Conformal Test Martingale-Based Change-Point Detection for Geospatial Object Detectors
Abstract
:1. Introduction
- Clustering analysis for partitioning our released large-scale remote sensing dataset for geospatial object detection [28] is proposed for domain shift problems in the field of geospatial object detection.
- Conformal test martingales and a novel transformation method are first introduced to detect change-point for object detectors, with few false alarms for the target domain.
- Experimental results not only demonstrate the effectiveness and efficiency of our proposed methods for change-point detection, but also verify the partitions of the datasets in a statistical way.
2. Conformal Test Martingale
Algorithm 1: Conformal test martingale with a simple jumper. |
Input: The p-values defined by Formula (1) and the parameter J. Output: Conformal test martingale . 1: Set , and . 2: for do 3: for do 4: 5: end for 6: for do 7: 8: end for 9: 10: 11: end for |
3. Method
3.1. Partitions for Different Domains
3.2. Nonconformity Measure with Image- and Instance-Level Representations
3.3. Accelerating Change-Point Detection with Momentum
Algorithm 2: The transformation of conformal test martingale with momentum. |
Input: The p-values defined by Formula (1), the momentum parameters and the parameter J. Output: The transformation process . 1: Set , , , = 1 and . 2: for do 3: Calculate using Algorithm 1. 4: Calculate . 5: Obtain . 6: end for |
4. Experiments
4.1. Verification of the Partitions
4.2. Exploratory Experiments of CTM
4.3. Comparison Experiments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CTM | Conformal Test Martingale |
IID | Independent and Identically Distributed |
LAB | Lightness, Red/Green Value, Blue/Yellow Value |
YOLOv3 | You Only Look Once Object Detector, Version 3 |
mAP | Mean Average Precision |
POD | Probability of Detection |
POFD | Probability of False Detection |
Alg.1 | Algorithm 1 |
Alg.2 | Algorithm 2 |
References
- Li, K.; Wan, G.; Cheng, G.; Meng, L.; Han, J. Object detection in optical remote sensing images: A survey and a new benchmark. ISPRS J. Photogramm. Remote. Sens. 2020, 159, 296–307. [Google Scholar] [CrossRef]
- Cheng, G.; Si, Y.; Hong, H.; Yao, X.; Guo, L. Cross-scale feature fusion for object detection in optical remote sensing images. IEEE Geosci. Remote Sens. Lett. 2020, 18, 431–435. [Google Scholar] [CrossRef]
- Tang, R.; Sun, H.; Liu, D.; Xu, H.; Qi, M.; Kong, J. EYOLOX: An Efficient One-Stage Object Detection Network Based on YOLOX. Appl. Sci. 2023, 13, 1506. [Google Scholar] [CrossRef]
- Wan, D.; Lu, R.; Wang, S.; Shen, S.; Xu, T.; Lang, X. YOLO-HR: Improved YOLOv5 for Object Detection in High-Resolution Optical Remote Sensing Images. Remote Sens. 2023, 15, 614. [Google Scholar] [CrossRef]
- Chang, Y.; Li, D.; Gao, Y.; Su, Y.; Jia, X. An Improved YOLO Model for UAV Fuzzy Small Target Image Detection. Appl. Sci. 2023, 13, 5409. [Google Scholar] [CrossRef]
- Cui, M.; Gong, G.; Chen, G.; Wang, H.; Jin, M.; Mao, W.; Lu, H. LC-YOLO: A Lightweight Model with Efficient Utilization of Limited Detail Features for Small Object Detection. Appl. Sci. 2023, 13, 3174. [Google Scholar] [CrossRef]
- Chen, Y.; Li, W.; Sakaridis, C.; Dai, D.; Van Gool, L. Domain adaptive faster r-cnn for object detection in the wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3339–3348. [Google Scholar]
- Oza, P.; Sindagi, V.A.; Sharmini, V.V.; Patel, V.M. Unsupervised domain adaptation of object detectors: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2023, early access. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Q.; Wang, T.; Wang, B.; Meng, X. Rotation-invariant and relation-aware cross-domain adaptation object detection network for optical remote sensing images. Remote Sens. 2021, 13, 4386. [Google Scholar] [CrossRef]
