Effect of Multifunctional Adjuvants on Physical and Chemical Features of Spray Liquid and Efficacy in Sugar Beet
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kasahara, T.; Takeuchi, T.; Koyama, K.; Kuzuma, S. Effects of environmental factors on the herbicidal activity and phytotoxicity of ipfencarbazone. J. Pestic. Sci. 2018, 43, 255–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, V.; Kumari, A.; Price, A.J.; Bana, R.S. Impact of futuristic climate variables on weed biology and herbicidal efficacy: A review. Agronomy 2023, 13, 559. [Google Scholar] [CrossRef]
- Chahal, P.S.; Aulakh, J.S.; Rosenbaum, K.; Jhala, A.J. Growth stage affects dose response of selected glyphosate-resistant weeds to premix of 2.4-D choline and glyphosate (Enlist DuoTM herbicide). J. Agr. Sci. 2015, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Duke, S.O.; Kudsk, P.; Solomon, K.R. (Eds.) Pesticide Dose—A Parameters with Many Implications. In Pesticide Dose: Effects on the Environment and Target and Non-Target Organisms; American Chemical Society: Washington, DC, USA, 2017; pp. 101–119. [Google Scholar]
- Zabkiewicz, J.A. Adjuvants and herbicidal efficacy—Present status and future prospects. Weed Res. 2000, 40, 139–149. [Google Scholar] [CrossRef]
- Akhter, M.J.; Abbas, R.N.; Waqas, M.A.; Noor, M.A.; Arhad, M.A.; Mahboob, W.; Nadeen, F.; Azam, M.; Gull, U. Adjuvants improves the efficacy of herbicide for weed management in maize sown under altered sowing methods. J. Exp. Biol. Agri. Sci. 2017, 5, 22–30. [Google Scholar] [CrossRef]
- Green, J.M.; Hale, T. Increasing and decreasing pH enhance the biological activity of nicosulfuron. Weed Technol. 2005, 19, 468–475. [Google Scholar] [CrossRef]
- Roskamp, J.M.; Chahal, G.S.; Johnson, W.G. Influence of water hardness and co-applied herbicides on saflufenacil efficacy. Crop Manag. 2012, 11, 1–8. [Google Scholar] [CrossRef]
- Matzenbacher, F.O.; Vidal, R.A.; Merotto, J.R.A.; Trezzi, M.M. Environmental and physiological factors that affect the efficacy of herbicides that inhibit the enzyme protoporphyrinogen oxidase: A literature review. Plant Daninha 2014, 32, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Congreve, M.; Somervaille, A.; Betts, G.; Gordon, B.; Green, V.; Burgis, M. Adjuvants—Oils, Surfactants and Other Additives for Farm Chemicals Used in Grain Production—Revised 2019 Edition; GRDC: Kingston, Australia, 2019; 48p. [Google Scholar]
- Pacanoski, Z. Herbicides and adjuvants. In Herbicides, Physiology of Action, and Safety; Price, A., Kelton, J., Sarunaite, L., Eds.; InTech: London, UK, 2015; p. 344. [Google Scholar] [CrossRef] [Green Version]
- Rizwan, M.; Tanveer, A.; Khaliq, A.; Abbas, T.; Ikram, N.A. Increased foliar activity of isoproturon + tribenuron and pyroxsulam against little seed canary grass and field bindweed by proper adjuvant selection in wheat. Plant Daninha 2018, 36, e018166733. [Google Scholar] [CrossRef] [Green Version]
