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Abstract: This paper investigates the robust fusion estimation problem for multi-sensor systems with
communication constraints, parameter uncertainty, d-step state delays, and deterministic control
inputs. The multi-sensor system consists of a fusion center and some sensor nodes with computational
capabilities, between which there are random packet drops. The state augmentation method is utilized
to transform a time-delay system into a non-time-delay one. The robust state estimation algorithm is
derived based on the sensitivity penalty for each sensor node to reduce the impact of modelling errors,
and modelling errors here are not limited to a unique form, which implies that the fusion estimator
applies to a wide range of situations. An event-triggered transmission strategy has been adopted to
effectively alleviate the communication burden from the sensor node to the fusion center. Moreover,
the fusion estimator handles packet drops arising from unreliable channels, and the corresponding
pseudo-cross-covariance matrix is provided. Some conditions are given to ensure that the estimation
error of the robust fusion estimator is uniformly bounded. Two sets of numerical simulations are
provided to illustrate the effectiveness of the derived fusion estimator.

Keywords: multi-sensor systems; robust fusion estimation; event-triggered; random packet drops;
d-step state delay; deterministic control inputs

1. Introduction

In the last decade, sensor systems have been extensively studied in path planning [1],
environmental monitoring [2], motor control [3], and trajectory tracking [4,5], and so on.
In multi-sensor systems, the accuracy and stability of the system are improved due to
the joint data collection by multiple sensors. However, the impact of sensor failures or
network attacks in the channel may lead to data transmission time-delay and random packet
drops [6,7]. Therefore, the investigation of multi-sensor systems is of great importance.

Data processing in multi-sensor systems is performed in the form of fusion, and basic
fusion methods include centralized [8,9] and distributed [10,11]. Centralized is ideally
optimal, but when the number of sensors is large, fusion center data processing may be in-
feasible [12,13]. In contrast, the suboptimal distributed structure is more stable. As research
goes further, adding an event-triggered transmission strategy to the system can reduce
the energy consumption of sensors and decrease the communication burden. Ref. [14]
proposed a distributed event-triggered policy in which the subsystem only broadcasts state
information to neighboring nodes when the local state error exceeds a specified threshold.
Ref. [15] proposed a data-driven transmission strategy based minimizing the volume of
the non-transmission area. Ref. [16] proposed a trigger decision based on the estimated
variance, where a copy of the Kalman filter is run at the sensor node, and its measurement
is transmitted only when the measurement prediction variance exceeds a certain threshold.
The event-triggered transmission strategy in [17] is based on a threshold-based strategy,
where the event generator transmits a state measurement only when a signal exceeds a
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threshold value. A stochastic–deterministic dynamic event-triggered condition is proposed
in [18].

At the same time, the treatment of time-delay problems of systems has received much
attention [19]. The linear matrix inequality (LMI) [20,21] and partial differential equation
(PDE) [22,23] methods are also commonly used in the time-delay treatment of systems.
The state augmentation method in [24] converts time-delay systems into non-time-delay
systems with excellent results. The method in [24] was used in [25] for a multi-sensor
system, but random packet drop was not considered.

State estimation is a pivotal research domain within industrial automation. Conse-
quently, numerous estimation algorithms have been formulated, encompassing the likes
of the Kalman filter, Wiener filter, and other notable methodologies. In the system mod-
eling process, modelling errors are inevitable, so the estimator performance must have
no sudden changes when the system parameters reasonably deviate from their nominal
parameters [26]. Those with this property are called robust state estimators, and many
research methods are available [27–30]. A framework based on regularized least squares
(RLS) is proposed in [27], but the modelling errors are restricted to a specific form. A filter
that compromises the nominal performance and uncertainty robustness is proposed in [28].
A robust state estimator based on sensitivity penalty is proposed in [29], which is not
limited to structure-specific modelling errors. In addition, a robust state estimator based
on the expectation minimization of estimation error is proposed in [30]. The study [31]
presents an error estimator, which can be easily implemented in the code. Therefore, it is
significant to employ robust state estimators in multi-sensor systems.

In this paper, we investigated the problem of robust fusion estimation for multi-sensor
systems with uncertainty, restricted communication, random packet drops, state delay, and
deterministic control inputs. A robust state estimator based on state augmentation and
sensitivity penalty is used at the local scale. An analytic expression for the robust fusion
estimator is derived based on event-triggered, and the pseudo-cross-covariance matrix of
the fusion centers is updated. The consistent boundedness of the estimation error is proved.
Several simulations verify the effectiveness of the fusion estimator.

The rest of this paper is briefly described below. The problem description and a
brief description of the event-triggered transmission strategy are given in Section 2. A
robust fusion estimator for multi-sensor systems with state delays, deterministic control
inputs, random packet drops, and communication constraints is derived in Section 3. The
boundedness of the fusion estimator is studied in Section 4. Several sets of simulations are
analyzed in Section 5. Section 6 concludes the paper.

2. Problem Formulation and Some Preliminaries

Consider the following discrete-time uncertain linear stochastic system with determin-
istic inputs and d-steps state delay{

xk+1 = A1,k(εk)xk + A2,k(εk)xk−d + B1,k(εk)uk + B2,k(εk)wk

yi
k = Ci

k(εk)xk + gi
k, 1 ≤ i ≤ L, k ≥ 0

(1)

where k represents the discrete-time and i represents the sensor label. Furthermore, xk
is the state, yi

k is the measurement, wk represents the process noise, uk is the determin-
istic control input, and gi

k is the compound effect of measurement and communication
errors. The following assumptions need to be made to guarantee the fitness of the state
estimation problem.
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(a) wk and gi
k are normally distributed with white noise, x0, wk, and gi

k are mutually
independent random variables.

E(wk) = 0, E
(

gi
k
)
= 0,

E

 x0 − E(x0)
wk
gi

k

(∗)T

 =

 Π0
Qkδkj

Ri
kδkj

,

where Π0 , Qk, and Ri
k are known positive definite matrices and δkj denotes the Kronecker

symbolic function.
(b) The elements in the matrices A1,k(εk), A2,k(εk), B1,k(εk), B2,k(εk) and Ci

k(εk) are
known differentiable functions of the modelling errors, and the modelling errors εk consist
of l mutually independent real-valued scalar bounded uncertainties εk,j, j = 1, ..., l.

In the process of transmitting the measurement value Y from the sensor node to the
fusion center, the channel may experience packet drops. A random variable r is defined to
indicate the success or failure of the communication between the sensor node and the fusion
center, taking the value of 1 for the successful transmission and 0 when the communication
channel fails.

