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Abstract: To meet the demands of the food industry for automatic sorting of block-shaped foods
using DELTA robots, a machine vision detection method capable of quickly identifying such foods
needs to be studied. This paper proposes a lightweight model that incorporates the CBAM attention
mechanism into the YOLOv5 model, replaces ordinary convolution with ghost convolution, and
replaces the position loss function with SIoU loss. The resulting YOLOv5-GCS model achieves a mAP
increase from 95.4% to 97.4%, and a reduction in parameter volume from 7.0 M to 6.2 M, compared to
the YOLOv5 model. Furthermore, the first 17 layers of the MobileNetv3-large network are replaced
with the CSPDarkNet53 network in YOLOv5-GCS, resulting in the YOLOv5-MGCS lightweight
model, with a high FPS of 83, which is capable of fast identification of block-shaped foods.

Keywords: deep learning; YOLOv5 algorithm; lightweight model; machine vision

1. Introduction

With the continuous development of China’s economy, the demand for food is con-
stantly upgrading, and the domestic food industry is showing a rapid development trend.
However, most food enterprises have low automation levels and high labor costs, which
seriously affect their efficiency [1,2]. With the continuous development of robot technology,
DELTA robots are widely used in high-repetition positions such as food sorting due to their
high operating speed [3]. Combined with vision systems, they solve problems such as the
low efficiency of manual sorting. Yoshinori Kuno et al. proposed a vision system for robots
that combines with a control system to achieve recognition and grasping of batteries by
SCARA robots [4]. Hosseininia et al. proposed a vision system for recognizing glass and
ceramics to guide robots in polishing ceramics by combining it with a control system [5].
Xu et al. proposed the Light-YOLOv3 algorithm and applied it to robots [6]. This algorithm
combines features such as the color, texture, and shape of fruits to design a lightweight
module to replace the residual unit in YOLOv3, and uses an improved aggregation module
to connect multiscale features for prediction. An experiment shows that the robot has
a good detection effect in dense, backlit, long-distance, and special angle scenes under
complex lighting conditions. Wang et al. applied the R-CNN algorithm to robots and found
that this method can find scattered screws in real-time, realizing the automatic sorting and
recovery of screws [7]. Zhang Lin et al. designed a visual medicine bag sorting system that
combines a robot control system to complete sorting operations with parallel robots. An
experiment shows that the system can efficiently complete visual recognition and sorting
tasks [8]. Fang Haifeng et al. combined the vision system with DELTA robots to achieve
the classification of plastic bottle garbage through color recognition [9].

According to the needs of enterprises, this paper proposes an improved model based
on YOLOv5 to recognize and classify three types of block-shaped foods for automatic
sorting by DELTA robots.
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2. Building the Dataset
2.1. Image Acquisition

To achieve the task of block-shaped food recognition, a dataset was compiled of images
collected manually and from the internet. Three types of food were photographed from
multiple angles in different backgrounds, resulting in 1540 manually collected images.
As the light and background of our application scene for the DELTA robot sorting food
on a conveyor belt is, in practice, relatively stable, the backgrounds of the pictures we
selected were not complicated. The food had good lighting. An additional 509 images were
collected from the internet, resulting in a dataset of 2049 images, as shown in Table 1.

Table 1. Dataset composition.

Category Manually Collected Internet Collected Total

Mashu 532 210 742
Fantuan 496 156 652
Nuomiji 512 143 655

Total 1540 509 2049

2.2. Dataset Augmentation

Deep-learning-based object detection algorithms require a large number of images
for training. When the number of image samples in the dataset is small, it often leads to
problems such as model underfitting and poor robustness. Therefore, data augmentation
techniques are used in this paper to increase the number of images [10].

(1) Geometric Transformation

Geometric transformation involves operations such as the translation, flipping, and
scaling of images. The transformed images are shown in Figure 1.
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(2) Adding Noise

Noise refers to signal interference that occurs during image acquisition or transmission,
and the most common types of noise are salt and pepper noise and Gaussian noise. Since
noise is randomly distributed in the image, probability density functions are often used
to model noise. Gaussian noise, also known as normal noise [11], has the following
mathematical model:

P(Z) =
1√
zπσ

exp

{
− (z− µ)2

2σ2

}
(1)

where z is the gray value, µ represents the average value of z, and P(Z) is the probability
density of the noise. Gaussian noise is often distributed around the mean, and as the
difference between the gray value and the mean increases, the noise gradually decreases.

