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Abstract: The symmetrical fissures located within the surrounding rock of the roadway (borehole)
in tunnel engineering activities can easily induce damage and instability of the surrounding rock.
Therefore, studying the impact of perforated symmetrical fissures on the mechanical properties of rock
with a hole has significant practical significance. Based on indoor experimental results, conventional
triaxial compression simulations were performed on symmetrical fissure-hole sandstone using PFC2D.
The impact of the dip angle and length of symmetric fissures on the mechanical properties of the
hole-containing sandstone was analyzed. Furthermore, the relationship between crack propagation
and the macroscopic mechanical properties of the specimen was discussed. The results show that:
(1) The deterioration effect of symmetric fissures on hole-containing sandstone can be controlled by
increasing the fissure dip angle, suppressing the stress drop phenomenon. However, increasing the
fissure length exacerbates the deterioration effect. (2) The effect of symmetrical fissure dip angle
on the displacement field near the hole decreases with increasing dip angle while increasing fissure
length exacerbates the effect of fissures on the displacement field. (3) As the angle between the
fissure and the vertical principal stress increases, the degree of tensile failure weakens while the
degree of shear failure increases. (4) During the crack development phase, the extension of the stress
concentration zone drives rapid crack growth. It exhibits a stress drop in the macroscopic mechanical
properties, followed by the evolution of the stress field with loading, allowing rapid expansion of the
microcracks and eventually leading to rock destabilization damage.

Keywords: symmetric fissures; hole; mechanical properties; particle flow simulation

1. Introduction

Defects, including fissures, holes, and joints of various sizes and types, are frequently
observed within the surrounding rock of roadways (boreholes) during tunnel engineering
activities. The spatial distribution and geometry of these defects significantly impact the
mechanical properties of the roadway’s surrounding rock [1,2]. Extensive research con-
ducted by scholars both domestically and internationally has demonstrated that defects
play a pivotal role in inducing damage to the surrounding rock of roadways [3–5]. To
enhance the control effectiveness of the roadway’s surrounding rock-containing defects,
it is imperative to understand the influence mechanisms of different defect forms on the
mechanical properties and damage modes of rock masses containing boreholes. Conse-
quently, researchers have comprehensively investigated the mechanical behavior, damage
evolution, and crack propagation characteristics of rock masses featuring holes, fissures,
and other defects (in this paper, the term “fissure” is used to denote a pre-existing crevice
defect in the rock, and the term “crack” is used to denote cracks and damages that occur
during loading).

In indoor experiments, the literature [6–13] explores rock samples’ mechanical prop-
erties and crack propagation characteristics with prefabricated fissures or holes under
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compression loading. Yang [14] investigated the mechanical properties of sandstone with
holes and fissures in uniaxial compression and found that the strength of the sandstone
was affected by hole diameter and defect symmetry. Modiriasari [15] monitored the crack-
ing behavior of specimens using digital image correlation (DIC) and acoustic emission.
Zhu [16] introduced a combination defect of circular holes and single fissures within a
sandstone slab. They discovered that the strength parameters of the combined defective
sandstone under uniaxial compression decreased as the dip and length of the fissure in-
creased. Several researchers have conducted numerical simulations to understand the
mechanical behavior of rock masses containing defects such as fissures, holes, and joints.
Li [17] used the granular flow program PFC2D (Particle Flow Code 2D) to simulate uniaxial
compression for sandstones with hole-type trident fissures. Their study revealed that the
fissure length had the most significant effect on the peak strength of rock samples with this
type of defect. Aliabadian [18] investigated the applicability of DIC and the granular flow
model (Bonded Particle Model) to the mechanical behavior of natural rock masses contain-
ing defects. They found that the Bonded Particle Model (BPM) accurately simulated the
location of crack initiation and the type of agglomeration detected by DIC. Sharafisafa [19]
compared the effectiveness of DEM (Discrete Element Method) and XFEM (Extended Finite
Element Method) in simulating crack sprouting and extension in jointed rock masses. Their
research showed that DEM could simulate all cracks during rock fracture, while XFEM
could only simulate wing cracks (a crack pattern that extends outward in an arch on both
sides of the crack). Wang [20] and Yao [21] performed uniaxial compression numerical
simulations of rock masses containing defects of different morphologies and types using
PFC2D, demonstrating that the fissure angle could alter the specimen’s internal stress field,
affecting the rock mass’s mechanical properties.