The aim of this paper is to develop a fusion algorithm based on local estimates from
each sensor node for multi-sensor systems with parameter uncertainty, state delay, random
packet drops, and communication rate limitations. To balance communication cost and
estimation performance, an event-triggered transmission strategy like in [15] is used in
this paper.

Consider the following measurement channel

Y = Hφ + g

where Y ∈ Rm is the measurement output, h ∈ Rm×n is the measurement matrix of the
system, φ ∈ Rn represents the state, and g ∈ Rm represents the measurement noise. A
binary variable is denoted by t, and when t = 1 indicates that the sensor node sends
a measurement Y and the other way around. The specific form of the event-triggered
transmission strategy is as follows.

ti
k =

{
0, Y− Ỹ ∈ Ξ,

1, others ,

in which Ỹ ∈ Rm and Ξ ∈ Rm are measurable sets. Generally, the center of mass of Ξ is at
the origin, that is,

∫
Ξ ϕdϕ = 0. Note that the decision transmission in the event-triggered

transmission strategy is actually when the difference between the measured value and the
determined measured value is greater than a threshold value.

The transmission rate, ai ∈ (0, 1) for each sensor node is derived by
limτ→∞

1
τ ∑τ

k=1E
{

ti
k
}
= ai. In addition, for any given desired transmission rate ai, a thresh-

old Ξ can be easily determined.
Based on Lemma 1 in [15], a virtual measure Y = Ỹ = Hε + g− v is now defined,

where it is uniformly distributed over, and is independent of, X and g. Suppose, fφ(x) =
N(x; x̄, Ωx), fG(g) = N

(
g; 0, Ωg

)
, fY(y) = N

(
y; Hx̄, Ωy

)
where Ωy = Ωg + HΩx HT . Thus,

the optimal transmission strategy is derived as

‖Y− Hx̄‖2
Ω−1 ≥ θ,

where θ = γ−1
m (1− a). The random variable ‖Y−Hx̄‖2

Ω−1 obeys the chi-square distribution
with a degree of freedom m where γm is the chi-square distribution function with a degree
of freedom m.
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Remark 1. The considered multi-sensor system is shown in Figure 1. Each sensor node has state
estimation performance with a state delay. Each sensor sends its local state estimate to the fusion
center through an unreliable communication channel. All local estimates are fused with data at the
fusion center through the best linear unbiased estimation criterion.

Figure 1. Block diagram of the multi-sensor system with state delay.

3. The Robust Fusion Estimation Procedure

Taking into account the impact of modelling errors on estimation performance, we
adopt a robust state estimation algorithm based on sensitivity penalization [29] to obtain
local estimates for multi-sensor systems. A design parameter γi

k, 0 < γi
k < 1, is defined

to compromise between nominal estimation performance and performance deterioration
due to modelling errors. Derived from the foundation of the Kalman filter, this robust
state estimation algorithm utilizes sensitivity penalization of model uncertainty estimation
errors. It shares a similar form and comparable computational complexity with the standard
Kalman filter. When γi

k = 1, this estimator degenerates to the standard Kalman filter.
By introducing the augmentation matrix X and augmenting the original system (1)

with states, the system becomes{
Xk+1 = Āk(εk)Xk + B̄1,k(εk)uk + B̄2,k(εk)wk,

yi
k = C̄i

k(εk)Xk + vi
k, 1 ≤ i ≤ L, k ≥ 0,

(2)

in which,

Āk(εk) =


A1,k(εk) 0n×n · · · 0n×n A2,k(εk)

In 0n×n
In 0n×n

. . .
...

In 0n×n

,

B̄1,k(εk) =
[
(B1,k(εk))

T 0T
n×dn

]T
,

B̄2,k(εk) =
[
(B2,k(εk))

T 0T
n×dn

]T
,

C̄i
k(εk) =

[
Ci

k(εk) 0n×dn
]
.

As can be seen from the above transformation, the re-modeled system is a discrete linear
uncertain system without state delay. Following the transformation of the system model
from (1) to (2), it is evident that the system matrix dimension changes from n to n(d + 1).

Remark 2. In this paper, the system is considered only for constant state delays. Based on the state
augmentation method, only the system matrix, input (control) matrix, and output matrix of the
system need to be changed. The method transforms the original system into a non-time-delay system,
but the system dimension will increase from the original n to n(n + d). The state augmentation
method is simple and suitable when the delay step is low because the computational burden will
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increase when it is significant. However, the time delay step is generally manageable in practical
production so the problem could be more influential.

To obtain the locally robust state estimate for the i−th sensor node, we first define
several important matrices Si

k, Ti
1,K, and Ti

2,K, which play a key role in the parameter
modification process, as follows:

Si
k =

[(
Si

k,1(0, 0)
)T

, · · · ,
(

Si
k,l(0, 0)

)T
]T

,

Ti
1,k =

[(
Ti

1,k,1(0, 0)
)T

, · · · ,
(

Ti
1,k,l(0, 0)

)T
]T

,

Ti
2,k =

[(
Ti

2,k,1(0, 0)
)T

, · · · ,
(

Ti
2,k,l(0, 0)

)T
]T

,

Si
k,j(εk, εk+1) =

 ∂̄Ci
k+1(εk+1)

∂εk+1,j
Āk(εk)

C̄i
k+1(εk+1)

∂Āk(εk)
∂εk,j

,

Ti
1,k,j(εk, εk+1) =

 ∂C̄i
k+1(εk+1)

∂εk+1,j
B̄1,k(εk)

C̄i
k+1(εk+1)

∂B̄1,k(εk)
∂εk,j

,

Ti
2,k,j(εk, εk+1) =

 ∂C̄i
k+1(εk+1)

∂εk+1,j
B̄2,k(εk)

C̄i
k+1(εk+1)

∂B̄2,k(εk)
∂εk,j

,

j = 1, 2, · · · , l.

Let µi
k =

1−γi
k

γi
k

. The detailed realization of the robust state estimation algorithm based

on sensitivity penalty is given in Algorithm 1.

Here Pi
k|k and P̂i

k|k are the pseudo-covariance matrices because P̂i
k|k 6= E

{(
Xk −

X̂i
k|k
)T(Xk − X̂i

k|k
)}

and Pi
k|k 6= E

{(
Xk − X̂i

k|k
)T(Xk − X̂i

k|k
)}

.
Based on the event-triggered transmission strategy in the second part, whether each

sensor node sends a local state estimate to the fusion center is determined by ti
k. The

transmission strategy mentioned above can be expressed as

ti
k =

0,
∥∥∥X̂i

k|k − X̄i
k|k

∥∥∥2

Ωi
k

≤ θi,

1, others .
(3)

In order to guarantee the transmission rate ai, the vector X̄i
k|k, the positive definite

weight coefficient matrix Ωi
k, and the positive real numbers θi must be chosen appropriately.