Salt and pepper noise, also known as impulse noise, has strong randomness and can
be expressed by Equation (2).

p(z) =


pa z = a
pb z = b
0 else

(2)

where a and b are the gray values of salt and pepper noise. When a < b, the noise is
represented by black dots, and when a > b, the noise is represented by white dots. The
images after adding noise are shown below (Figure 2).
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(3) Color Transformation

Unlike geometric transformation, color transformation changes the pixel’s gray value
without changing its coordinates. Common color transformations include changing bright-
ness, changing contrast, and Gaussian blur. The transformed images are shown below
(Figure 3).
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(4) Cutout

Cutout is a data augmentation method proposed by Devries et al. in 2017 [12]. The
main idea is to randomly crop a part of the image and fill the area with 0. Experimental
results have shown that cutout is similar to the dropout regularization method in neural
networks, which can prevent overfitting and improve the robustness of neural networks. It
can also be used with other data augmentation operations to enhance the diversity of data.
The images after the cutout operation are shown in Figure 4.
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Figure 4. Cutout image enhancement.

After data augmentation, a total of 12,000 images were obtained and annotated for
each image. The images in the training set, validation set, and test set were distributed in a
ratio of 8:1:1.

3. Improved YOLOv5 Algorithm
3.1. YOLOv5 Algorithm

YOLOv5 is an improved version of YOLOv4 [13]. The structure of YOLOv5 is shown
in Figure 5.
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According to the different depth and width of the network, YOLOv5 can be divided
into five versions, among which YOLOv5n has the fastest detection speed, but the lowest
detection accuracy. YOLOv5x has the highest detection accuracy, but the largest size and
lower detection speed. In order to balance the detection accuracy and speed, YOLOv5s is
used as the base model and improved in this paper.

3.2. Construction of YOLOv5-GCS Detection Model
3.2.1. CBAM Attention Module

Attention mechanisms are based on the study of human vision, where individuals
selectively attend to specific information while disregarding other less important infor-
mation due to limitations in their mental perception [14]. The attention mechanism in
deep learning is similar to that of human vision, where important features are selectively
focused on while disregarding irrelevant information. Incorporating attention mecha-
nisms in neural networks can improve detection accuracy by addressing interference from
the environment.

There are three main types of attention mechanisms in the visual domain: spatial,
channel, and hybrid. The CBAM (convolutional block attention module) algorithm is a
hybrid attention mechanism that contains two sub-modules, the channel attention module
(CAM) and spatial attention module (SAM). This algorithm not only reduces computational
effort but also locates important information more efficiently. Its structure is shown in
Figure 6.
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In this paper, we propose the integration of the CBAM module into the feature fusion
layer of YOLOv5 [15]. The modified structure of the feature fusion layer, depicted in
Figure 7, includes the CBAM module inserted after the C3 module and before the CBS.
By leveraging the attention mechanism, the CBAM enhances the target features prior to
the feature fusion operation. This enables the network to effectively suppress background
noise, thereby enhancing the localization ability of the target and potentially reducing
computation time while improving detection speed.

3.2.2. SIoU Loss Function

The YOLOv5 model employs the CIoU loss function, which does not consider the
mismatch in orientation between the ground truth and predicted bounding boxes. This
limitation leads to slow convergence and inefficiency. To address these issues, we propose
the use of the SIoU loss function to replace the original loss function.

The SIoU loss function considers the coverage area, distance between center points,
aspect ratio, and angle. The formula for the SIoU loss function is shown below [16]:

SIoU = IOU − ∆ + Ω

2
(3)

LSIoU = 1− IOU +
∆ + Ω

2
(4)
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where ∆ represents the distance loss function, and Ω represents the aspect ratio loss function.
The distance loss function takes into account the angle loss. The expression for the angle
loss is as follows:

Λ = 1− 2sin2
(

arcsin
(

Ch
σ

)
− π

4

)
(5)

α = arcsin
Ch
σ

(6)
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Here, Ch represents the height difference between the ground truth and predicted
bounding boxes, σ represents the distance between the centers of the two boxes, and α

represents the angle between σ and the horizontal direction. The angle loss value is 0 when
α is 0 or 90◦. The angle penalty term for the SIoU is shown in Figure 8.
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The expression for the distance loss is as follows:

∆ = 2− e−γρx − e−γρy (7)

γ = 2−Λ (8)

where ρx and ρy represent the distance loss terms for the x and y coordinates of the center
points of the ground truth and predicted bounding boxes. The closer the distance, the
closer the value of the loss term is to 0. γ is influenced by the angle loss, and when the
two boxes tend to be parallel, Λ tends to 0, and γ tends to 2. As a result, the proportion
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of distance between the two boxes in the loss function decreases. When α tends to 45◦, Λ
tends to 1, and γ tends to 1, resulting in an increase in the proportion of distance between
the two boxes in the loss function.