The synthesis of previous studies reveals that numerous authors have conducted
in-depth discussions on the geometric form and spatial distribution of fissures surround-
ing boreholes, including aspects such as the number, length, angle, and distance of these
fissures. However, there is a relative scarcity of systematic investigations focusing on the
impact of perforated symmetrical fissures on rock masses containing boreholes, despite
observations of near-symmetrical perforated fissures during engineering practice, as de-
picted in Figure 1. Furthermore, in conventional triaxial compression tests, particle flow
simulation exhibits tremendous advantages in identifying crack types and monitoring the
sequential extension of cracks compared to indoor tests. Building upon these insights, a
perforated symmetric fissures-hole model is constructed by simplifying the morphology of
near-symmetric perforated fissures. Subsequently, the effect of this perforated symmetric
fissure morphology on the mechanical properties of sandstone-containing boreholes is
primarily examined through numerical simulations of the particle flow process.
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This paper initiates with uniaxial compression tests conducted on perforated symmetric
fissures-hole sandstones. Subsequently, microscopic parameters were calibrated based on
the results obtained from the indoor tests [22]. The reasonableness of these microscopic
parameters was further verified by comparing damage modes. Building upon this foundation,
a simulation study employing conventional triaxial compression was carried out on sandstone
specimens featuring fissures of varying dip angles and lengths using PFC2D. The investigation
focused on analyzing the mechanical properties, damage modes, and crack propagation
characteristics of hole-containing sandstone under the influence of perforated symmetric
fissures, with a view to providing some reference values for related projects.

2. Construction of a Numerical Model of Particle Flow
2.1. Introduction to Particle Flow Code Simulation Methods

Particle Flow Code 5.0 (PFC 5.0) is an essential discrete element numerical simulation
software developed by ITASCA, Itasca, IL, USA [23]. It has been extensively utilized
to study fundamental problems such as rock-like materials’ basic mechanical properties,
particulate matter’s dynamic responses, and fracture development. The macroscopic
mechanical behavior of materials in PFC is determined by the type of contact between
particles and their variation characteristics.

The Linear model, as implemented in the PFC, represents the fundamental contact
model in rock mechanics. It characterizes the mechanical behavior of contact surfaces
through parallel spring and damper elements. However, it should be noted that the Linear
model solely facilitates the transfer of forces (F) and does not account for moments (M).
The Linearpbond model (Linear Bond Model), which is one of the common granular
models in PFC, was developed within the PFC framework to address this limitation. By
incorporating bonding capabilities into the Linear model, the Linearpbond model enables
the transmission of both forces (F) and moments (M), as depicted in Figure 2. In this model,
the bonding elements and spring elements are parallel to each other, and the maximum
normal stress (σmax) and shear stress (τmax) around the parallel bond in the two-dimensional
plane are defined as [24]:

σmax ← Fn/A + MbR/I (1)

τmax ← Fs/A (2)

Fn ← Fn + kn A∆δn (3)

Fs ← Fs + ks A∆δs (4)

Mb ← Mb + kb∆θb (5)

R = λmin(R1, R2) (6)

I =
2
3

λ
3

(7)

where A is the area, Fn is the normal force, Fs is the shear force, Mb is the bending moment,
R is the bond radius, I is the moment of inertia of the parallel bond cross-section, kn, and
ks are the normal and shear stiffnesses, respectively, ∆δb and ∆δs are the displacement
increments in the normal and tangential directions respectively, R1 and R2 are the particle
radius, ∆θb is the contact angle, and λ is the radius factor.
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The strength properties of the parallel bond adhere to the Moore-Coulomb criterion.
When the forces (F) or moments (M) exerted on the contact surfaces attain their maximum
strength, the bond undergoes failure, causing the Linearpbond model to transition from
a bonded state to an unbonded state. Notably, in its unbonded state, the Linearpbond
model aligns completely with the Linear model [25]. The linear parallel bond contact model
represents the parallel bond as a bonding material characterized by constant stiffness
(both normal and shear) and strength between two particles. This model is commonly
utilized to simulate the discontinuous deformation of rock formations. Previous studies
conducted on rock materials using the Particle Flow Code (PFC) have demonstrated
that employing a linear parallel bond contact model between particles yields a more
accurate representation of rocks’ mechanical properties and particulate media’s dynamic
response [26,27]. Consequently, this paper adopts the linear parallel bond contact model
for the numerical simulation of particle flow.

2.2. Model Building

In order to investigate the effect of symmetrical fissure dip angle and length on the me-
chanical properties of hole-containing sandstones under conventional triaxial compression,
a two-dimensional numerical model of particle flow was established with the standard
cylindrical specimen (50 mm × 100 mm) longitudinal cross-sectional dimensions, and
defects in the model were achieved by deleting particles, as shown in Figure 3. Symmetrical
fissures of differing lengths and dip angles were prefabricated in the model and penetrated
a single circular hole located at the model’s center. The settings for some of the model
parameters are presented in Table 1. Four walls were generated around the model, while σ1
was loaded axially for the top and bottom loading walls, and σ3 was loaded transversely
for the left and right servo walls. The loading method was displacement-controlled, with a
loading rate of 0.02 mm/s. The axial loading pressure is set to stop when it is reduced to
70% of the peak strength of conventional compression, and a total of 29 different working
conditions are simulated.