X̂i
k|k is the local state estimate.

Notice that each local state estimate can be interpreted as a measurement yi
k of the true

state Xk collected through the virtual measurement channel defined as

Yi
k = X̂i

k|k = Xk +
(
X̂i

k|k − Xk
)

(4)

where the estimation error X̂i
k|k − Xk can be regarded as virtual measurement noise.
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Algorithm 1: The local robust state estimation based on sensitivity penalty (Appendix A)

1 Initialization:Pi
0|0 =

 (
C̄i

0(0)
)T(

Ri
0

)−1
C̄i

0(0)

+
(
Π̂i

0
)−1

−1

, X̂i
0|0 = Pi

0|0

(
C̄i

0(0)
)T(

Ri
0

)−1
yi

0, in

which Π̂i
0 =

(
Π−1

0 + µi
0 ∑l

j=1

(
∂(C̄i

0(ε0))
T

∂ε0,j

)(
∂C̄i

0(ε0)
∂ε0,j

)∣∣∣∣
ε0=0

)−1

;

2 Set design parameters γi
k;

3 for k = 1→ n do
4 ( a) Replace Ti

1,k, Ti
2,k, Āi

k(0), B̄i
1,k(0), B̄i

2,k(0), Pi
k|k, Qk by:

(
P̂i

k|k
)−1

=
(

Pi
k|k
)−1

+ µi
k

(
Si

k

)T
Si

k,

T̂i
2,k = Ti

2,k − µi
kSi

k P̂i
k|k

(
Si

k

)T
Ti

2,k,

B̂i
2,k(0) = B̄2,k(0)− µi

k Āk(0)P̂i
k|k

(
Si

k

)T
Ti

2,k,

(
Q̂i

k
)−1

=
(
Qk
)−1

+ µi
k

(
Ti

2,k

)T
(

I + µi
kSi

kPi
k|k

(
Si

k

)T
)−1

Ti
2,k,

Âi
k(0) =

(
Āk(0)− µi

k B̂i
2,k(0)Q̂

i
k

(
Ti

2,k

)T
Si

k

)(
I − µi

k P̂i
k|k

(
Si

k

)T
Si

k

)
,

B̂i
1,k(0) = B̄1,k(0)− µi

k

(
Āk(0)P̂i

k|k

(
Si

k

)T
+ B̂i

2,k(0)Q̂
i
k

(
Ti

2,k

)T
)

Ti
1,k;

5 ( b) Update the priori pseudo-covariance and pseudo-covariance matrix:

Pi
k+1|k = Āk(0)P̂i

k|k ĀT
k (0) + B̂i

2,k(0)Q̂
i
k
(

B̂i
2,k(0)

)T ,

Pi
k+1|k+1 =Pi

k+1|k − Pi
k+1|k

(
C̄i

k+1(0)
)T
(

Ri
k+1 + C̄i

k+1(0)Pi
k+1|k

(
C̄i

k+1(0)
)T
)−1

× C̄i
k+1(0)Pi

k+1|k;

6 ( c) Update the state of the local estimation:

X̂i
k+1|k+1 =Âi

k(0)X̂i
k|k + B̂i

1,k(0)uk + Pi
k+1|k+1

(
C̄i

k+1(0)
)T(

Ri
k+1

)−1

×
[
yi

k+1 − C̄i
k+1(0)

(
Âi

k(0)X̂i
k|k + B̂i

1,k(0)uk
)]

.

Now, considering only the event-triggered transmission strategy, (4) corresponds to
the measurements received by the fusion center from sensor node i, that is, ti

k = 1. When
sensor data are not transmitted, (4) will be replaced by

Yi
k = X̃i

k|k = Xk +
(
X̂i

k|k − Xk
)
− vi

k . (5)

Here, vi
k is uniformly distributed within the ellipsoid mentioned in (3) and is not

correlated with the estimation error X̂i
k|k − Xk.

According to the event-triggered transmission strategy, when there are packet drops in
the communication channel from the estimator to the fusion center, the virtual measurement
channel can be replaced with

Yi
k =


X̂i

k|k, ti
k = 1, ri

k = 1
X̂i

k|k−1, ti
k = 1, ri

k = 0
X̃i

k|k, ti
k = 0

(6)
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where ri
k is explicitly utilized in (6) to indicate whether packet drop occurs in sensor

transmission to the fusion center and ri
k = {0, 1}. The state of the multi-sensor system is

shown in Table 1. For simplicity, the event-triggered is abbreviated as ET, and the success
of the transmission is simplified as PD. The X̂i

k|k−1 in (6) is the predicted values of the i-th

sensor node for moment k. ηi
k is the virtual measurement noise of the i-th virtual channel

for moment k, which can be derived by

X̂i
k|k−1 = Âi

k−1X̂i
k−1|k−1 + B̂i

1,k−1uk−1,

ηi
k =


X̂i

k|k − Xk, ti
k = 1, ri

k = 1,

X̂i
k|k−1 − Xk, ti

k = 1, ri
k = 0,

X̂i
k|k − Xk − gi

k, ti
k = 0.

(7)

Table 1. Multi-sensor system state.

PD
ET ti

k = 0 ti
k = 1

ri
k = 0 No transmission Packet drop

ri
k = 1 - Normal

The fusion estimation with both random packet drops and event-triggered transmis-
sion strategies is investigated, and the following matrices are defined as

Yk = col
{

ti
k

(
ri

kX̂i
k|k +

(
1− ri

k

)
X̂i

k|k−1

)
+
(

1− ti
k

)
X̃i

k|k

∣∣∣l
i=1

}
,

ηk = col
{(

ti
kri

k +
(

1− ti
k

))(
X̂i

k|k − Xk
)∣∣∣l

i=1

}
+ col

{
ti
k

(
1− ri

k

)(
X̂i

k|k−1 − Xk
)∣∣∣l

i=1

}
+ col

{(
1− ti

k

)
gi

k

∣∣∣∣l
i=1

}
,

H = col
(

Ii
∣∣∣l
i=1

)
.

(8)

The information in the fusion center is obtained from the virtual measurement channel

Yk = HXk + ηk.

In accordance with the best linear unbiased criterion (BLUE) in [32], we can obtain the
fusion estimate and its error covariance matrix.

X̂k|k =
(

HT P̃−1
k H

)−1
HT P̃−1

k Yk,

Pk =
(

HT P̃−1
k H

)−1
.