- Xu, T.; Sun, X.; Diao, W.; Zhao, L.; Fu, K.; Wang, H. FADA: Feature aligned domain adaptive object detection in remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Zhu, Y.; Sun, X.; Diao, W.; Li, H.; Fu, K. RFA-Net: Reconstructed Feature Alignment Network for Domain Adaptation Object Detection in Remote Sensing Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 5689–5703. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, T.; Samworth, R.J. High-dimensional, multiscale online changepoint detection. J. R. Stat. Soc. Ser. Stat. Methodol. 2022, 84, 234–266. [Google Scholar] [CrossRef]
- Ferrari, A.; Richard, C.; Bourrier, A.; Bouchikhi, I. Online change-point detection with kernels. Pattern Recognit. 2023, 133, 109022. [Google Scholar] [CrossRef]
- Ho, S.S. A martingale framework for concept change detection in time-varying data streams. In Proceedings of the 22nd International Conference on Machine Learning, Bonn, Germany, 7–11 August 2005; pp. 321–327. [Google Scholar]
- Lu, J.; Liu, A.; Dong, F.; Gu, F.; Gama, J.; Zhang, G. Learning under concept drift: A review. IEEE Trans. Knowl. Data Eng. 2018, 31, 2346–2363. [Google Scholar] [CrossRef] [Green Version]
- Harel, M.; Mannor, S.; El-Yaniv, R.; Crammer, K. Concept drift detection through resampling. In Proceedings of the International Conference on Machine Learning, PMLR, Beijing, China, 21–26 June 2014; pp. 1009–1017. [Google Scholar]
- Vovk, V.; Petej, I.; Nouretdinov, I.; Ahlberg, E.; Carlsson, L.; Gammerman, A. Retrain or not retrain: Conformal test martingales for change-point detection. In Proceedings of the Conformal and Probabilistic Prediction and Applications, PMLR, Virtual, 8–10 September 2021; pp. 191–210. [Google Scholar]
- Angelopoulos, A.N.; Bates, S. Conformal Prediction: A Gentle Introduction. Found. Trends Mach. Learn. 2023, 16, 494–591. [Google Scholar] [CrossRef]
- Fontana, M.; Zeni, G.; Vantini, S. Conformal prediction: A unified review of theory and new challenges. Bernoulli 2023, 29, 1–23. [Google Scholar] [CrossRef]
- Vovk, V. Testing randomness online. Stat. Sci. 2021, 36, 595–611. [Google Scholar] [CrossRef]
- Vovk, V.; Nouretdinov, I.; Gammerman, A. Conformal testing: Binary case with Markov alternatives. In Proceedings of the Conformal and Probabilistic Prediction with Applications, PMLR, Brighton, UK, 24–26 August 2022; pp. 207–218. [Google Scholar]
- Vovk, V.; Gammerman, A.; Shafer, G. Algorithmic Learning in a Random World; Springer Nature Switzerland AG: Cham, Switzerland, 2022. [Google Scholar]
- Eliades, C.; Papadopoulos, H. Using inductive conformal martingales for addressing concept drift in data stream classification. In Proceedings of the Conformal and Probabilistic Prediction and Applications, PMLR, Virtual, 8–10 September 2021; pp. 171–190. [Google Scholar]
- Eliades, C.; Papadopoulos, H. A Betting Function for addressing Concept Drift with Conformal Martingales. In Proceedings of the Conformal and Probabilistic Prediction with Applications, PMLR, Brighton, UK, 24–26 August 2022; pp. 219–238. [Google Scholar]
- Vovk, V. Testing for concept shift online. arXiv 2020, arXiv:2012.14246. [Google Scholar]
- Vovk, V.; Petej, I.; Gammerman, A. Protected probabilistic classification. In Proceedings of the Conformal and Probabilistic Prediction and Applications, PMLR, Virtual, 8–10 September 2021; pp. 297–299. [Google Scholar]
- Qian, N. On the momentum term in gradient descent learning algorithms. Neural Netw. 1999, 12, 145–151. [Google Scholar] [CrossRef]