Table 1. Model parameters.

Parameters Numerical Values

Number of particles 11137
Hole diameter (d) 10 mm

Fissure width 0.8 mm
Fissure length (2a) 0 mm,4 mm,8 mm,12 mm,16 mm

Fissure dip angle (α) 0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦



Appl. Sci. 2023, 13, 8780 5 of 16Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 17 
 

 
Figure 3. Model settings and linear parallel bond model. 

Table 1. Model parameters. 

Parameters Numerical Values 
Number of particles 11137 
Hole diameter (d) 10 mm 

Fissure width 0.8 mm 
Fissure length (2a) 0 mm,4 mm,8 mm,12 mm,16 mm 

Fissure dip angle (α) 0°,15°,30°,45°,60°,75°,90° 

3. Calibration and Verification of Model Mesoscopic Parameters 
3.1. Calibration of Mesoscopic Parameters 

Accurate numerical simulations require the precise determination of microscopic pa-
rameters. In the Particle Flow Code 2D (PFC2D), the mesoscopic parameters of the linear 
parallel bond contact model encompass particle parameters and bonding parameters. The 
particle parameters primarily comprise the particle size range, particle size ratio 
(Rmax/Rmin), particle density (ρ), particle stiffness ratio (k), radius factor (�̅�), particle dissipa-
tion energy (Damp), particle friction coefficient (µ) and particle Young’s modulus (E). On 
the other hand, the critical microscopic parameters pertaining to parallel bonding include 
the bond strength (pb_σt), bond stiffness ratio (pb_k), bond Young’s modulus (pb_E), and 
bond cohesion (c) [28]. The primary difference between the uniaxial compression in 
PFC2D and conventional triaxial compression lies in whether or not the left and right 
servo walls are required to provide the surrounding pressure. However, the microscopic 
parameters in the linear parallel bond model serve mainly for specimen formation and 
rock bonding, which are partially the same in uniaxial and conventional triaxial compres-
sion. Therefore, uniaxial compression indoor tests and simulations were carried out for 
perforated symmetrical fissure-hole sandstone specimens tested at α = 15°, 45° and 75°. 
By systematically adjusting the microscopic parameters based on the macroscopic me-
chanical responses observed during indoor experiments [22], a set of microscopic param-
eters that accurately reflect the mechanical behavior of the selected perforated symmet-
rical fracture-hole sandstone specimens was obtained. This iterative process ensured that 
the simulated behavior closely matched the experimental results, enhancing the fidelity 
of the numerical modeling approach. 

The sandstone specimens loaded indoors were taken from Pingdingshan City, Henan 
Province, China, and consisted mainly of two minerals, quartz, and feldspar, and some 
geomechanical characteristics of the intact sandstone specimens are shown in Table 2. The 
specimens were brittle, and the holes were machined to a small size to prevent damage to 
the specimens during hole processing, and the size parameters of each defect are shown 
in Table 3. The indoor test system is shown in Figure 4. Uniaxial compression tests were 

Figure 3. Model settings and linear parallel bond model.

3. Calibration and Verification of Model Mesoscopic Parameters
3.1. Calibration of Mesoscopic Parameters

Accurate numerical simulations require the precise determination of microscopic
parameters. In the Particle Flow Code 2D (PFC2D), the mesoscopic parameters of the
linear parallel bond contact model encompass particle parameters and bonding param-
eters. The particle parameters primarily comprise the particle size range, particle size
ratio (Rmax/Rmin), particle density (ρ), particle stiffness ratio (k), radius factor (λ), particle
dissipation energy (Damp), particle friction coefficient (µ) and particle Young’s modulus
(E). On the other hand, the critical microscopic parameters pertaining to parallel bonding
include the bond strength (pb_σt), bond stiffness ratio (pb_k), bond Young’s modulus (pb_E),
and bond cohesion (c) [28]. The primary difference between the uniaxial compression
in PFC2D and conventional triaxial compression lies in whether or not the left and right
servo walls are required to provide the surrounding pressure. However, the microscopic
parameters in the linear parallel bond model serve mainly for specimen formation and
rock bonding, which are partially the same in uniaxial and conventional triaxial compres-
sion. Therefore, uniaxial compression indoor tests and simulations were carried out for
perforated symmetrical fissure-hole sandstone specimens tested at α = 15◦, 45◦ and 75◦. By
systematically adjusting the microscopic parameters based on the macroscopic mechanical
responses observed during indoor experiments [22], a set of microscopic parameters that
accurately reflect the mechanical behavior of the selected perforated symmetrical fracture-
hole sandstone specimens was obtained. This iterative process ensured that the simulated
behavior closely matched the experimental results, enhancing the fidelity of the numerical
modeling approach.