(9)

In (9), P̃k is the covariance matrix of the virtual measurement noise, which is the global
error covariance matrix of the estimation error. From ηk in (8), the expression of P̃k can be
obtained as

P̃k = Γk +diag
{(

1− ti
k

)
θi

n+2
(
Ωi

k
)−1 |li=1

}
, (10)
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in which Γk = Γk,1 + Γk,2 + ΓT
k,2 + Γk,3. The matrices Γk,1, Γk,2, and Γk,3 in the formula are

equal to

Γk,1 =


(

σ1
1,k

)2
P1,1

k|k · · · σ1
1,kσl

1,kP1,l
k|k

...
. . .

...

σl
1,kσ1

1,kPl,1
k|k · · ·

(
σl

1,k

)2
Pl,l

k|k

,

Γk,2 =


0 · · · σ1

1,kσl
2,k P̄1,l

k|k−1
...

. . .
...

σl
1,kσ1

2,k P̄l,1
k|k−1 · · · 0

,

Γk,3 =


(

σ1
2,k

)2
P1,1

k|k−1 · · · σ1
2,kσl

2,kP1,l
k|k−1

...
. . .

...

σl
2,kσ1

2,kPl,1
k|k−1 · · ·

(
σl

2,k

)2
Pl,l

k|k−1

,

σi
1,k =

(
ti
kri

k +
(

1− ti
k

))
, σi

2,k = ti
k

(
1− ri

k

)
.

(11)

Then, we consider the state estimation errors of the following dynamic system.{
Xk+1 = Âi

kXk + B̂i
1,kuk + B̂i

2,kwk,

yi
k = C̄i

kXk + gi
k, 1 ≤ i ≤ l.

(12)

The following relationships can be easily obtained

Xk+1−X̂i
k+1|k+1 =

[
I + Pi

k+1|k

(
C̄i

k+1

)T (
Ri

k+1

)−1
C̄i

k+1

]−1

×
[

Âi
k
(
Xk−X̂i

k|k
)
+ B̂i

2,k wk

]
−
[(

Pi
k+1|k

)−1
+
(

C̄i
k+1

)T (
Ri

k+1

)−1
C̄i

k+1

]−1

×
(

C̄i
k+1

)T (
Ri

k+1

)−1
vi

k+1,

Xk+1−X̂i
k+1|k = Âi

k
(
Xk − X̂i

k|k
)
+ B̂i

2,k wk .

(13)

According to the above equation, the explicit expressions for the three pseudo mutual
covariance matrices Pi,j

k+1|k+1, P̄i,j
k+1|k, and Pi,j

k+1|k in (11) can be derived as follows

Pi,j
k+1|k+1 =

 I − Pi
k+1|k

(
C̄i

k+1

)T

×
(

C̄i
k+1Pi

k+1|k

(
C̄i

k+1

)T
+ Ri

k+1

)−1
C̄i

k+1


×
[

Âi
kPi,j

k|k
(

Âj
k
)T

+ B̂i
2,kQk

(
B̂j

2,k
)T
]

×

 I − Pj
k+1|k

(
C̄j

k+1

)T

×
(

C̄j
k+1Pj

k+1|k
(
C̄j

k+1

)T
+ Rj

k+1

)−1
C̄j

k+1

T

, (i 6= j)

P̄i,j
k+1|k =

(
I + Pi

k+1|k

(
C̄i

k+1

)T(
Ri

k+1

)−1
C̄i

k+1

)−1

×
[

Âi
kPi,j

k|k
(

Âj
k
)T

+ B̂i
2,kQk

(
B̂j

2,k
)T
]
,
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Pi,j
k+1|k =Âi

kPi,j
k|k
(

Âj
k
)T

+ B̂i
2,kQk

(
B̂j

2,k
)T ,

Pi,i
k+1|k+1 =

 I − Pi
k+1|k

(
C̄i

k+1

)T

×
(

C̄i
k+1Pi

k+1|k

(
C̄i

k+1

)T
+ Ri

k+1

)−1
C̄i

k+1


×
[

Âi
k Pi,i

k|k
(

Âi
k
)T

+ B̂i
2,k Qk

(
B̂i

2,k
)T]

×

 I − Pi
k+1|k

(
C̄i

k+1

)T

×
(

C̄i
k+1Pi

k+1|k

(
C̄i

k+1

)T
+ Ri

k+1

)−1
C̄i

k+1


T

+


(

C̄i
k+1

)T(
Ri

k+1

)−1
C̄i

k+1

+
(

Pi
k+1|k

)−1


−1(

C̄i
k+1

)T(
Ri

k+1

)−1

×C̄i
k+1



(

C̄i
k+1

)T(
Ri

k+1

)−1
C̄i

k+1

+
(

Pi
k+1|k

)−1


−1


T

,

in which Pi,i
k+1|k = Pi

k+1|k, i, j = 1, · · · , N. Pi
k+1|k+1 is a pseudo-covariance matrix in robust

state estimation. Thus, there is Pi,i
k+1|k+1 6= Pi

k+1|k+1.

4. Some Properties of the Fusion Estimator

This section has the goal of investigating the steady-state properties of event-triggered
robust fusion estimators for multi-sensor systems with deterministic inputs, random packet
drops, and state delays. Assume that the modelling errors εk,j in this section are within the

set E , E =
{

ε|
∣∣∣εk,j

∣∣∣ ≤ 1, j = 1, 2, · · · , l }. The matrices
[

A1,k(0) 0n×n(d−1) A2,k(0)
Ind 0nd×n

]
,[

B2,k(0)
0n×dn

]
, and

[
Ci

k(0) 0m×dn
]

are denoted as Mk, Fk, and Oi
k, respectively. In addition,

the following assumptions need to be made.
(A) A1,k(0), A2,k(0), B1,k(0), B2,k(0), Ci

k(0), Ri
k, Qk, Si

k, Ti
1,k, Ti

2,k, and γi
k are time-invariant.

(B) The uncertain linear system of (1) is exponentially stable in the sense of Lya-
punov and the matrices A1,k(εk), A2,k(εk), B1,k(εk), B2,k(εk), Ci

k(εk), Πk, Ri
k, Qk are bounded

whenever k > 0 and εk ∈ E .
(C) For every sensor node,

(
Mk, Ni

k
)

is detectable and the following matrix pair
is detectable

MT
k − λi

k
(
Si

k
)T
(

In(d+1) + λi
kTi

2,kQk

(
Ti

2,k

)T
)−1

Ti
2,kQk(Fk)

T

(
In(d+1) + λi

kQ
1
2
k

(
Ti

2,k

)T
Ti

2,kQ
1
2
k

)− 1
2
Q

1
2
k (Fk)

T


T

,

where Ni
k =

 (
Ri

k
)− 1

2 Oi
k√

λi
kSi

k

.

