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Abstract: The use of delivery drones is currently hindered by the inability of transported objects
to maintain a steady position, which can result from roll-, pitch-, and heave-induced vibrations.
This paper proposes a novel parallel manipulator for stabilizing the platform of unmanned aerial
vehicles. The proposed mechanism builds upon an existing study of a 3-SRR/SRU parallel stabi-
lizing mechanism by incorporating the dynamical properties of the system into the control model.
The resultant control technique is then applied to both the 3-RRS and 3-SRR mechanisms, and a
comparative study is conducted to identify the most reliable stabilizer for regulating the platform’s
orientation. The results demonstrate that the 3-SRR mechanism exhibits superior robustness and
stability characteristics compared to the other two mechanisms. Additionally, the 3-SRR mechanism
is controlled using artificial neural networks, which significantly improves the accuracy and stabil-
ity of the system. Overall, this research presents a novel and effective solution for stabilizing the
platform of unmanned aerial vehicles, with significant implications for the development of delivery
drone technology.

Keywords: unmanned aerial vehicle; stabilizing mechanism; parallel manipulator; neural network

1. Introduction

The use of drones across a multitude of industries, including military, delivery, moni-
toring, and agriculture, has become increasingly prevalent in recent years. One significant
challenge faced by companies in these sectors is the limited capacity of traditional trans-
portation infrastructure, particularly within urban areas, as the demand for commercial
deliveries continues to escalate. In response, drone delivery systems have been proposed
as a potential solution to alleviate traffic congestion by taking advantage of the vertical
airspace above a city’s roadways while also addressing pressing environmental and noise
pollution concerns [1]. Companies like Amazon and Google have, therefore, started look-
ing for alternative delivery strategies—for instance, using unmanned aerial vehicles or
autonomous drones [2]. In fact, autonomous drone delivery modes are anticipated to
play a significant role in the future of the logistics sector, both for the last-mile delivery of
small packages and for the delivery of fast food and restaurant meals. Domino’s Pizza, in
collaboration with the New Zealand start-up Flirtey, has initiated trials for drone delivery
services for pizzas and food [3]. Also, delivery robots have been increasingly adopted in
various cities worldwide, mainly in response to customers’ COVID-19-related concerns
about staying at home during lockdowns and the potential risks faced by human delivery
personnel during the pandemic [3]. Recently, there has been a growing focus in research
on the transportation of loads, which stands out as one of the most prevalent activities
carried out with unmanned aerial vehicles [4,5]. However, to enable widespread drone use,
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significant changes need to be made to the current delivery-drone technology. For instance,
when delivering food items such as pizza or hot syrup, it is crucial to isolate them from
vibrations caused by heave, roll, and pitch movements. One solution to this problem is to
utilize a stabilizing manipulator with three degrees of freedom (DOFs).

Serial manipulators (SMs) and parallel manipulators (PMs) are two primary divisions
of robot manipulators. PMs have multiple limbs that share the payload capacity, providing a
higher capacity than SMs. Moreover, PMs are better at precise positioning compared to their
serial counterparts [6–8]. Recent studies have focused on developing and studying parallel
manipulators for applications such as ship stabilization, wheelchair control, and helicopter
landing aboard ships. Alkhedher et al. [9] utilized an inverted 6-DOF parallel manipulator
as a stabilizer for any vehicle encountering path-bump variations. PMs with 2R1T motion,
namely, two independent rotations and one translation, have been investigated as well.
Zhan et al. [10] studied the forward kinematics of a 3-SPR (in this paper, P, R, S, and U stand
for prismatic, revolute, spherical, and universal joints, respectively) wave compensation
counteract mechanism and compared it to the 3-PSR mechanism for marine ships with
dynamic positioning systems. Talke et al. [11] proposed a 3-PSR shipboard stabilization
platform to mimic the fundamental DOFs of “roll, pitch, and heave” for wave replication to
support the tethered unmanned aerial vehicles’ (UAV) winch payloads. Javadi et al. [12]
studied the kinematics and dynamics of the 3-RRS mechanism for a torque-model-based PD
controller to stop a disabled person who is using a typical electric wheelchair from tipping
over. Tetik et al. [13] developed a mathematical model of the 3-RRS PM and performed
position control over the physical model of the PM. Zhang et al. [14] proposed a kinematic
control of a 3-SRR/SRU 3-DOF PM designed as a stabilization platform for helicopters
landing aboard ships safely. Nevertheless, the dynamical model of the 3-SRR/SRU PM was
not included in the control approach.