The sandstone specimens loaded indoors were taken from Pingdingshan City, Henan
Province, China, and consisted mainly of two minerals, quartz, and feldspar, and some
geomechanical characteristics of the intact sandstone specimens are shown in Table 2. The
specimens were brittle, and the holes were machined to a small size to prevent damage to
the specimens during hole processing, and the size parameters of each defect are shown in
Table 3. The indoor test system is shown in Figure 4. Uniaxial compression tests were carried
out using the ZTR-276 rock triaxial test system with a displacement control method and a
loading rate of 0.02 mm/s. For the simulation tests, the model size, defect size, and loading
settings were replicated from the indoor tests. Subsequently, the microscopic parameters of the
model underwent iterative adjustment using a ‘trial and error’ approach until the macroscopic
mechanical behavior of the specimen in the simulation results closely matched that observed
in the indoor uniaxial compression test results. The refined microscopic parameters selected
at the end of this iterative process are presented in Table 4.
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Table 2. Partial geomechanical characteristics of the selected intact sandstone specimen.

Parameters
Compressive

Strength
(MPa)

Elastic
Modulus

(GPa)

Natural
Density
(kg/m3)

Saturated
Density
(kg/m3)

Porosity (%)

Values 75.92 38.87 2.51 × 103 2.65 × 103 1.6%

Table 3. Defect size parameters of uniaxial compression specimens.

Sample
Number d (mm) 2a (mm) Fissure Width

(mm) α (◦)

D-1 5.0 7.1 2.5 75
D-2 5.1 7.0 2.5 45
D-3 5.0 7.0 2.5 15
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Table 4. PFC2D mesoscopic parameters.

Mesoscopic Parameters Value Mesoscopic Parameters Value

Particle size range, (mm) 0.2~0.3 Particle friction coefficient µ 0.5
Particle size ratio Rmax/Rmin 1.5 Particle Young’s modulus E (GPa) 50
Particle density ρ, (kg/m3) 2500 Bond strength pb_σt (MPa) 10

Particle stiffness ratio k 2.0 Bond stiffness ratio pb_k 2.0
Radius factor λ 1.0 Bond Young’s modulus

pb_E (GPa) 50Particle dissipation energy Damp 0.7

Figure 5 compares the mechanical properties of the results simulated through the
microscopic parameters in Table 4 and the indoor test results. In Figure 5a, the stress-strain
curve of the indoor test can be divided into four distinct stages: the compaction stage,
elastic stage, plastic stage, and failure stage. During the plastic phase, a significant drop in
stress magnitude is negatively correlated with the fissure dip. This finding aligns with the
test results reported by Yang [14]. This is due to the lower load-bearing properties of the
rock near the defect, which makes it more likely to fracture and sprout cracks during the
loading process.

Moreover, at α = 15◦, a double peak appears in the stress-strain curve, which may be
attributed to the horizontal orientation of the fissure, which leads to its closure under pressure
during loading. As a result, the specimen exhibits a substantial load-bearing capacity even
after experiencing partial damage. Figure 5b illustrates that the peak strength and modulus of
elasticity of the perforated symmetric fissure-hole sandstone specimens demonstrate vary-
ing degrees of reduction compared to the macroscopic mechanical parameters of the intact
sandstone specimens outlined in Table 2. Moreover, the specimens’ peak strength and elastic
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modulus decrease as α decreases. These observed phenomena indicate that the presence
of symmetric fissure-hole combination defects deteriorates the mechanical properties of the
sandstone. Specifically, the dip angle (α) of the perforated symmetric fissure impacts the
mechanical properties of hole-containing sandstone under uniaxial compression, with lower
dip angles corresponding to a higher likelihood of rock damage.
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Moreover, at α = 15°, a double peak appears in the stress-strain curve, which may be 
attributed to the horizontal orientation of the fissure, which leads to its closure under pres-
sure during loading. As a result, the specimen exhibits a substantial load-bearing capacity 
even after experiencing partial damage. Figure 5b illustrates that the peak strength and 
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(a) Comparison of stress-strain curves; (b) comparison of peak strength and elastic modulus.

The stress-strain curves obtained through numerical simulations of various specimens
are highly comparable to the results of indoor testing. The curves obtained from indoor
tests and simulations exhibit a consistent trend, with a close agreement in terms of both the
slope of the elastic phase and the peak values. However, it is worth noting that due to the
rigid nature of the model particles and their close proximity, the simulated specimens enter
the elastic phase at the onset of the loading stage. Consequently, the initial compaction
phase, observed in the experimental curve, is absent in the simulated curve. This disparity
causes a leftward shift of the simulated curve relative to the experimental curve. Peak
strength and elastic modulus also closely resemble the two data sets, with both increasing
as the fissure dip angle increases (as shown in Figure 5b). The errors in peak strength
between the numerical simulation and indoor tests ranged from 1.10% (0.66 MPa) to 3.89%
(1.5 MPa), while the errors in modulus of elasticity ranged from 2.25% (0.52 GPa) to 4.68%
(1.51 MPa). These discrepancies indicate that the numerical simulation results agree with
the test results. Therefore, the microscopic parameters selected in Table 4 are reasonable
and reliable.