Theorem 1 ([15]). Suppose that Assumptions (A), (B), and (C) hold and that each sensor transmits
local estimate X̂i

k|k according to the event-triggered transmission strategy. If the weight matrix Ωi
k

of the sensor node satisfies the condition

Ωi
k ≥ ωi I (14)
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for some positive real number ωi, the estimation error Xk−X̂k|k is consistently bounded for any

possible choice of
{

X̃i
k|k, k ∈ Z+

}
, which means

lim
k→∞

sup E
{∥∥∥Xk−X̂k|k

∥∥∥2
}

< +∞.

Proof of Theorem 1. Let X̄k|k be the estimate obtained at time k through Ȳk instead of Yk,

Ȳk = col
{

σi
1,kX̂i

k|k + σi
2,kX̂i

k|k−1

∣∣∣l
i=1

}
, which gives

X̂k|k = X̄k|k +
(

HT P̃−1
k H

)−1
HT P̃−1

k
(
Yk− Ȳk

)
,

so we have
E
{∥∥Xk − X̂k|k

∥∥2
}
≤ 2E

{∥∥Xk − X̄k|k
∥∥2
}

+2
∥∥∥(HT P̃−1

k H
)−1

HT P̃−1
k

∥∥∥2

×E
{∥∥Yk − Ȳk

∥∥2
}

.

(15)

Taking into account the first term on the right-hand side in (15), since X̄k|k is based on
the vector ȳk, the following inequality can be obtained

E
{∥∥∥Xk−X̄k|k

∥∥∥2
}
≤ tr

(
HT P̃−1

k H
)−1

. (16)

According to Assumptions (A), (B), and (C), then Pi,i
k|k is convergent, and P̄i,j

k|k−1(i 6= j)

and Pi,i
k|k−1 are also convergent [33]. The estimation error has a bounded covariance matrix

at each k. This indicates that Γk is converged, and the estimation error covariance matrix
is bounded.

From the inequality condition in Theorem 1 and the remainder of P̃k, we can obtain

tr
((

1− ti
k

)
θi

n + 2

(
Ωi

k

)−1
)
=
(

1− ti
k

)
θi

n + 2
tr
((

Ωi
k

)−1
)

≤
(

1− ti
k

)
θi

(n + 2)ωi .
(17)

Hence, the uniform boundedness of E
{∥∥∥Xk − X̄k|k

∥∥∥2
}

can be obtained by (16). Now

it is only necessary to prove that the second part of the right-hand side of inequality (15) is
uniform boundedness. Under the inequality condition in Theorem 1, it can be obtained as∥∥∥X̂i

k|k − X̄i
k|k

∥∥∥2

Ωi
k

≥ ωi
∥∥∥X̂i

k|k − X̄i
k|k

∥∥∥2
. (18)

When ti
k = 0, it means that there is

∥∥X̂i
k|k − X̄i

k|k
∥∥2

Ωi
k
≤ θi. Furthermore, it can be ob-

tained that
∥∥X̂i

k|k − X̄i
k|k
∥∥2 ≤ θi / ωi, then

∥∥Yk−Ȳk
∥∥2 ≤ Σl

i=1 θi / ωi. The proof is done.

To minimize the volume of the non-transported region, X̄i
k|k and Ωi

k can be appropri-
ately denoted as

X̄i
k|k= X̂i

k|k−1=Âi
k−1 X̂i

k−1|k−1,

Ωi
k =

(
1

tr
(

P̃i
k|k−1

) P̃i
k|k−1

)−1

,
(19)
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in which P̃i
k|k−1 = Āk−1


σi

1,k−1Pi,i
k−1|k−1

+σi
2,k−1Pi

k−1|k−2

+
(

1− ti
k−1

)
θi

n+2

(
Ωi

k−1

)−1

 (Āk−1
)T

+ B̂i
2,k−1 Q̂i

k−1

(
B̂i

2,k−1

)T .

Two methods exist for determining the local prediction of Xk as per (19). The first method
utilized in this paper is a local estimation based on sensor nodes. This fusion estimation
method does not necessitate broadcasting but requires each sensor node to retain past
information. The second method is based on the k− 1 moment fusion estimation X̂k−1|k−1.

5. Numerical Simulations

This section cites the tractor–car system detailed in [34], shown in Figure 2, and ex-
tends it to a multi-sensor system for sample simulations. The performance of the derived
robust fusion estimator is demonstrated through comparison with the fusion estimator for
the Kalman filter based on actual and nominal parameters using the same fusion method
across two distinct sets of numerical simulations with modelling errors (fixed or not) and
varying transmission rates and packet drop rates. This numerical simulation consists of
two sensors. For each set, 500 time experiments were conducted, with 200 moments desig-
nated for each set, generating 200 input–output data pairs. In the simulations, the overall

average estimated error variance E
∥∥∥Xk − X̂k|k

∥∥∥2
≈ 1

500 ∑500
f=1

∥∥Xk − X̂( f )
k|k
∥∥2 is computed for

each moment, and the implementation of event-triggered and occurrence of packet drops
are displayed.

Figure 2. The tractor–car system.

Since the vehicle steering and directional angles in the tractor-car system are nonlinear,
they can be linearized and expressed as



x1
k+1 =

(
1.0000− vk

L

)
x1

k +

(
vk
L
− 0.2296

)
x1

k−d +

(
0.1764 +

vk
L

)
x2

k

+

(
0.1764 +

vk
L

)
x2

k−d +

(
0.9804 +

vk
L

)
w1

k +

(
0.9804 +

vk
L

)
u1

k ,

x2
k+1 =

(
1.0000− vk

L

)
x2

k +

(
vk
L
− 0.2296

)
x2

k−d +

(
0.9804 +

vk
L

)
w2

k

+

(
0.9804 +

vk
L

)
u2

k ,

(20)

in which x1
k , x2

k , uk, wk, x1
k−d, and x2

k−d are the direction angle of the tractor, the direction
angle of the car, the tractor steering angle, the process noise, d-step time-delay for state
1, and d-step time-delay for state 2, respectively. xk is the state vector, xk =

[
x1

k x2
k
]T .

