66 80.46 81.53 82.23

MSRA

BERT 68.44 72.28 81.21 82.28
BERT‑LC 79.01 83.13 87.84 89.32

Lattice LSTM 54.69 63.61 74.27 76.31
FLAT 59.62 70.20 80.79 64.95

LEBERT 79.11 85.18 87.77 89.35
LEBERT‑LC 80.92 86.09 88.11 88.70
PCBERT 81.08 85.25 87.88 89.72

SLNER (ours) 87.65 89.30 89.67 90.08

Resume

BERT 53.80 62.64 69.36 70.65
BERT‑LC 92.26 94.66 95.16 96.41

Lattice LSTM 85.63 89.60 92.01 93.13
FLAT 84.62 90.77 92.97 87.79

LEBERT 89.15 92.56 94.02 95.19
LEBERT‑LC 91.60 93.03 95.40 95.16
PCBERT 93.42 94.01 94.96 95.97

SLNER (ours) 94.02 94.86 95.99 96.36

Table 4. The results on the RISK dataset, showing the F1 scores for different sampling sizes in both
coarse‑grained and fine‑grained categories.

Dataset K‑Shot Coarse‑Grained Fine‑Grained

RISK

K = 250 69.67 63.97
K = 500 71.73 65.62
K = 1000 72.70 68.06
Full 1 72.62 68.98

1 Full represents K = 1218 (the maximum size of RISK).

In addition, to further validate the feasibility of our model in a low‑resource setting,
we also sampled data under K = 10, K = 20, and K = 50 settings and evaluated the effec‑
tiveness of our model with even fewer examples. The results are shown in Table 5. The
experimental results demonstrate that our model can still achieve good results, even with
as few as a few dozen samples. We analyze this phenomenon in Section 5.3.

Table 5. Results with fewer samples.

K‑Shot
Dataset

Ontonotes MSRA Resume RISK

K = 10 65.90 73.18 77.23 59.50 (44.61) 1
K = 20 70.92 81.19 81.70 67.57 (45.02)
K = 50 74.91 86.34 90.55 68.87 (57.31)

1 Parentheses represent the fine‑grained results of the RISK dataset.
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5. Analysis
5.1. Ablation Study

To validate the impact of enhanced span representation and label representation on
SLNER, we conducted extensive ablation experiments on the Ontonotes, MSRA, Resume,
andRISKdatasets under different sampling settings (K = 250, 500, 1000, and 1350) as shown
in Table 6. Specifically, we first removed the enhanced span representation module and
observed a decrease in performance across all datasets with different sampling sizes. This
demonstrates the effectiveness of themodule, whichwe analyze in Section 5.2. Next, we re‑
moved the label representation module. It is worth mentioning that, due to the removal of
the label representation module, we had to introduce a top‑layer classifier, which resulted
in the inability to use the source‑domain‑initialized model. As a result, the performance of
our model significantly dropped, confirming our hypothesis that the label semantics carry
rich prior knowledge. This also indicates the importance of prior knowledge from the pre‑
fine‑tuning stage in low‑resource environments. We provide a detailed analysis of this in
Section 5.3.

Table 6. The results of the ablation experiments. ESR, enhanced span representation; LR, label rep‑
resentation; SD, source domain dataset.

Dataset Method K = 250 K = 500 K = 1000 K = 1350

Ontonotes
SLNER 77.66 80.46 81.53 82.23

‑ESR w/SD 75.63 80.02 81.04 81.91
‑LR w/o SD 72.90 75.62 77.98 78.09

MSRA
SLNER 87.65 89.30 89.67 90.08

‑ESR w/SD 87.99 89.60 89.42 89.80
‑LR w/o SD 80.72 84.06 84.87 84.54

Resume
SLNER 94.02 94.86 95.99 96.36

‑ESR w/SD 93.52 94.46 95.38 95.95
‑LR w/o SD 87.64 94.17 95.48 95.35

RISK
SLNER 63.97 65.62 68.06 N/A 1

‑ESR w/SD 63.27 65.26 67.29 N/A
‑LR w/o SD 55.67 58.94 61.23 N/A

1 Since the maximum size of the RISK dataset is less than 1350, we did not conduct experiments with K = 1350 for
this dataset.

To further analyze the impact of label representation, we experimented with different
definitions: full label name (the one used in our model), misleading label name, and indis‑
tinguishable label name. Misleading label name refers to randomly shuffling the full label
name, for example, changing the label name corresponding to “PER” from “人名 (person
name)” to “组织 (organization)”. Indistinguishable label name refers to unifying all differ‑
ent label names into a single label name, such as using “人名 (person name)” for all labels.
We conducted a comparative experiment on the Ontonotes dataset, as shown in Figure 10.
The results indicate that a misleading label name slightly negatively affects the model, but
an indistinguishable label name has a significant negative impact. This suggests that the se‑
lection of label namesmust be category‑related and that a label name carries entity‑specific
prior knowledge.
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Figure 10. Different definitions of label names.

5.2. The Impact of Enhanced Span Representation
From Table 6, it can be observed that removing the inner span module results in a

decrease in F1 scores. Particularly, when there are fewer samples (K = 250), the impact
of removing the inner span module is more significant. This is because in the two‑stage
training process, during the source domain training, the lack of accurate span represen‑
tations leads to a decrease in NER accuracy. However, when transitioning to the target
domain, this inaccuracy is amplified, and the effect is more pronounced with fewer sam‑
ples. Furthermore, during the ablation experiments, it was found that removing the inner
span module leads to slower convergence of the model, indicating that without intra‑span
information, entity span localization becomes more challenging.

5.3. The Impact of Label Representation
The experimental results in Table 6 indicate that the impact of label name becomes

more pronounced as the number of samples decreases (compared to K = 1350, the model’s
performance drops more significantly when label name is removed at K = 250). This is
because as the number of training samples decreases, the number of words representing
the same type of entity also decreases, resulting in less specific entity descriptions. On the
other hand, label name itself is a broad concept that can represent entity categories, and
its effectiveness increases when the number of samples is reduced. This leads to improved
generalization ability.

6. Conclusions
In this study, we propose the SLNER model with enhanced span and label seman‑

tics to address the issues of inadequate prior knowledge and feature representation lim‑
itations in Chinese few‑shot named entity recognition (NER). To tackle the feature rep‑
resentation limitations, we employ the biaffine attention mechanism and self‑attention to
obtain enhanced span representations, fully leveraging the internal composition of entity
mentions. For the problem of inadequate prior knowledge, we introduce label semantics,
which provide a highly abstract representation of specific entity categories with similar se‑
mantics and provide additional prior knowledge in few‑shot scenarios. Our model learns
to match span representations and label semantics to achieve entity recognition. Addition‑
ally, we constructed the RISK dataset in the food safety risk domain, which consists of
5 fine‑grained and 20 coarse‑grained entity types, providing a data foundation for NER
development in low‑resource domains. We extensively validated our proposed model on



Appl. Sci. 2023, 13, 8609 17 of 19

three benchmark datasets and our self‑built dataset, and the results demonstrate the effec‑
tiveness of our model in addressing the issues of Chinese few‑shot NER.
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