- Deveikyte, I.; Seibutis, V.; Feiza, V.; Feiziene, D. Control of annual broadleaf weeds by combinations of herbicides in sugar beet. Zemdirbyste 2015, 102, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Idziak, R.; Woznica, Z. Efficacy of reduced rates of soil-applied dimethenamid-P and pendimethalin mixture followed by postemergence herbicides in maize. Agriculture 2020, 10, 163. [Google Scholar] [CrossRef]
- Godar, A.S.; Varanasi, V.K.; Nakka, S.; Prasad, P.V.V.; Thompson, C.R.; Mithila, J. Physiological and molecular mechanisms of differential sensitivity of Palmer amaranth (Amaranthus palmeri) to mesotrione at varying growth temperatures. PLoS ONE 2015, 10, e0126731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Kumar, M. Climate change’s impacts on weeds and herbicide efficacy: A review. Int. Curr. Microbiol. App. Sci. 2017, 6, 2846–2853. [Google Scholar] [CrossRef]
- Hatterman-Valenti, H.M.; Pitty, A.; Owen, M.D.K. Effect of environment on giant foxtail (Setaria faberi) leaf wax and fluazifop-P absorption. Weed Sci. 2006, 54, 607–614. [Google Scholar] [CrossRef]
- Ramsey, R.J.L.; Stephenson, G.R.; Hall, J.C. A review of the effects of humidity, humectants, and surfactant composition on the absorption and efficacy of highly water-soluble herbicides. Pest. Biochem. Physiol. 2005, 82, 162–175. [Google Scholar] [CrossRef]
- Sellers, B.A.; Smeda, R.J.; Johnson, W.G. Diurnal fluctuations and leaf angle reduce glufosinate efficacy. Weed Technol. 2003, 17, 302–306. [Google Scholar] [CrossRef]
- Xu, L.; Zhu, H.; Ozkan, H.E.; Bagley, W.E.; Derksen, R.C.; Krause, C.R. Adjuvant effects on evaporation time and wetted area of droplets on waxy leaves. Trans. ASABE 2010, 53, 13–20. [Google Scholar] [CrossRef]
- EFSA. Conclusion regarding the peer review of the pesticide risk assessment of the active substance metamitron. EFSA Sci. Rep. 2008, 6, 185r. [Google Scholar] [CrossRef] [Green Version]
- Tomlin, C.D.S. Ethofumesate (26255-79-6). In The E-Pesticide Manual, 13th ed.; Version 3.1.; British Crop Protection Council: Surrey, UK; Alton, Hampshire, 2004. [Google Scholar]
- PubChem. Phenmedipham. Ethofumesate. Metamitron. PubChem National Institutes of Healf (NIH) Database. 2020. Available online: https://pubchem.ncbi.nlm.nih.gov (accessed on 1 February 2022).
- Castro, E.B.; Carbonari, C.A.; Velini, E.D.; Gomes, G.L.G.C.; Belapart, D. Influence of adjuvants on the surface tension, deposition and effectiveness of herbicides on fleabane plants. Planta Daninha 2018, 36, e018166251. [Google Scholar] [CrossRef]
- Sobiech, Ł.; Grzanka, M.; Skrzypczak, G.; Idziak, R.; Włodarczak, S.; Ochowiak, M. Effect of adjuvants and pH adjuster on the efficacy of sulcotrione herbicide. Agronomy 2020, 10, 530. [Google Scholar] [CrossRef] [Green Version]
- Calore, R.; Ferreira, M.C.; Rodrigues, N.E.L.; Otuka, A.K. Effect of herbicides associated with adjuvants in surface tension and contact angle in leaves of Ipomoea hederifolia. Asp. Appl. Biol. 2014, 122, 425–429. [Google Scholar]
- Tavares, R.M.; Cunha, J.P.A.R.d. Pesticide and adjuvant mixture impacts on the physico-chemical properties, droplet spectrum, and absorption of spray applied in sorghum crop. AgriEngineering 2023, 5, 646–659. [Google Scholar] [CrossRef]