3.2. Verification of Mesoscopic Parameters

Table 5 compares the failure modes observed during indoor uniaxial compression
tests and numerical simulations, providing additional validation of the selected micro-
scopic parameters. In the table, numerical letters (e.g., 1a) in both test and simulation
results refer to macrocracks initiating specimen failure. It is clear from the table that the
prominent macroscopic cracks on the surface of specimens observed during indoor testing
corresponded one-to-one with the simulation results, and the damage patterns were similar.
At α = 15◦, the primary cracks (1a and 1b) extending from fissure tips grew perpendicularly,
eventually causing tension-shear failure at the specimen’s top left and bottom right corners.
Similarly, at α = 45◦, primary cracks (2a and 2b) originating from fissure tips penetrated
both the fissure and the specimen edge, while a secondary crack (2c) extended from the
fissure tip to the specimen’s top surface. Due to the anisotropic nature of the sandstone
samples, certain forms of crack propagation differed between the indoor test and numer-
ical simulation; however, the outcome was still mixed tensile-shear failure. At α = 75◦,
the fissure tip experienced primary cracks (3a and 3b) and a secondary crack (3c), which



Appl. Sci. 2023, 13, 8780 8 of 16

extended from the bottom left to the top right corners of the specimen, causing pure shear
failure. The direction of the failure zone is approximately parallel to the fracture direction.

Table 5. Comparison of failure modes between indoor experiment and numerical simulation.

Fissure Dip
Angle (◦)

15◦ 45◦ 75◦

Experimental
Result

Numerical
Result

Experimental
Result

Numerical
Result

Experimental
Result

Numerical
Result

Failure
modes
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Through a comparison between indoor experiments and numerical simulations, it can
be concluded that the mechanical characteristic parameters of the specimens are highly
consistent, as well as the crack propagation pattern and failure mode. Therefore, the group
of microscopic parameters can be employed to simulate the mechanical characteristics
of symmetrical fissure-hole sandstone accurately. This group of parameters can also be
utilized to analyze the effects of different fissure morphologies on the mechanical properties
of hole-containing sandstone under conventional triaxial compression.

4. Numerical Simulation Results and Analysis
4.1. Characterization of Mechanical Parameters

Figure 6 illustrates the stress-strain curves of symmetrical fissure-hole sandstone
specimens. As the influence of fissure dip on the stress-strain curves was consistent across
all specimens, only the curve for specimens with a fissure length of 8 mm is presented in
the figure. Figure 6a shows the stress-drop phenomenon before the peak stress occurs at
different magnitudes when the fissure dip angle ranges from 0◦ to 45◦. Figure 6b reveals a
decreasing trend in stress drop as α increases. This suggests that increasing the fissure dip
angle can reduce the stress drop effect, as observed in the indoor experiment (Section 2.2).
The cause of the stress drop was analyzed to be the change in stress distribution within the
specimens due to the variation in the fissure dip angle. When the angle between the fissure
and the axial principal stress direction was larger, stress concentration at the fissure tips
was more intense, as demonstrated in Jiang’s study [26] on force chain distribution near
the fissure.

The relationship between the symmetrical fissure dip angle and the strength param-
eters of the hole-containing sandstone is depicted in Figure 7. An increase in fissure dip
angle results in higher peak strength and elastic modulus values for the specimens, which
gradually converge towards those of the non-fissure specimen. In addition, as the fissure
dip angle increases, the specimens’ peak strength and elastic modulus demonstrate a grad-
ual, rapid, and then gradual growth trend. This trend is particularly pronounced when
α ranges from 30◦ to 75◦; with a dip angle of 45◦, the elastic modulus demonstrates the
fastest rate of growth. Therefore, the presence of perforated symmetric fissures worsens
the mechanical properties of hole-containing sandstones, while increasing the angle of the
fissures helps to mitigate the worsening effect. The sensitivity of the specimens’ mechanical
properties to changes in fissure dip angle is highest within the range of 30◦ to 75◦, with the
most sensitive point being around 45◦.
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Figure 6. Stress-strain curve of symmetrical fissure-hole sandstone. (a) The stress-strain curve of 2a 
= 8 mm specimen; (b) the effect of fissure dip angle on stress drop amplitude. 
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ens the mechanical properties of hole-containing sandstones, while increasing the angle 
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Figure 7. Effect of symmetrical fissure dip on strength parameters of hole-containing sandstone. (a) 
Peak strength; (b) elastic modulus. 