Despite its simplicity, proportional–integral–derivative (PID) control is frequently
used to control the position and/or orientation of parallel manipulators [15,16]. When
the PID parameters for the control object are set to their ideal values, the system outputs
a response that is fairly close to the target value. Typically, the method of determining
the PID parameters’ ideal values is called tuning, and it is often undertaken through trial
and error, simulation, or systematic methods such as Ziegler–Nichols, ITAE, and robust
PID tuning [17,18]. However, a significant shortcoming of these approaches is that PID
parameters need to be manually adjusted anytime the system’s characteristics change.
Changes in load, environment, or operating conditions make it difficult to fully automate
the tuning procedure. On the other hand, manual tuning can be time consuming and may
not always produce the best performance, especially in complicated dynamic systems [19].
To overcome this difficulty, there has been an increase in interest in creating automated
tuning techniques and adaptive control schemes that can automatically modify the PID
parameters in real time based on altering the system conditions. Although adaptive control
techniques and automated tuning methods can substantially simplify the tuning process,
they can still be time consuming and need significant computations [20,21]. Fuzzy logic
control (FLC) is one of the techniques that can be used for the autotuning of PID controllers.
In a fuzzy PID controller, human knowledge and expertise are used to design the fuzzy
rules that determine the control action based on the system’s behavior and feedback [22].
There are several difficulties associated with fuzzy logic control, including high dependence
on human knowledge and skill; fuzzy rules need to be updated over time, and there is no
set method for creating fuzzy controllers [19]. On the other hand, robust nonlinear control
techniques such as H-infinity loop shaping, sliding mode control, and so on [23–26] can
be applied.

Recently, soft computing techniques such as neural networks have been successfully
used in control systems. The use of artificial intelligence (AI) to replace the traditional PID
controller can significantly simplify the tuning process and improve the overall perfor-
mance and robustness of the control system [27–29]. Ghoniem et al. [30] replaced a PID
controller with a neural network in order to control a new low-cost semi-active vehicle
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suspension system, and it proved to have good accuracy in terms of vibration reduction and
response time. Rahimi et al. [31] presented a 3-DOF delta robot trajectory-tracking control
using an online neural network self-tuned inverse dynamic controller. Nguyet et al. [32]
proposed an enhanced PID controller with an artificial neural network (ANN) to increase
the position control efficiency of a 2-DOF robotic arm. The controller has shown robust and
flexible results.

Although control approaches have been proposed for stabilizing UAV platform mech-
anisms, most existing works rely on classical control techniques. Furthermore, previous
studies lack a comparative analysis of the performance of different stabilizing mechanisms,
which limits insights into the impact of robot architecture on stabilized motion. This
paper aims to address these gaps by proposing a parallel mechanism for UAV platform
stabilization, utilizing modern control techniques for mechanism control. A comparative
study is conducted on three different parallel manipulators. Initially, the 3-SRR/SRU PM is
investigated, and a control technique based on both kinematical and dynamical models is
developed, extending previous works. A new control strategy is proposed, which signifi-
cantly improves the output values. The proposed control strategy is then applied to the
3-RRS PM, and the resulting motion of the moving plate is examined and compared with
the 3-SRR/SRU PM. Based on further investigation of the results, a 3-SRR PM is proposed,
which better addresses the stabilization problem of the moving platform. Additionally, the
control of the 3-SRR PM is enhanced by incorporating an artificial neural network (ANN)
to accurately predict output values while accommodating input changes, overcoming the
drawbacks of tuning PID control.