- Sasaki, R.S.; Teixeira, M.M.; Santiago, H.; Madureira, R.P.; Maciel, C.F.S.; Fernandes, H.C. Adjuvantes nas propriedades físicas da calda, espectro e eficiência de eletrificação das gotas utilizando a pulverização eletrostática. Ciência Rural. Santa Maria 2015, 45, 274–279. [Google Scholar] [CrossRef] [Green Version]
- Assuncao, H.H.T.; Campos, S.F.B.; Sousa, L.A.; Lemes, E.M.; Zandonadi, C.H.S.; Cunha, J.P.A.R. Adjuvants plus phytosanitary products and the effects on the physical-chemical properties of the spray liquids. Biosci. J. 2019, 35, 1878–1885. [Google Scholar] [CrossRef]
- Staiger, S. Chemical and Physical Nature of the Barrier against Active Ingredient Penetration into Leaves: Effects of Adjuvants on the Cuticular Diffusion Barrier. Ph.D. Thesis, Julius-Maximilians-Universtität Würzburg, Würzburg, Germany, 2019; p. 185. [Google Scholar]
- Krawczyk, R.; Kaczmarek, S.; Kierzek, R. Technologia uprawy buraka cukrowego z zastosowaniem mikrodawek herbicydów w zrównoważonym rolnictwie. Fragm. Agron. 2007, 3, 252–257. [Google Scholar]
- Idziak, R.; Sobiech, Ł.; Woźnica, Z.; Skrzypczak, G. Biodiversity of weed flora in sugar beet. Prog. Plant Prot. 2012, 52, 1170–1176. [Google Scholar]
- Woźnica, Z.; Idziak, R.; Waniorek, W. Effect of adjuvant on possibility of herbicide rate reduction for weed control in sugar beet. Fragm. Agron. 2007, 4, 261–266. [Google Scholar]
- Alebrahim, M.T.; Majd, R.; Rashed Mohassel, M.H.; Wilcockson, S.; Baghestani, M.A.; Ghorbani, R.; Kudsk, P. Evaluation the efficacy of pre- and post-emergence herbicides for controlling Amaranthus retroflexus L. and Chenopodium album L. in potato. Crop Prot. 2012, 42, 345–350. [Google Scholar] [CrossRef]
- Underwood, A.K. Adjuvant trends for the new millennium. Weed Technol. 2000, 14, 765–772. [Google Scholar] [CrossRef]
- Abbas, N.; Tanveer, A.; Ahmad, T.; Amin, M. Use of adjuvants to optimize the activity of two broad-spectrum herbicides for weed control in wheat. Planta Daninha 2018, 36, e018174762. [Google Scholar] [CrossRef] [Green Version]
2017 | 2018 | 2019 | |
---|---|---|---|
Field experiment | the randomized complete block design | ||
Replications | 4 | ||
Plot size, m (area) | 2.7 × 10 m (27 m−2) | ||
Previous crop | winter barley | winter barley | winter triticale |
Sugar beet variety | Gellert | Piast | Piast |
Planting date | 20 April | 13 April | 9 April |
Planting density, no. ha−1 | 120,000 | ||
Row space | 45 cm | ||
Planting depth, cm | 2.5 | ||
Type of soil and soil composition, % | loamy sand | ||
sand | 64 | 64 | 64 |
clay | 14 | 15 | 15 |
silt | 26 | 21 | 21 |
Organic matter, % | 1.4 | 1.7 | 1.7 |
pH | 6.8 | 7.3 | 7.2 |
Herbicide | Trade Name | Rates | |
Recommended | Reduced | ||
g ai ha−1 | |||
Phenmedipham a + ethofumesate Metamitron b | Powertwin 400 SC, Adama Polska | 200 | 140 |
+200 | +140 | ||
Goltix 700 SC, Adama Polska | 700 | 700 | |
(FEM 1) | (FEM 2) | ||
Adjuvant | Adjuvant type | Rate L ha−1 | Abbreviation |
Adjuvant 1 | rapeseed oil methyl esters of fatty acids, | 1.5 | EXP 1 |
surfactants, pH buffer, drift reducing agent | |||
Adjuvant 2 | rapeseed oil methyl esters of fatty acids, | 1.5 | EXP 2 |