L, k, and v denote the length of the tractor, the sampling period, and the constant speed,
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respectively. Considering the system errors at linearization in the form of modelling errors
εk substituted into the system model, the matrix parameters are obtained as

A1,k(εk) =

[
1.0000− vk

L 0.1764 + vk
L + εk

0.0000 1.0000− vk
L

]
,

A2,k(εk) =

[ vk
L − 0.2296 0.1764 + vk

L + εk
0.0000 vk

L − 0.2296

]
,

B1,k(εk) =

[
0.9804 + vk

L 0.0000
0.0000 0.9804 + vk

L

]
,

B2,k(εk) =

[
0.9804 + vk

L 0.0000
0.0000 0.9804 + vk

L

]
.

(21)

In the numerical simulation, each parameter is taken as L = 500 cm, k = 0.1 s, and
v = 98 cm/s, and a two-step state delay system was used. The matrix parameters are
as follows

A1,k(εk) =

[
0.9804 0.196 + 1.99εk
0.0000 0.9804

]
, A2,k(εk) =

[
−0.2100 0.196 + 1.99εk
0.0000 −0.2100

]
,

B1,k(εk) =

[
1.0000 0.0000
0.0000 1.0000

]
, B2,k(εk) =

[
1.0000 0.0000
0.0000 1.0000

]
,

C1
k (εk) =

[
1.0000 −1.0000

]
, C2

k (εk) =
[

0.4000 −0.5000
]
,

R1
k = 1.0000, R2

k = 1.0000,

Qk =

[
1.9608 0.0195
0.0195 1.9605

]
, Π0 =

[
1.0000 0.0000
0.0000 1.0000

]
, uk =

[
1.0000
0.1000

]
.

The packet drop process ri
k is assumed to be a stationary Bernoulli process. A constant

value of 0.7300 is assigned to the filter design parameter γi
k.

In Case 1, the modeling errors εk are assumed to be a fixed value of −0.8508. The
transmission and packet drop rates for both sensors are set to 0.8 and 0.2, respectively.
Figure 3a illustrates the fusion estimation error over time, demonstrating that the robust
fusion estimator proposed in this study outperforms the fusion estimator for the Kalman
filter based on nominal parameters by approximately 7.800 dB. Figure 3b,c depict the
transmission of the two sensors and the packet drops of the communication channel,
respectively. To clearly reflect the execution of the event-triggered, ti

k is inverted, and ri
k is

treated similarly. Note that the plots of event-triggered realizations and packet drops here
are from one of the 500 experiments used.

The modelling errors εk are generated randomly and independently, conforming to a
normal distribution with a truncation. The mean, standard variance, and truncation values
of the normal distribution are set to 0.0000, 1.0000, and 1.0000, respectively. Figure 4a
illustrates that the derived estimator surpasses the performance of the Kalman filter based
on nominal parameters, and it can be seen from the 200th moment that the estimator
derived in this paper is 5.8600 (dB) lower than the nominal parameter-based Kalman filter.
Figure 4b,c show the realization of the sensor transmission and the channel packet drop
over 200 moments, respectively.
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Figure 3. ···∗···: the fusion estimator for the Kalman filter based on actual parameters; ···×···: the
fusion estimator for the Kalman filter based on nominal parameters; —©—: the method of this
paper; �: sensor 1;©: sensor 2. Data transmission rate: 0.8. Packet drop rate: 0.2. Modelling errors
εk = −0.8508.

In Case 2, the derived robust fusion estimator is tested using different transmission
and packet drop rates. The modelling errors are the same as in Case 1 with a truncated
normal distribution. Based on the analysis of Figure 5, it is evident that the derived
estimator exhibits effective and reliable operation even under diverse transmission rates
generated by the employed event-triggered transmission strategy. However, variations
in transmission rates give rise to disparities in estimation performance, a well-studied
phenomenon. This can be attributed to the fact that higher transmission rates are associated
with improved estimator performance. As the transmission rate increases, the fusion center
receives a greater volume of estimation values, thereby leading to more accurate results.
A reasonable analysis of Figure 6 demonstrates that the derived estimator effectively
maintains its reliability even under diverse packet drop rates. Nonetheless, differing packet
drop rates introduce disparities in estimation performance, which is a valid observation.
Higher packet drop rates correspond to inferior estimation performance. When compared
to Figure 5, it is apparent that the variation in estimation performance is greater for different
packet drop rates than for different transmission rates.

As can be seen from the two sets of simulations, the proposed robust fusion estima-
tor exhibits relatively better performance compared to the fusion estimator that ignores
uncertainty. The derived robust fusion estimator is still applicable when the selection of
modelling errors is not limited to the particular structure. The results show that the method
is an effective multi-sensor fusion method in practical applications.
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Figure 4. ···∗···: the fusion estimator for the Kalman filter based on actual parameters; ···×···: the
fusion estimator for the Kalman filter based on nominal parameters; —©—: the method of this paper;
�: sensor 1;©: sensor 2. Transmission rate: 0.8. Packet drop rate: 0.2. The modelling errors εk are
taken to a normal distribution with truncations.
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Figure 5. —◦—: transmission rate 0.4; —∗—: transmission rate 0.8. Packet drop rate: 0.2. The
modelling errors εk are taken to a normal distribution with truncations.
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Figure 6. —◦—: packet drop rate 0.8; —∗—: packet drop rate 0.4. Transmission rate: 0.2. The
modelling errors εk are taken to a normal distribution with truncations.

6. Conclusions

In this paper, the effects of deterministic inputs and state delays present in the system
are considered based on the study of robust fusion estimators for multi-sensor systems with
uncertainty, random packet drops, and transmission constraints. The main contribution
of this paper is the derivation of a robust fusion estimator for multi-sensor systems with
state delays and external inputs, which penalizes the sensitivity of estimation errors to
model uncertainty while minimizing nominal estimation errors and their sensitivity. Model
conversion is performed utilizing the state augmentation technique. The event-triggered
transmission strategy and the random packet drops generated by channel unreliability
are considered. The pseudo-cross-covariance matrix is updated accordingly. This paper
delivers robust proof of the fusion estimator of estimation errors being uniformly bounded.
Two sets of numerical simulations are executed to illustrate the practical implications of the
proposed method, using a tractor–car system as a demonstrative example. The numerical
simulation results show that the estimation performance of the updated estimator is better
than the fusion estimator for the Kalman filter based on nominal parameters. Since the
modelling errors are not restricted to a specific structure, the proposed fusion estimator
has a wide range of applicability. In addition, follow-up work on the tractor–car system
example is still in progress, and the further stage is to apply the algorithm designed in this
investigation to a practical case.
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Abbreviations
The following abbreviations are used in this manuscript:

col[∗] The stacking vector or matrix
E[∗] The mathematical expectation
f [∗] The probability density function
MT The stacking vector or matrix
N(·; σ, Ω) The notation for the Gaussian probability density function with mean σ and covariance Ω
tr[∗] The trace of the matrix