The expression for the aspect ratio loss is as follows:

Ω =
(

1− e−Ww
)θ

+
(

1− e−Wh
)θ

(9)

where

Ww =

∣∣w− wgt
∣∣

max(w, wgt)
(10)

Wh =

∣∣h− hgt
∣∣

max(h, hgt)
(11)

In Equation (9), θ is an adjustable parameter that controls the degree of attention to shape
loss and needs to be selected based on experimental results. In Equations (10) and (11), (w, h)
and (wgt, hgt) represent the width and height of the predicted and ground truth bounding
boxes, respectively.

3.2.3. Ghost Convolution

GhostNet is a novel neural network architecture proposed by Han et al. in 2020 [17],
which is based on the ghost convolution module. The main idea is to split the convolution
into two steps. A comparison of normal convolution and ghost convolution is shown in
Figure 9.
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In deep learning, a large number of redundant feature maps are typically generated
to ensure a comprehensive understanding of the data by the network. However, many
output features are similar, and only a simple linear transformation of one feature map is
needed to obtain a new feature map. One feature map can be considered the “ghost” of
another. Ghost convolution first uses a small number of convolutions to generate some
feature maps, and then performs linear operations on these feature maps to obtain ghost
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feature maps. Finally, the feature maps are concatenated by channel, which improves the
detection speed while maintaining model accuracy.

Assuming the kernel size of the ghost convolution is d × d, the ratio of parameters
between normal convolution and ghost convolution is as follows:

Rate = W ′ ·H′ ·n·k·k·C
W ′ ·H′ ·m·k·k·C+W ′ ·H′ ·(n−m)·d·d =

W ′ ·H′ ·n·k·k·C
W ′ ·H′ · ns ·k·k·C+W ′ ·H′ ·(s−1)· ns ·d·d

= k·k·C
1
s ·k·k·C+

(s−1)
s ·d·d

≈ s·C
s+C−1 ≈ s

(12)

From the simplified result, it can be inferred that the parameter count of normal
convolution is roughly s times that of ghost convolution. Therefore, replacing the normal
convolution in the feature fusion layer of YOLOv5 with ghost convolution can improve the
detection efficiency of the model.

3.3. Experiment Validation
3.3.1. Experimental Environment and Hyperparameter Settings

The experimental environment and hyperparameter settings are shown in Tables 2 and 3.

Table 2. Experimental environment.

Parameters Configuration

Operating System Ubuntu 18.04
CPU Intel(R) Xeon(R) Platinum 8255C
GPU RTX3080

Programming Languages Python 3.8
Deep Learning Framework Pytorch 1.9
Accelerated Environment CUDA 11.0

Table 3. Hyperparameter settings.

Name Numerical Value

Training image resolution 640 × 640 × 3
Epochs 200

Batch_size 16
Optimizer SGD

Initial learning rate 0.01
Learning rate momentum (momentum) 0.937

Weight decay factor 0.0005

3.3.2. Comparison Experiment
Convergence Performance Analysis

To verify the convergence performance of YOLOv5-GCS, a comparison will be made
between YOLOv5-GCS and the original model, and the performance of the models will be
analyzed. The loss and mAP (mean average precision) curves of the original model and
YOLOv5-GCS on the training set are shown in Figure 10.