surfactants, pH buffer, drift reducing agent | |||
Adjuvant 3 | oil formulation, emulsifier, pH buffer | 1.5 | EXP 3 |
Adjuvant 4 | rapeseed oil methyl esters of fatty acids, | 1.5 | AtB |
surfactants, pH buffer | |||
Adjuvant 5 | organosilicone surfactant | 0.1% v v−1 | S |
Years | Date of Treatment | Temperature (°C) | RH (%) | Temperature Range FWAT (°C) |
---|---|---|---|---|
2017 | 11 May | 17.0 | 60 | 9.6–16.5 |
19 May | 19.0 | 60 | 12.2–21.9 | |
26 May | 20.0 | 70 | 13.5–22.1 | |
2018 | 27 April | 15.0 | 80 | 9.7–19.0 |
7 May | 15.0 | 68 | 15.4–19.4 | |
14 May | 18.0 | 70 | 13.6–17.3 | |
2019 | 26 April | 17.0 | 58 | 9.5–19.9 |
7 May | 12.0 | 60 | 7.8–12.0 | |
20 May | 20.0 | 75 | 13.1–17.7 |
No. | Treatment | EC (µS cm−1) | ST (mN m−1) | CA (°) | pH |
---|---|---|---|---|---|
1. | Untreated (water) | 794 a | 70.1 a | 108.9 a | 6.94 e |
2. | FEM 1 | 787 a | 47.0 bc | 83.9 b | 7.30 cde |
3. | FEM 2 | 736 b | 48.0 b | 77.6 c | 7.48 abcd |
4. | +EXP 1 | 724 b | 35.4 def | 65.8 ef | 7.73 ab |
5. | +EXP 2 | 776 a | 43.6 bcd | 58.7 g | 7.64 abc |
6. | +EXP 3 | 771 a | 39.9 bcd | 69.1 de | 7.71 ab |
7. | +AtB | 737 b | 35.6 def | 51.9 h | 7.54 abcd |
8. | +S | 725 b | 29.1 ef | 51.1 h | 7.47 abcd |
Water | |||||
9. | +EXP 1 | 602 c | 34.7 def | 67.5 e | 7.79 a |
10. | +EXP 2 | 597 c | 37.0 cdef | 66.4 e | 7.81 a |
11. | +EXP 3 | 453 d | 35.4 def | 72.1 d | 7.36 bcd |
12. | +AtB | 616 c | 38.5 bcde | 62.4 f | 7.22 de |
13. | +S | 617 c | 27.7 f | 52.4 h | 7.49 abcd |
CV | 1.75 | 13.4 | 2.26 | 2.34 | |
Fc | 428.5 | 24.3 | 619.9 | 12.3 | |
W | 0.972 | 0.825 | 0.971 | 0.992 | |
FLevene | 0.416 | 2.137 | 0.667 | 1.398 |
pH | ST | CA | |||||||
---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2019 | 2017 | 2018 | 2019 | 2017 | 2018 | 2019 | |
Efficacy 2017 | 0.2452 | - | - | −0.5973 * | - | - | −0.6748 * | - | - |
Efficacy 2018 | - | 0.3495 | - | - | −0.3726 | - | - | −0.4122 * | - |
Efficacy 2019 | - | - | 0.0499 | - | - | −0.4412 * | - | - | −0.4074 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Idziak, R.; Sobczak, A.; Waligóra, H.; Szulc, P.; Majchrzak, L. Effect of Multifunctional Adjuvants on Physical and Chemical Features of Spray Liquid and Efficacy in Sugar Beet. Appl. Sci. 2023, 13, 8768. https://doi.org/10.3390/app13158768
Idziak R, Sobczak A, Waligóra H, Szulc P, Majchrzak L. Effect of Multifunctional Adjuvants on Physical and Chemical Features of Spray Liquid and Efficacy in Sugar Beet. Applied Sciences. 2023; 13(15):8768. https://doi.org/10.3390/app13158768
Chicago/Turabian StyleIdziak, Robert, Angelika Sobczak, Hubert Waligóra, Piotr Szulc, and Leszek Majchrzak. 2023. "Effect of Multifunctional Adjuvants on Physical and Chemical Features of Spray Liquid and Efficacy in Sugar Beet" Applied Sciences 13, no. 15: 8768. https://doi.org/10.3390/app13158768
APA StyleIdziak, R., Sobczak, A., Waligóra, H., Szulc, P., & Majchrzak, L. (2023). Effect of Multifunctional Adjuvants on Physical and Chemical Features of Spray Liquid and Efficacy in Sugar Beet. Applied Sciences, 13(15), 8768. https://doi.org/10.3390/app13158768