Appendix A. Derivation of Robust State Estimation

In order to reduce the sensitivity of the estimation performance to the modelling error,
the following cost function can therefore be minimized

J
(

αi
k

)
=γi

k

[∥∥∥αi
k

∥∥∥2

Φi
k

+
∥∥∥Hi

k(0, 0)αi
k − βi

k(0, 0)
∥∥∥2

Ψi
k

]

+
(

1− γi
k

) l

∑
j=1

∥∥∥∥∥∂ei
k(εk, εk+1)

∂εk,j

∥∥∥∥∥
2

+

∥∥∥∥∥∂ei
k(εk, εk+1)

∂εk+1,j

∥∥∥∥∥
2


εk=0
εk+1=0

,

in which Ψi
k =

(
Ri

k+1

)−1
, Hi

k(εk, εk+1) = C̄i
k+1(εk+1)[Āk(εk) B̄2,k(εk)], βi

k(εk, εk+1) =

yi
k+1 − C̄i

k+1(εk+1)
(

Āk(εk)X̂i
k|k + B̄1,k(εk)uk

)
, Φi

k = diag
{(

Pi
k|k

)−1
, Q−1

i

}
, αi

k = col{Xk−

X̂i
k|k, wk}, ei

k(εk, εk+1) = yi
k+1− C̄i

k+1(εk+1)
(

Āk(εk)X̂i
k|k + B̄1,k(εk)uk

)
− C̄i

k+1(εk+1)[Āk(εk)

B̄2,k(εk)]α
i
k.

From Φi
k and Ψi

k , J
(
αi

k
)

is a strictly convex function when 0 < γi
k ≤ 1. Letting

δJ(αi
k)

δαi
k

= 0, the global unique minimum is obtained

(
Φi

k +
(

Hi
k(0, 0)

)T
Ψi

k Hi
k(0, 0) +

1− γi
k

γi
k

[
Si

k Ti
2,k

]T[
Si

k Ti
2,k

])
αi

k,opt =

(
Hi

k(0, 0)
)T

Ψi
kβi

k(0, 0)−
1− γi

k
γi

k

[
Si

k Ti
2,k

]T(
Si

kX̂i
k|k + Ti

1,kuk

)
.

(A1)

The initial state X0 is estimated such that ei
0(ε0) = yi

0− C̄i
0(ε0)X0 and the cost function

is J
(
αi

0
)
= γi

0

[
‖X0‖2

Π−1
0

+
∥∥yi

0 − C̄i
0(ε0)X0

∥∥2
(Ri

0)
−1

]
+
(
1− γi

0
)

∑l
j=1

(∥∥∥∥ ∂ei
0(ε0)

∂ε0,j

∥∥∥∥2
)

ε0=0

.

The following initial state estimate and initial estimation error covariance matrix can
be obtained

Pi
0|0 =

( (
C̄i

0(0)
)T(Ri

0
)−1C̄i

0(0)
+
(
Π̂i

0
)−1

)−1

,

X̂i
0|0 = Pi

0|0
(
C̄i

0(0)
)T(Ri

0
)−1yi

0,

in which Π̂i
0 =

(
Π−1

0 + µi
0 ∑l

j=1

(
∂(C̄i

0(ε0))
T

∂ε0,j

)(
∂C̄i

0(ε0)
∂ε0,j

)∣∣∣∣
ε0=0

)−1

.

Define Ĥi
k, T̂i

2,k, X̃i
k|k+1, αi

k,opt,
(

P̂i
k|k

)−1
, and

(
Q̂i

k
)−1 as Ci

k+1(0)
[

Āk(0)B̂i
2,k(0)

]
,

Ti
2,k − µi

kSi
k P̂i

k|k
(
Si

k
)TTi

2,k, X̂i
k|k+1 + µi

k P̂i
k|k
(
Si

k
)TTi

2,kŵk|k+1, col
{

X̂i
k|k+1 − X̂i

k|k, ŵk|k+1

}
, and(

Pi
k|k

)−1
+ µi

k
(
Si

k
)TSi

k, (Qk)
−1 + µi

k

(
Ti

2,k

)T(
I + µi

kSi
kPi

k|k
(
Si

k
)T
)−1

Ti
2,k.
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It is known by the following algebraic relation (
Pi

k|k

)−1
0

0 Q−1
i

+ µi
k

[
Si

k Ti
2,k

]T[
Si

k Ti
2,k

]
=

[
I 0

µi
k

(
Ti

2,k

)T
Si

k P̂i
k|k I

] (
P̂i

k|k

)−1
0

0
(
Q̂i

k
)−1

[ I µi
k P̂i

k|k
(
Si

k
)TTi

2,k
0 I

]
.

Substituting the above equation into (A1) and multiplying equation (A1) left by, it gives

[
I 0

µi
k

(
Ti

2,k

)T
Si

k P̂i
k|k I

]−1 (
Pi

k|k

)−1
0

0 Q−1
k

+
(

Hi
k(0, 0)

)TΨi
k Hi

k(0, 0)

+µi
k

 (
Si

k
)T(

Ti
2,k

)T

[ Si
k Ti

2,k

]αi
k,opt

=

[
I 0

−µi
k

(
Ti

2,k

)T
Si

k P̂i
k|k I

](Hi
k(0, 0)

)TΨi
kβi

k(0, 0)− µi
k

 (
Si

k
)T(

Ti
2,k

)T

(Si
kX̂i

k|k + Ti
1,kuk

),


 (

P̂i
k|k

)−1
0

0
(
Q̂i

k
)−1

+

[
ĀT

k (0)

−µi
k

(
Ti

2,k

)T
Si

k P̂i
k|k ĀT

k (0) + B̄T
2,k(0)

](
Ci

k+1(0)
)T

Ψi
k

×Ci
k+1(0)

[
Āk(0) −µi

k Āk(0)P̂i
k|k
(
Si

k
)TTi

2,k + B̄2,k(0)
] )

×

 X̂i
k|k+1 + µi

k P̂i
k|k
(
Si

k
)T
(

Ti
2,k

)T
ŵk|k+1 − X̂i

k|k
ŵk|k+1

 =

[
ĀT

k (0)

−µi
k

(
Ti

2,k

)T
Si

k P̂i
k|k ĀT

k (0) + B̄T
2,k(0)

](
Ci

k+1(0)
)T

Ψi
k

[
yi

k+1 − Ci
k+1(0)

(
Āk(0)X̂i

k|k + B̄1,k(0)uk

)]
−µi

k

 (
Si

k
)T

−µi
k

(
Ti

2,k

)T
Si

k P̂i
k|k
(
Si

k
)T

+
(

Ti
2,k

)T

(Si
kX̂i

k|k + Ti
1,kuk

)
.