The loss functions of both models start to decrease rapidly in the first 50 rounds of
training and level off after 100 rounds. Notably, all three loss functions of the YOLOv5-GCS
model are significantly smaller than those of YOLOv5s. A comparison of the mAP curves of
YOLOv5-GCS and YOLOv5s is shown in Figure 10d, where the mAP of the YOLOv5-GCS
model rapidly increases to 90% in the first 50 rounds of training and reaches around 97%
after 100 rounds. The final results for the two models are 97.4% and 95.4%, respectively,
proving that YOLOv5-GCS outperforms YOLOv5s in detection performance.
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Classification Accuracy Analysis

After image preprocessing, we expanded the number of images to 12,000 with a large
number of samples. Therefore, we divided the images into a training set, testing set, and
validation set with the ratio of 8:1:1; we did not use the K-fold cross-validation method
because it would increase the computational cost. The confusion matrices generated by
YOLOv5s and YOLOv5-GCS are shown in Figure 11.
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From Figure 11a, the classification accuracies of mashu, fantuan, and nuomiji in
YOLOv5s are 91%, 95%, and 95%, respectively. Among them, mashu has a 1% chance
of being misidentified as fantuan and a 7% chance of being misidentified as background.
Fantuan has a 1% chance of being misidentified as mashu and numiji, and a 3% chance of
being identified as background. Nuomiji has a 2% chance of being identified as mashu and
a 3% probability of being identified as background. This shows that the YOLOv5s model
produces false and missed detections.

As shown in Figure 11b, the classification accuracies of mashu, fantuan, and nuomiji
in the YOLOv5-GCS model are 95%, 98%, and 96%, respectively, which are 4%, 3%, and
1% better than YOLOv5s. Mashu and fantuan have no false detections, and nuomiji has
a 2% chance of being falsely detected as mashu. The chances of several categories being
recognized as background are reduced compared to YOLOv5s. In summary, YOLOv5-GCS
can effectively improve the classification accuracy, reduce the probability of false detection
and missing detection, and significantly improve the model performance.

Ablation Experiments

To verify the effects of the three improvements of CBAM, SIoU loss, and ghost con-
volution on the model, several sets of experiments are designed in this paper, and the
experimental results are shown in Table 4. The accuracy and recall rates are improved
after introducing SIoU loss, ghost convolution, and the CBAM attention mechanism in the
network alone, and the number of model parameters is reduced after introducing ghost
convolution. Adding both CBAM and SIoU loss to the model significantly improved the
accuracy and recall, and increased the mAP by 1.4%. Adding CBAM and ghost convolu-
tion to the original model also improved the accuracy and recall of the model. Overall,
compared with YOLOv5s, the YOLOv5-GCS model’s precision, P, is improved by 2%, recall
R by 1.4%, mAP by 2%, and the number of parameters by 0.8 M.

Table 4. Results of ablation experiments.

YOLOv5s CBAM SIoU Ghost P (%) R (%) mAP (%) Number of Participants
√

92.7 93 95.4 7.0 M√ √
94.3 93.7 96.6 7.2 M√ √
92.9 93.5 96.0 7.0 M√ √
93.5 93.7 96.3 6.0 M√ √ √
94.3 93.8 96.8 7.2 M√ √ √
94.4 94 97 6.2 M√ √ √ √
94.7 94.4 97.4 6.2 M

Performance Analysis of Different Attention Mechanisms

To verify the effect of combining different attention mechanisms on the model, we
introduced the feature fusion layer of the YOLOv5 algorithm into CBAM, SE, and CA for
comparison experiments [18,19]. The mAP comparison of the three attention mechanisms
with the original algorithm on the training set is shown in Figure 12.

The mAPs of all three attention mechanisms are higher than the original model,
indicating that the introduction of attention mechanisms can improve the model’s attention
to the main features, enabling it to extract more effective information and improve the model
performance. Among the three attention mechanisms, the CBAM attention mechanism
improves the original model the most, and its effect is better than that of the CA and SE
attention mechanisms.

A comparison of the performance of the three attention mechanisms on the validation
set is shown in Table 5.

Based on the data in Table 5, it can be observed that the introduction of the SE, CA,
and CBAM attention mechanisms into the model can improve mAP by 0.5%, 0.7%, and
1.2%, respectively. Therefore, it can be demonstrated that introducing the CBAM attention
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mechanism into the YOLOv5s feature fusion layer improves the model performance more
than other attention mechanisms.
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Table 5. Performance comparison of three attention mechanisms.