2. Model Identification of 3-SRR/SRU
2.1. Mathematical Model

In this section, the mathematical model devised by Zhang et al. [14] for the 3-SRR/SRU
PM is recapitulated, where R designates an actuated revolute joint. The 3-SRR/SRU PM,
depicted in Figure 1, was investigated as a stabilization platform for helicopters landing
aboard ships safely. It consists of three SRR limbs, B1C1 A1, B2C2 A2, and B4C4 A4, in addition
to one passive SRU limb, B3C3 A3. The moving plate has 2R1T 3-DOF motion [14], namely
two independent rotations in addition to one translation. Points Ai and Bi (i = 1, · · · , 4)
denote the intersection between the moving plate and the base, respectively, and the joints
implemented on them. Points P, O, and Os express the centers of the moving plate, the
base, and the ship, respectively, the base being installed on the ship. The relative position
of the base with respect to the ship is expressed by m, n, and r, namely, the coordinates of
O with respect to Os.
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The motion of the ship is represented by heave ∆Z, roll α, and pitch β in the reference
frame {Os, x, y, z}, as illustrated in Figure 1. The moving plate and the base both have a
square cross-section, as seen from the top. Thus, let lO denote the distance between the
center of the base, O, and each of points Bi (i = 1, · · · , 4). Accordingly, the coordinates of Bi
relative to the ship’s motion are as follows (in Equation (1), operators “s” and “c” represent
the trigonometric functions “sin” and “cos”, respectively):

OSB1
=

−lOsαsβ + mcβ + nsαsβ + (r + ∆Z)cαsβ
−lOcα + ncα− (r + ∆Z)sα

−lOsαcβ−msβ + nsαcβ + (r + ∆Z)cαcβ


OSB2

=

 lOcβ + mcβ + nsαsβ + (r + ∆Z)cαsβ
ncα− (r + ∆Z)sα

−lOsβ−m sβ + n sαcβ + (r + ∆Z)cαcβ


OSB3

=

lOsαsβ + m cβ + nsαsβ + (r + ∆Z)cαsβ
lOcα + ncα− (r + ∆Z)sα

lOsαcβ−msβ + nsαcβ + (r + ∆Z)cαcβ


OSB4

=

−lOcβ + mcβ + nsαsβ + (r + ∆Z)cαsβ
ncα− (r + ∆Z)sα

lOsβ−msβ + nsαcβ + (r + ∆Z)cαcβ



(1)

Similarly, let lP express the distance between center of the moving plate and each
of points Ai (i = 1, · · · , 4). In addition, let Z0 represent the initial distance between the
moving plate and the base. The initial coordinates of points Ai (i = 1, · · · , 4) with respect
to OS can be written as follows:

Z0 is the initial distance between the two plates, and la and lb present the distance
between the center frame O and the selected A (i = 1, 2, 3, and 4). Recalling that the initial
coordinates of each A with respect to Ob can be written as follows [14]:

OS A1
=

 m
n

r + Z0

+

 0
−lP

0

 =

 m
n− lP
r + Z0


OS A2

=

 m
n

r + Z0

+

lP
0
0

 =

m + lP
n

r + Z0


OS A3

=

 m
n

r + Z0

+

 0
lP
0

 =

 m
n + lP
r + Z0


OS A4

=

 m
n

r + Z0

+

−lP
0
0

 =

m− lP
n

r + Z0



(2)

2.2. Existing Control Strategy

In each limb, let l1 =
∥∥ →AiCi

∥∥ and l2 =
∥∥ →CiBi

∥∥, (i = 1, · · · , 4). Zhang et al. [14] designed

a kinematic control strategy that consists of calculating the desired angles θid = B̂iCi Ai,
(i = 1, 2, 4) at the actuated joints, for which the moving plate returns to its initial position
with every change in the ship motion. Using the cosine law, angles θid are formulated
as follows:

θid = cos−1

 l12 + l22 −
[
(xAi − xBi)

2 + (yAi − yBi)
2 + (zAi − zBi)

2
]

2l1l2

, (i = 1, 2, 4) (3)
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2.3. Simscape Modeling and Validation

The Simscape model presented in Figure 2 was implemented based on the CAD model
shown in Figure 1 in order to validate the kinematic analysis by using the design parameters
described in [14] and the same inputs as well.
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Figure 2. Simscape model.