(A2)

Defining B̂T
2,k(0),T̂

i
2,k, and X̃i

k|k as B̂i
2,k(0) = B̄2,k(0) − µi

k Āk(0)P̂i
k|k
(
Si

k
)TTi

2,k, T̂i
2,k =

Ti
2,k − µi

kSi
k P̂i

k|k
(
Si

k
)TTi

2,k, and X̂i
k|k+1 + µi

k P̂i
k|k
(
Si

k
)TTi

2,kŵk|k+1, respectively, to simplify (A2),
we can obtain (

P̂i
k|k

)−1
0

0
(
Q̂i

k
)−1

+
(

Ĥi
k

)T
Ψi

k Ĥi
k

[ X̃i
k|k+1 − X̂i

k|k
ŵk|k+1

]
=

(
Ĥi

k

)T
Ψi

k

[
yi

k+1 − Ci
k+1(0)

(
Āk(0)X̂i

k|k + B̄1,k(0)uk

)]
− µi

k

 (
Si

k
)T(

Ti
2,k

)T

(Si
kX̂i

k|k + Ti
1,kuk

)
.

(A3)



Appl. Sci. 2023, 13, 8778 18 of 20

From (A3), we have

X̃i
k,k+1 =X̂i

k|k + P̂i
k|k ĀT

k (0)
(

Ci
k+1(0)

)T(
Ri

k+1

)−1

×
[
yi

k+1 − Ci
k+1(0)

(
B̄1,k(0)uk + Āk(0)X̃i

k|k+1 + B̂i
2,k(0)ŵk|k+1

)]
− µi

k P̂i
k|k

(
Si

k

)T(
Si

kX̂i
k|k + Ti

1,kuk

)
ŵk|k+1 =Q̂i

k

(
B̂i

2,k(0)
)T(

Ci
k+1(0)

)T(
Ri

k+1

)−1

×
[
yi

k+1 − Ci
k+1(0)

(
B̄1,k(0)uk + Āk(0)X̃i

k|k+1 + B̂i
2,k(0)ŵk|k+1

)]
− µi

kQ̂i
k

(
T̂i

2,k

)T(
Si

kX̂i
k|k + Ti

1,kuk

)

. (A4)

Define the variable X̃i
k+1|k+1 = Āk(0)X̃i

k|k+1 + B̂i
2,k(0)ŵk|k+1 + B̄1,k(0)uk. Bringing (A4)

into X̃i
k+1|k+1, we obtain

X̃i
k+1|k+1 = B̄1,k(0)uk + Āk(0)X̃i

k|k +

(
Āk(0)P̂i

k|k ĀT
k (0) + B̂i

2,k(0)Q̂
i
k

(
B̂i

2,k(0)
)T
)

×
(

Ci
k+1(0)

)T(
Ri

k+1

)−1[
yi

k+1 − Ci
k+1(0)X̂i

k+1|k+1

]
− µi

k

[
Āk(0)P̂i

k|k

(
Si

k

)T
+ B̂i

2,k(0)Q̂
i
k

(
Ti

2,k

)T
](

Si
kX̂i

k|k + Ti
1,kuk

)
.

(A5)

Letting Pi
k+1|k = Āk(0)P̂i

k|k ĀT
k (0) + B̂i

2,k(0)Q̂
i
k
(

B̂i
2,k(0)

)T , (A5) can be transformed into
the form of (A6)(

I + Pi
k+1|k

(
Ci

k+1(0)
)T(

Ri
k+1

)−1
Ci

k+1(0)
)

X̃i
k+1|k+1 = B̄1,k(0)uk + Āk(0)X̂i

k|k

+ Pi
k+1|k

(
Ci

k+1(0)
)T(

Ri
k+1

)−1
yi

k+1 − µi
k

[
Āk(0)P̂i

k|k

(
Si

k

)T
+ B̂i

2,k(0)Q̂
i
k

(
Ti

2,k

)T
](

Si
kX̂i

k|k + Ti
1,kuk

)
.

(A6)

According to the matrix inverse lemma (A+ BCD)−1 = A−1−A−1B
(

DA−1B + C−1)−1

DA−1, the following procedure can be obtained

Pi
k+1|k+1 = Pi

k+1|k − Pi
k+1|k

(
C̄i

k+1(0)
)T
(

Ri
k+1 + C̄i

k+1(0)Pi
k+1|k

(
C̄i

k+1(0)
)T
)−1

C̄i
k+1(0)Pi

k+1|k.

(A6) can be changed to(
I + Pi

k+1|k

(
Ci

k+1(0)
)T(

Ri
k+1

)−1
Ci

k+1(0)
)

X̃i
k+1|k+1

=

[
B̄1,k(0)− µi

k

[
Āk(0)P̂i

k|k
(
Si

k
)T

+ B̂i
2,k(0)Q̂

i
k

(
Ti

2,k

)T
]

Ti
1,k

]
uk

+

[
Āk(0)− µi

k

[
Āk(0)P̂i

k|k
(
Si

k
)T

+ B̂i
2,k(0)Q̂

i
k

(
Ti

2,k

)T
]

Si
k

]
X̂i

k|k

+Pi
k+1|k

(
Ci

k+1(0)
)T(

Ri
k+1

)−1
yi

k+1.

Thus, the matrices Âi
k(0) and B̂i

1,k(0) can be defined as

Âi
k(0) =

(
Āk(0)− µi

k B̂i
2,k(0)Q̂

i
k

(
Ti

2,k

)T
Si

k

)(
I − µi

k P̂i
k|k
(
Si

k
)TSi

k

)
,

B̂i
1,k(0) = B̄1,k(0)− µi

k

(
Āk(0)P̂i

k|k
(
Si

k
)T

+ B̂i
2,k(0)Q̂

i
k

(
Ti

2,k

)T
)

Ti
1,k.
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Thus (A5) can be simplified as

X̃i
k+1|k+1 = Âi

k(0)X̂i
k|k + B̂i

1,k(0)uk + Pi
k+1|k+1

(
C̄i

k+1(0)
)T(

Ri
k+1

)−1

×
[
yi

k+1 − C̄i
k+1(0)

(
Âi

k(0)X̂i
k|k + B̂i

1,k(0)uk

)]
.

(A7)

(A7) is similar to the form described in [29], so that X̃i
k+1|k+1 can be specified as

X̂i
k+1|k+1.

The derivation is complete.
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