Algorithm P (%) R (%) mAP (%) Number of Parameters (M)

YOLOv5s 92.7 93 95.4 7.0
YOLOv5s-SE 93 93.3 95.9 7.2
YOLOv5s-CA 92.9 93.4 96.1 7.2

YOLOv5s-CBAM 94.3 93.7 96.6 7.2

Comparison of Different Algorithms

To verify the superiority of the YOLOv5-GCS model, we compared it with several
common target detection algorithms. The PR curves of each algorithm in the validation set
are shown in Figure 13.
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The performance of the model can be evaluated based on the area enclosed by the
PR curve and the mAP value. As shown above, the area enclosed by the PR curve of the
YOLOv4 algorithm is the smallest, while the area enclosed by the PR curve of YOLOv5-GCS
is the largest, indicating that the model performance is optimal.

The detection effects of the different algorithms are shown in Figure 14. YOLOv5-GCS
has a high correct recognition rate, with no missed detection or false detection, and the
confidence level is higher than that of other models. This indicates that the improvement
strategy proposed in this paper can effectively enhance the performance of YOLOv5s.
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4. Lightweight Model YOLOv5-MGCS
4.1. YOLOv5-MGCS Model

Due to the complex structure of the CSPDarkNet53 network in YOLOv5-GCS, the
model has a large number of parameters and low FPS. To adapt to the high-speed sorting
of DELTA robots, we improved the YOLOv5-GCS model by replacing the CSPDarkNet53
feature extraction network with the first 17 layers of the MobileNetv3-large network [20–22].
The feature fusion layer and detection head were kept unchanged, resulting in a lightweight
model known as YOLOv5-MGCS. The network structure of YOLOv5-MGCS is as shown
below (Figure 15).
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4.2. Experimental Training and Analysis of Results

For the lightweight model, we used the same experimental environment and dataset
as described above for training. The loss function of the YOLOv5-MGCS model with mAP
on the training set is shown in Figure 16. The loss function decreases rapidly in the first
50 rounds, stabilizes after 100 rounds, and starts to converge after 150 rounds. In the mAP
curve, the mAP rises rapidly to 90% in the first 50 rounds and starts to approach mAP
values close to 96% after 100 rounds. The final mAP reached 96.5%.

To further verify the effect of the lightweight improvement strategy on the model per-
formance and detection speed, we compared YOLOv5-MGCS with the YOLOv4, YOLOv5s,
and YOLOv5-GCS models. As shown in Table 6, YOLOv4 has the lowest detection accuracy
and the slowest detection speed, while YOLOv5s has the largest number of parameters.
YOLOv5-GCS has the highest detection accuracy, of 97.4%, and a lower number of parame-
ters (0.7 M less than YOLOv5s), with an improved FPS, from 55 to 60. Although the mAP is
reduced in YOLOv5-MGCS compared to YOLOv5-GCS, the number of parameters is only
0.7 M less than YOLOv5s. Therefore, YOLOv5-MGCS meets the application requirements.

Table 6. Results of different detection models.

Model mAP (%) Number of Parameters (M) FPS

YOLOv4 94.3 6.3 23
YOLOv5s 95.4 7.0 55

YOLOv5-GCS 97.4 6.3 60
YOLOv5-MGCS 96.5 3.3 83

The detection results of the lightweight model YOLOv5-MGCS are shown in the
Figure 17 below.
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Figure 17. The detection effect of the lightweight model.

5. Conclusions

Since the DELTA robot is working at a high speed, it requires image processing
equipment with a high detection speed to give feedback to the DELATA robot. This
paper proposes the YOLOv5-MGCS model, which is based on the YOLOv5 model but has
been improved and designed to meet the needs of enterprise applications. The specific
improvements are as follows:

(1) The CBAM attention mechanism is added to the feature fusion network of YOLOv5s,
and the normal convolution is replaced with the ghost convolution module. Addition-
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ally, the position loss function in YOLOv5s is replaced with SIoU loss. The improved
YOLOv5-GCS model detects block food significantly better than YOLOv5s, with a
mAP value improved from 95.8% to 97.5%, and a reduction in the number of model
parameters from 7 M to 6.3 M.

(2) A lightweight model, YOLOv5-MGCS, is proposed, where the first 17 layers of the
MobileNetv3-large network are selected to replace the CSPDarkNet53 network in
YOLOv5-GCS. The FPS value of the improved model YOLOv5-MGCS is up to 83,
which can meet the demand of real-time detection. The number of parameters has
been changed from 7.0 M to 3.3 M to reduce the CPU computing burden.

In conclusion, the proposed YOLOv5-MGCS model has achieved significant improve-
ments in detection accuracy and detection speed, making it suitable for practical applica-
tions in the food industry.
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