A Simulink block is utilized to calculate the desired angles θid based on the coordinates
of points Bi obtained from the transform sensor at each instant. The coordinates of points
Ai are initialized with their numerical values based on the design parameters. Figure 3
presents a comparison of angles θid-sim (i = 1, 2), obtained from the Simscape model in
Figure 2, and the values θid-Zhang et al. 2014, (i = 1, 2), of the same angles digitized
from [14]. It is noteworthy that the figures displaying θ3d and θ4d were omitted because of
space limitations, but their results align with those presented for θ1d and θ2d.
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The comparison depicted in Figure 3 shows strong alignment between the entities
being compared, indicating a successful validation of the Simscape model using the
kinematic equations.

3. PID Control of the Dynamical Model

The study presented here extends that of [14] by incorporating the dynamics of the
3-SRR/SRU PM, as the latter was limited to the kinematical model only. To validate the
enhanced accuracy achieved through the incorporation of mechanism dynamics, AISI steel
308 is assigned for the different parts of the PM. It is important to note that AISI steel 308
holds significant prominence in the industry because of its wide usage. Figure 4 shows
a comparison among the actual output angles from Simscape and from [14] θi-sim, and
θid-Zhang et al. 2014, respectively, and the desired angles θid for the dynamical model for
i = 1, 2, and 4.
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2014 [14], respectively, and the desired angles θid for (a) θ1, (b) θ2, and (c) θ4 after incorporating the
dynamical model.

The simulation results obtained from the Simscape dynamical model exhibit a signif-
icant improvement, showcasing minimal deviations between the desired angles and the
actual output angles. These deviations are visually depicted through the scaled capture
included in Figure 4c, providing a clear representation of the slight variations observed.
Conversely, the output angles obtained from [14] exhibit inadequate tracking of the desired
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angles, with notable delays observed specifically in angles 2 and 4. Additionally, it is worth
noting that all the tracking curves in [14] exhibit an impulse at the beginning, which differs
from the tracking curves obtained from our model. This precise alignment can be attributed
to the incorporation of both kinetics and kinematics in our present model, thus enhancing
its accuracy and reliability. Additionally, a fine tuning of the PID-controller gains was
performed in Matlab, optimizing the controller’s performance. The synergistic effect of
these factors contributed to the remarkable agreement between the desired and actual
output values.

3.1. 3D Simulation

Zhang et al. [14] showed the desired curve for angle θ3 but did not display the actual
angle values. Simscape is a powerful simulation tool that includes a mechanics explorer
feature, enabling users to visualize and analyze the behavior of 3D Simscape models in real
time. This feature provides an intuitive workspace for monitoring the simulation results at
any point during the simulation. While watching the 3D simulation, at the instant when
α = 30◦, β = 30◦, and ∆Z = 0.6 m were attained, it was observed that the moving plate
was not stabilized correctly, as shown in Figure 5.
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Additionally, the simulation data inspector revealed that the actual angle, represented
by θ3, of the passive joint within the SRU limb is incapable of tracking its desired value in
any given scenario, as depicted in Figure 6.
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As a consequence of this issue, the dynamical model showcases sinusoidal fluctuations
in the x and y coordinates of points Ai, (i = 1, · · · , 4). The positional variation of point A1
is illustrated in Figure 7. Although the figures illustrating the variations for A2, A3, and
A4 were not included because of limited space, their results align consistently with those
presented for A1.
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3.2. Proposed Control Strategy

The existing control strategy [14] consists of blocking the motion of points Ai (i = 1, 2, 4)
in all directions, x, y, and z, and accordingly calculating the desired angles at the actuators
θid (i = 1, 2, 4) using Equation (3). However, this approach encounters challenges in
maintaining the positions of points Ai at their initial values, as it fails to prevent the
fluctuations in the x and y coordinates, which subsequently lead to errors in the z position.
This inadequacy is clearly illustrated in Figure 5, which highlights the failure in maintaining
the horizontal position of the platform and its stability.