Figure 8 shows the effect of fissure length on the strength parameters of sandstones 
containing pores. As depicted in Figure 8, there is an apparent linear decrease in both peak 
strength and elastic modulus of the specimens as fissure length increases. The slope of 
these linear regressions becomes steeper as fissure inclination decreases, with the best fit 
between peak strength and fissure length occurring at α = 0° (R2 = 0.9992). Conversely, α 
= 75° and 90° exhibit the weakest linear fit between the elastic modulus and fissure length 

Figure 6. Stress-strain curve of symmetrical fissure-hole sandstone. (a) The stress-strain curve of
2a = 8 mm specimen; (b) the effect of fissure dip angle on stress drop amplitude.
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gradually converge towards those of the non-fissure specimen. In addition, as the fissure 
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(a) Peak strength; (b) elastic modulus.

Figure 8 shows the effect of fissure length on the strength parameters of sandstones
containing pores. As depicted in Figure 8, there is an apparent linear decrease in both peak
strength and elastic modulus of the specimens as fissure length increases. The slope of
these linear regressions becomes steeper as fissure inclination decreases, with the best fit
between peak strength and fissure length occurring at α = 0◦ (R2 = 0.9992). Conversely,
α = 75◦ and 90◦ exhibit the weakest linear fit between the elastic modulus and fissure
length and a weaker negative correlation between peak strength and elastic modulus with
increasing fissure length. This may be due to microcrack expansion within the specimen
and variations in damage patterns. In summary, our results demonstrate that an increase in
fissure length exacerbates the detrimental effect of symmetric fissures on the mechanical
properties of hole-containing sandstones. However, the magnitude of this degradation
decreases with increasing fissure angle.

4.2. Displacement Field Analysis

To study the effect of symmetric fissure morphology on the relative displacement of
particles around a hole, specimens with 2a = 8 mm were selected to analyze the displacement
field of particles near the hole with different fissure dip angles. As illustrated in Figure 9, the
small arrow’s color indicates the particle displacement’s magnitude, while the large red arrow
denotes its direction. Based on the size and direction of the particle displacement, it can be
identified that the specimens primarily exhibit tensile and shear-tensile cracks.
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Tensile cracks can be classified into two categories based on their causes. The first
category is tensile cracks attributed to the displacement difference in the direction of particle
movement, represented by Tension(I) in the diagram. These cracks are typically more minor
in size and occur mainly around the hole of the specimen with small fissure dip angles
(α = 0~45◦). The second category is tensile cracks caused by the opposite direction of particle
transverse displacement, represented by Tension(II) in the diagram. These cracks primarily
originate from the fissure tips, are usually larger, and can cause partial tensile failure of
the specimen. Additionally, they are responsible for the hole and fissure tip penetration
in specimens with fissure dip angles of 45◦, 75◦, and 90◦. Shear-tensile cracks, indicated
by Shear-Tension in the diagram, primarily result from particles displaced in opposite
directions, with the angle between the particle displacement directions being obtuse. This
often leads to particle slip and tearing, although overall shear-slip is still predominant.
Moreover, the prominent cracks that eventually cause damage are all macroscopic shear-
tensile cracks in the specimens.

The dip angle of fissures directly influences the deformation and failure of a hole.
Particle displacement around the hole changes continuously with an increase in α, resulting
in three primary forms of deformation and failure. At α = 0◦ and 15◦, compressive stress
causes particles around the hole to move toward its interior, leading to shrinkage. At α
values between 30◦ and 60◦, shear failure is enhanced, and particle displacement on both
sides of the hole is parallel and reversed, resulting in shear deformation. Finally, when α is
at 75◦ and 90◦, stress concentration on the hole wall causes particles to flake off towards the
inside under compressive stress, leading to failure similar to that of a single hole non-fissure



Appl. Sci. 2023, 13, 8780 11 of 16

specimen. Therefore, it can be concluded that the effect of symmetric fissure dip angle on
particle displacement around the hole decreases as α increases.

To further investigate the effect of fissure length on the internal displacement field
of the hole-containing sandstone, the displacement fields near the hole of specimens with
different fissure lengths at α = 45◦ were selected for analysis, as shown in Figure 10. When
2a = 4mm and 16mm, particles around the hole and fissures are displaced in opposite
directions on the fissure direction, the hole and fissures are distorted by shear slip, and
shear-tension cracks sprout from the fissure tip. When 2a = 12mm, the counterclockwise
twisting of the particles near the hole wall produced tensile cracks through the hole and
the fissure tips. Compared with the 2a = 8mm specimen, the magnitude of the particle
displacement near the hole was more significant, the displacement direction was closer to
the hole, and the hole shrank inward. It can be seen that the increase in fissure length will
intensify the deterioration effect of fissures on the rock mass around the hole, but this effect
will be substantially weakened when the fissure length size is too large.
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4.3. Failure Mode Analysis

The initiation and propagation of microcracks inside the rock are essential factors
leading to the final failure. Table 6 gives the initiation locations of microcracks in the
hole-containing sandstone under different fissure morphologies. In contrast, C and H in
the table indicate two forms of initiation, fissure tip initiation, and hole wall initiation. It is
shown in the table that the change in the crack inclination makes the microcrack initiation
location evolve from the crack tips to the hole wall. This is because the stress concentration
location in the specimen evolves gradually from the fissure tip to the hole wall when the
fissures are gradually parallel to the principal axial stress, which causes the microcrack
initiation location to change.