- Zhuang, S.; Wang, P.; Jiang, B.; Wang, G.; Wang, C. A single shot framework with multi-scale feature fusion for geospatial object detection. Remote Sens. 2019, 11, 594. [Google Scholar] [CrossRef] [Green Version]
- Volkhonskiy, D.; Burnaev, E.; Nouretdinov, I.; Gammerman, A.; Vovk, V. Inductive conformal martingales for change-point detection. In Proceedings of the Conformal and Probabilistic Prediction and Applications, PMLR, Stockholm, Sweden, 13–16 June 2017; pp. 132–153. [Google Scholar]
- Tartakovsky, A.; Nikiforov, I.; Basseville, M. Sequential Analysis: Hypothesis Testing and Changepoint Detection; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Bansal, R.; Raj, G.; Choudhury, T. Blur image detection using Laplacian operator and Open-CV. In Proceedings of the 2016 International Conference System Modeling & Advancement in Research Trends (SMART), Moradabad, India, 25–27 November 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 63–67. [Google Scholar]
- Suny, A.H.; Mithila, N.H. A shadow detection and removal from a single image using LAB color space. Int. J. Comput. Sci. Issues (IJCSI) 2013, 10, 270. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Academic Press: Cambridge, MA, USA, 2011; Volume 100. [Google Scholar]
Domain Shift Case | Source mAP | Target mAP |
---|---|---|
From Clear to Blur Domain | ||
From Blur to Clear Domain | ||
From Bright to Dark Domain | ||
From Dark to Bright Domain |
Algorithm | Mean Delay | POFD | POD |
---|---|---|---|
Alg.1 | 41.3 | 0.0003 | 0.9827 |
CTM-C() | 37.3 | 0.0000 | 0.9843 |
CTM-C() | 33.5 | 0.0000 | 0.9855 |
CTM-C() | 34.7 | 0.0000 | 0.9854 |
Alg.2() | 41.2 | 0.0003 | 0.9827 |
Alg.2() | 40.8 | 0.0007 | 0.9829 |
Alg.2() | 0.1806 | 0.9872 | |
Alg.2(Adaptive) | 34.5 | 0.0003 | 0.9855 |
Algorithm | Mean Delay | POFD | POD |
---|---|---|---|
Alg.1 | 53.6 | 0.0008 | 0.9573 |
CTM-C() | 46.0 | 0.0000 | 0.9633 |
CTM-C() | 37.3 | 0.0000 | 0.9703 |
CTM-C() | 37.5 | 0.0000 | 0.9700 |
Alg.2() | 53.5 | 0.0008 | 0.9574 |
Alg.2() | 48.6 | 0.0949 | 0.9613 |
Alg.2() | 37.4 | 0.2493 | 0.9702 |
Alg.2(Adaptive) | 0.0008 | 0.9753 |
Algorithm | Mean Delay | POFD | POD |
---|---|---|---|
Alg.1 | 40.0 | 0.0000 | 0.9801 |
CTM-C() | 27.1 | 0.0002 | 0.9864 |
CTM-C() | 26.6 | 0.0000 | 0.9867 |
CTM-C() | 27.9 | 0.0000 | 0.9860 |
Alg.2() | 40.0 | 0.0000 | 0.9801 |
Alg.2() | 39.9 | 0.0000 | 0.9801 |
Alg.2() | 37.7 | 0.0000 | 0.9812 |
Alg.2(Adaptive) | 0.0000 | 0.9870 |
Algorithm | Mean Delay | POFD | POD |
---|---|---|---|
Alg.1 | 51.1 | 0.0003 | 0.9687 |
CTM-C() | 41.6 | 0.0002 | 0.9745 |
CTM-C() | 36.7 | 0.0000 | 0.9774 |
CTM-C() | 37.8 | 0.0000 | 0.9768 |
Alg.2() | 50.8 | 0.0003 | 0.9689 |
Alg.2() | 48.6 | 0.0153 | 0.9702 |
Alg.2() | 42.9 | 0.0970 | 0.9737 |
Alg.2(Adaptive) | 0.0003 | 0.9805 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Lu, Z.; Wang, P.; Zhuang, S.; Wang, D. Conformal Test Martingale-Based Change-Point Detection for Geospatial Object Detectors. Appl. Sci. 2023, 13, 8647. https://doi.org/10.3390/app13158647
Wang G, Lu Z, Wang P, Zhuang S, Wang D. Conformal Test Martingale-Based Change-Point Detection for Geospatial Object Detectors. Applied Sciences. 2023; 13(15):8647. https://doi.org/10.3390/app13158647
Chicago/Turabian StyleWang, Gang, Zhiying Lu, Ping Wang, Shuo Zhuang, and Di Wang. 2023. "Conformal Test Martingale-Based Change-Point Detection for Geospatial Object Detectors" Applied Sciences 13, no. 15: 8647. https://doi.org/10.3390/app13158647
APA StyleWang, G., Lu, Z., Wang, P., Zhuang, S., & Wang, D. (2023). Conformal Test Martingale-Based Change-Point Detection for Geospatial Object Detectors. Applied Sciences, 13(15), 8647. https://doi.org/10.3390/app13158647