To overcome this issue, an alternative solution is proposed here and consists of allow-
ing variations in the x and y positions. This solution involves computing the desired angles
at the actuators using Equation (3) by considering the x and y positions at each instant,
while keeping the initial value of the z coordinate constant. Implementing this solution
has proven effective in stabilizing the moving plate, as evidenced by the results presented
in Figure 8.
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In summary, the proposed solution acknowledges that small fluctuations in the x and
y coordinates can be tolerated to some extent. However, it emphasizes the importance of
effectively controlling variations in the z position to ensure the stability of the platform.

Furthermore, with the implementation of the proposed solution, the actual angle θ3
exhibited precise tracking of the newly calculated desired angle θ3d, as clearly demonstrated
in Figure 9.
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Nonetheless, the proposed solution has a minor drawback, which is a slight increase
in variation in the x and y positions compared to the previous approach, as depicted
in Figure 10.
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The results demonstrate that incorporating the resulting x and y positions at each in-
stant in the control strategy yields superior outcomes and effectively resolves the dynamical
issue at hand.
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4. Alternative Solutions for UAV Stabilizing Mechanism
4.1. 3-RRS PM

To achieve a 3-DOF 2R1T (two rotational and one translational) motion [12], an ad-
ditional parallel mechanism known as the 3-RRS mechanism is being considered. This
mechanism consists of a base and a moving plate in the shape of an equilateral triangle.
The angle between joint 1 and joint 2 is set at 120◦ in the horizontal plane, as illustrated
in [13].

To ensure the accuracy of the kinematics and rotation matrices, validation has been
conducted between the formulated results and Simscape. Consequently, the 3-RRS mecha-
nism has been seamlessly integrated into MATLAB without the need for manual kinematics
formulation. The control of the 3-RRS mechanism relies on the angle φ, which is between
the upper plate and the upper arms, which means the motor is assembled upward between
the base plate and arm l1, thereby acting as an active revolute joint, as shown in Figure 11.
This figure depicts the geometric arrangement of one of the kinematic chains of the 3-RRS
parallel mechanism.

φ1 = cos−1


[
(xAi − xBi)

2 + (yAi − yBi)
2 + (zAi − zBi)

2
]
+ l12 − l22

2AB ∗ l1

 (4)

φ2 = cos−1

[
OB2 + AB2 −OA2

2OB ∗ AB

]
(5)

φd = φ1 + φ2 (6)
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Figure 11. Schematic representation of RRS limb.

A Simulink block was implemented to calculate the desired angle φd, which is the
summation of φ1 and φ2 by using the coordinates of point O, the center of the base plate at
each time instant. The scales used in this simulation are D1 = 300 mm, representing the
diameter of the base plate where points Bi are located, and D2 = 240 mm, representing the
diameter of the moving plate on which the coordinates Ai are located. Additionally, the
parameters l1 = 152 mm and l2 = 184 mm are utilized. By applying the proposed control
strategy, remarkable progress was achieved in stabilizing the moving plate, as illustrated
in Figure 12.
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Figure 12. 3D Simulation of the 3-RRS PM when α = β = 20◦ and ∆Z = 0.02 m using the
proposed strategy.

The monitoring of the system has revealed the robustness of the moving plate when
utilizing the proposed strategy. However, it is important to note that this strategy does
introduce a higher variation in the x and y coordinates, which can be attributed to the
distribution of the joints within the 3-RRS PM. Furthermore, to further investigate the effects
of this variation, a similarly scaled 3-SRR/SRU parallel mechanism was implemented. A
comparison of the results for both mechanisms is presented in Figure 13, highlighting the
significant variation observed in the 3-RRS PM.
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4.2. Proposed Mechanism: 3-SRR PM