Table 6. The location of micro-crack initiation under triaxial compression.

Parameter α = 0◦ α = 15◦ α = 30◦ α = 45◦ α = 60◦ α = 75◦ α = 90◦

2a = 4 mm C C C C C C H
2a = 8 mm C C C C C H H

2a = 12 mm C C C C C H H
2a = 16 mm C C C C C H H

The final failure modes of the hole-containing sandstone at different fissure dip angles
are given in Figure 11, from which it can be seen that the failure modes of the specimens
are mainly divided into four types as the fissure dip angle increases with the fissure length
of 8 mm:

1. At α = 0◦, 15◦, the prominent cracks all crack along the direction perpendicular to
the symmetrical fissures and then respectively expand obliquely up (down) to the
specimen boundary, showing mixed shear-tensile failure. In addition, secondary
cracks sprouted on the upper and lower sides of the fissure tips and hole wall, and the
secondary cracks all expanded roughly in the direction of the principal axial stress,
which aggravated the tensile failure of the specimen.

2. At α = 30◦, 45◦, the proper main crack obliquely extends upward (downward) to the
specimen boundary, forming a triangular fragment. Moreover, the secondary cracks
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all crack from the fissure tip along the direction perpendicular to the fissure, and then
the extension direction turns toward the axial main stress direction. Compared with
α = 0◦, 15◦, the specimen’s tensile failure degree is weakened, and the degree of shear
failure is enhanced.

3. At α = 60◦, the main crack is co-linear with the symmetric fissures, and the specimen
eventually produces shear failure along the diagonal.

4. At α = 75◦ and 90◦, the failure modes of the specimens are similar to those of the
single-hole fissure-free specimen, with the prominent cracks starting from the right
(left) side of the hole wall and then expanding obliquely upward (downward), leading
to shear failure of the specimens, however, due to the compressive stress, some of the
tensile cracks penetrate the fissure tip to the hole wall, which is also reflected in the α

= 45◦ specimen, and the tensile failure of the specimens is slightly enhanced.
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Figure 11. Effect of fissure dip angle on the final failure modes of the hole-containing sandstone
(2a = 8 mm).

Figure 12 illustrates the relationship between fissure length and failure modes of
specimens with a 45◦ fissure dip angle. The plot shows specimens experience shear failure
along the diagonal when the fissure length is small (2a = 4 mm). At 2a = 8 mm and
12 mm, the primary cracks form a triangular fragmentation with the specimen boundary.
Secondary cracks perpendicular to the symmetric fracture are generated, and tensile cracks
penetrate the rock bridges between the fracture tips and the hole. Tensile failure is more
significant in the 2a = 12 mm specimen, intensifying the fragmentation compared to the
2a = 8 mm specimen. When 2a = 16 mm, the number of cracks substantially decreases,
and the main crack extends obliquely upward (or downward) from the fissure tip to the
boundary of the specimen. This is due to the excessive size of the fissure, which weakens
the deterioration effect of the fissure on the rock near the hole and enhances the edge effect.
Thus, fissure length exacerbates the tensile failure of the specimens to some extent, but
excessive fissure length weakens the effect of fissures on the rock around the hole.
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5. Discussion

The previous analysis reveals that symmetric fissures can hurt the mechanical proper-
ties of hole-containing sandstone. These properties, in turn, affect the rate and direction of
crack propagation. When the mechanical properties are high, the cracks in the rock require
tremendous pressure to propagate further. Conversely, crack propagation characteristics
indicate the deformation and failure behavior of the rock. The quicker the rate of crack
propagation, the lower the rock’s strength and toughness. Therefore, it is necessary to
discuss the relationship between crack propagation and the macroscopic mechanical prop-
erties of specimens during rock destruction and to reveal the microscopic characteristics
of the effect of symmetric fissures on the deterioration of the mechanical properties of the
hole-containing sandstone.