Through a thorough comparison of the results obtained from the 3-SRR/SRU PM and
the 3-RRS PM, it becomes evident that the positioning of the spherical joint significantly
influences the system’s behavior. Depending on whether the joint is assembled on the
moving plate or the base plate, different outcomes are observed. To further investigate
this aspect, the same mechanism with reversed joint configurations was implemented.
This PM comprises a base and a moving platform in the form of an equilateral trian-
gle. It consists of three identical limbs with SRR kinematic chain structures, offering an
alternative configuration.
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When employing the existing strategy, which is based on fixed coordinates of A,
variations are observed in all directions, including the z directions. However, the imple-
mentation of the proposed strategy proves successful in restoring all the z coordinates of Ai
to their initial positions, although with a slight increase in the x and y coordinates. These
observations are clearly illustrated in Figure 14. The findings highlight the effectiveness
of the proposed strategy in maintaining the desired z-coordinate positions of Ai while
managing the trade-off between variations in the x and y coordinates.
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4.3. Comparison of 3-SRR and 3-SRR/SRU PMs

All three mechanisms have demonstrated robust performance. However, in the case
of the 3-RRS PM, the stabilization of the plate necessitated movement in the x and y
directions in a free manner. Consequently, a comparison was conducted solely between
the translational motion of the moving plate for the 3-SRR/SRU PM and the 3-SRR PM,
both utilizing the proposed strategy. This comparative analysis provides valuable insights
into the effectiveness and characteristics of translational motion for these two mechanisms
under the given strategy.

The translational distance in the 2D plane for each mechanism is calculated using the
Pythagorean theorem:

For the 3-SRR/SRU:

T =
√

X2 + Y2 =
√

242 + 42 = 24.31 mm (7)

For the 3-SRR:

T =
√

X2 + Y2 =
√

7.52 + 152 = 16.77 mm (8)

The analysis of the graphs presented in Figure 15, as well as the calculations based
on Equations (7) and (8), reveal that the 3-SRR PM undergoes a translational motion of
approximately 16.77 mm, while the 3-SRR/SRU PM experiences a translational motion of
around 24.31 mm. It is noteworthy that both mechanisms effectively stabilize the plate in
the z direction.
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These results demonstrate that both mechanisms successfully achieve the desired
goal of plate stabilization, with only a negligible drawback. The 3-SRR PM, with its
lesser translational motion, offers the advantage of easier assembly by avoiding the use of
universal joint assembly. Consequently, for the remainder of the paper, the focus will be on
the utilization and analysis of the 3-SRR mechanism, which proves to be a suitable choice
for the intended purpose.

5. Artificial Neural Network
5.1. Obtaining Design Parameters

In this study, the 3-SRR PM is chosen for UAV stabilization purposes. To meet the
specific requirements of the application, design parameters need to be established. The
M200 V2 DJI drone [33] suggests a maximum tilt angle of 35◦ in S mode. Therefore, the
design parameters will be determined with this constraint in mind. Additionally, the PM
should be capable of operating under vibrations in the heave direction within the range
of −0.02 m to 0.02 m. Assume that D1 = 300 mm, D2 = 240 mm, l2 = 184 mm, and
Z0 = 200 mm.
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A trial-and-error approach is employed using a Simulink block implemented in
MATLAB based on Equation (3). By applying maximum inputs of α = 35◦, β = 35◦,
and ∆Z = 0.02 m, the value of l1 is determined to be l1 = 152 mm, thus achieving the
desired goal.

5.2. Neural Network

PID controllers exhibit a notable limitation in their robustness when encountering
changes in system parameters. As a result, they are unable to achieve perfect stabilization
across various inputs and frequencies, necessitating the need to retune the PID parameters
whenever such changes occur. Therefore, the purpose of this section is to replace the
PID control system with a trained artificial neural network (ANN) and then examine the
system’s responsiveness to various excitations. Initially, the error signal entering the PID
will serve as the input data, while the corresponding output data from the PID will be used
as the target output data for training the ANN. Data collection is performed at different
frequencies and with varying roll-and-pitch angles to capture the system’s behavior under
diverse conditions. It is important to highlight that each run necessitates careful fine tuning
of the PID parameters to achieve the optimal response.

For training the ANN, the Levenberg–Marquardt algorithm is employed, and the
network architecture consists of two layers of feed-forward connections. Figure 16 depicts
a visual representation of network architecture, showcasing a two-layer feed-forward
configuration. This configuration consists of a hidden layer with 10 neurons, characterized
by the sigmoid activation function. The output layer, depicted in Figure 16 as well, employs
a linear activation function with one neuron making it suitable for regression tasks. This
visual representation provides an overview of the structure of the neural network and the
activation functions utilized in each layer. This architecture enables accurate regression for
the desired control tasks. Collected data from the PID is divided into three sets: 70% for
training the neural network, 15% for verification to ensure the legitimacy of the training
data, and the remaining 15% for testing the finalized neural network.
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After training the ANN, it became evident that the regression model achieved a low
regression value R, indicating a poor fit between the predicted and actual values. This
outcome is depicted in Figure 17, where the regression line deviates significantly from
the ideal fit. To further analyze the performance of the trained neural network, the data
were loaded into the regression learner application. Figure 18 illustrates a comparison
between the output of the PID controller and the predictions of the trained neural network
in relation to error e1. It is observed that the neural fitting is unable to accurately follow the
circular shape because of the error’s fluctuation over time.
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This discrepancy indicated a lack of relevant data in the input. To address this, time
data were collected and incorporated into the input as a representation of frequency. The
updated dataset, including the time input, was then loaded into the regression learner
application in MATLAB.

Subsequently, the new data, along with the new added time input, were utilized to
retrain the neural network using the regression learner application. The neural network’s
predicted output exhibited a much-improved fit to the error, even successfully capturing
the peculiar shapes resulting from the inclusion of the time input, as shown in Figure 19.
Notably, the training results showed a significantly higher R-squared value of 0.9 and a
reduced mean-squared error (MSE) of 0.00099, showcasing the enhanced performance of
the revised model.
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Figure 19. Comparison of the PID output and the predicted output of the improved neural network
with respect to error e1.

To integrate the trained model into Simulink, time was added as a column in the input
matrix for each error of the three PID controllers. The trained block was exported from
the neural fitting program to Simulink, where further training was conducted. The data
for neural networks 1, 2, and 3 have predictor responses. The predictors comprised two
columns with 3347 variables representing error and time, while the responses consisted of
a single column with 3347 variables representing the PID output.

Graphs displayed in Figure 20 showcased a perfect fit between the network’s output
and target values for the three controllers, as evidenced by high overall regression R values
of 0.97, 0.995, and 0.9819, respectively.
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5.3. Results from ANN

To assess the performance of the neural network in conjunction with Simscape, the
system was subjected to the maximum tilt angles and vibrations in heave. These tests
were conducted at the maximum tilt angles of the drone and at different frequencies, as
shown in Equations (9)–(11), to evaluate the neural network’s effectiveness across different
operating conditions.

α = 35 sin(2t) (9)

β = 35 sin(3t) (10)

∆Z = 20 (mm) ∗ sin(t) (11)

The results presented in Figures 21 and 22 demonstrate the remarkable achievement
of the trained neural network. It successfully fulfills the mission of achieving perfect



Appl. Sci. 2023, 13, 8740 18 of 20

stabilization across various inputs and frequencies, without the need for retuning the
PID parameters. The neural network’s predictions, based on the extensive dataset pro-
vided during training, enable precise and effective control of the system. This under-
scores the power and efficiency of the neural network approach in achieving robust and
reliable stabilization.
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6. Conclusions and Future Work

In this study, the initial phase involved the validation of the kinematic properties of
the 3-SRR/SRU parallel mechanism using Simscape modeling. Building upon this, an
enhanced control approach was developed by incorporating the dynamical properties of
the mechanism.

A comparative study was conducted by applying the enhanced control method to
other 3-DOF parallel manipulators, namely the 3-RRS and 3-SRR parallel mechanisms, with
the objective of identifying an effective stabilizer for the control of the platform orientation
of unmanned aerial vehicles. Notably, the PID control implemented in this study outper-
formed previously published data, exhibiting precise tracking of the desired output with
minimal delay. Among the three manipulators compared, the 3-SRR mechanism emerged
as the most capable of achieving the desired robust stabilizing outcome. Furthermore,
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the challenge of adjusting PID gains was addressed through the incorporation of artificial
neural networks within the 3-SRR parallel mechanism, showcasing improved controller
precision and stability. Future work entails the experimental implementation of the 3-SRR
parallel manipulator using the validated control strategy.
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