5.1. Relationship between Mechanical Properties and Crack Expansion

To examine the relationship between macroscopic mechanical properties, crack propaga-
tion, and stress field distribution during triaxial compression loading, we monitored changes
in the number of microcracks using acoustic emission. In PFC simulations, the interactions
between particles promote the initiation and propagation of microcracks. During this process,
the released elastic waves are monitored by Acoustic Emission Sensor configured on the
particles, enabling the simulation of rock acoustic emissions. To conserve space, we selected a
specimen with 2a = 8 mm and α = 45◦ for analysis. Our findings shed light on the behavior of
symmetrical fissure-hole sandstone specimens under these conditions.

Figure 13a–h shows the crack propagation and force chain distribution patterns with
large fluctuations in microcracks and stress-strain curves. According to the growth rate
of microcracks, the crack propagation process can be divided into three stages: crack
initiation, development, and rapid crack propagation. During the a–b stage, there is a
stress concentration at the tip of the fissure, which induces the initiation of microcracks
near the fissure tip. As stress concentrations gradually extend toward the hole wall in
stages b–e, the load-bearing properties of the rock sample are weakened in this area. This
process also drives the development of microcracks near the defect. During stages c–d,
tensile cracks penetrate the fissure and hole, accelerating crack growth and causing the
stress to drop simultaneously. In stages e–h, the force chain thinning zone near the defects
expands, leading to a significant reduction in the load-bearing capacity of the specimen
after reaching peak strength and experiencing rapid crack expansion. During stages f–g,
the crack propagation slows down, possibly due to the partial closure of microcracks
under pressure. However, this short enhancement of mechanical properties is quickly
followed by rapid destabilization and damage to the specimen. Therefore, as the stress
concentration zone gradually expands from the fissure tip to the hole wall during the crack
development stage, cracks propagate towards the hole wall with increasing σ1, resulting in
a noticeable decrease in macroscopic mechanical properties. This phenomenon is similar
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to the acoustic emission findings of Yang [14] for sandstone containing fissures and holes
(with 2a = 2b = 8 mm). However, the stress drop in their study occurred early on due to a
lack of lateral pressure effects.
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5.2. Evolution Law of Microcrack Number

The compressional failure of rocks involves initiating and developing microcracks
within the rock. Figure 14 illustrates how the dip angle and length of fissures relate to the
evolution of the microcrack number. Figure 14a illustrates that for α = 0~45◦, the number
of cracks shows a “step” growth trend in both the crack development and rapid growth
phase. This mode shows more obvious tensile failure in the failure modes. In contrast,
when α = 60~90◦, the number of cracks grows steadily in the crack development phase
and steeply in the rapid growth phase, similar to the evolution of the number of cracks in
the fissure-free specimen. The shear failure in the failure modes is also significant in this
case. Figure 14b shows that when the fissure length is small (2a = 4 mm), the crack growth
pattern is consistent with that of the fissure-free specimen. However, for more considerable
fissure lengths (2a = 16 mm), the mechanical properties of the specimen decrease, and
the number of cracks decreases as well. It can be inferred that the evolution law of crack
number corresponds to the mechanical properties and failure modes. When the dip angle
of fissures is slight, the deterioration effect on the mechanical properties of the surrounding
rock mass by symmetric fissures around the hole is more significant. The fluctuation of
crack evolution is vital, which is exacerbated by an increase in fissure length.
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6. Conclusions

This paper explores the effect of symmetrical fissure morphology on the mechanical
properties of hole-containing sandstone by developing models using granular flow pro-
gram PFC2D. Furthermore, several key conclusions about the relationship between fissure
morphology and sandstone strength exist.

1. The deterioration effect of symmetric fissures on hole-containing sandstone can be con-
trolled by increasing the fissure dip angle, suppressing the stress drop phenomenon.
However, increasing the fissure length exacerbates the deterioration effect. The exper-
imental findings indicate that the peak strength and elastic modulus of symmetrical
fissure-hole sandstone are positively correlated with the fissure dip angle and nega-
tively correlated with the fissure length within the experimental range.

2. The effect of a symmetrical fissure dip angle on the displacement field near the hole
decreases with increasing dip angle while increasing fissure length exacerbates the
effect of a fissure on the displacement field; the opposing transverse displacement of
particles is the dominant factor for local tensile failure of the specimens and fissure
penetration with the hole; as the fissure inclination increases, three damage patterns
of compression, slip, and spalling occur in the hole in turn.

3. The symmetrical fissure-hole sandstone failure modes under conventional triaxial
compression are all mixed shear-tension failures. As the angle between the fissures
and the principal vertical stress increases, the degree of tensile failure weakens while
the degree of shear failure increases. Moreover, the location of crack initiation shifts
from the fissure tip towards the hole wall.

4. During the crack development stage of symmetrical fissure-hole sandstone specimens,
the extension of the stress concentration zone drives rapid crack growth. It exhibits a
stress drop in the macroscopic mechanical properties, followed by the evolution of
the stress field with loading and rapid expansion of microcracks, eventually leading
to destabilization and damage of the specimen.
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