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Abstract: This paper presents a novel method for interpolation design that ensures the continuity of
a velocity profile and satisfies a specified corner tolerance constraint. The method uses an S-shaped
profile to generate trajectories for each line segment in the task space. The velocity profiles of each
segment are overlapped to control the smoothness of the corners and reduce the cycle time. This
study defined an overlapping time parameter that is associated with the corner tolerance and the
cycle time. Moreover, a corner tolerance constraint equation was derived that can allow for a given
tolerance to be satisfied. This constraint equation enables the use of the proposed velocity profile
overlap (VPO) method to specify corner tolerances for each corner of the trajectory. The proposed
method was compared against the conventional acceleration/deceleration after interpolation (ADAI)
method. The results demonstrate that the proposed VPO method can achieve higher accuracy and
lower cycle time than the ADAI method.

Keywords: interpolation; corner tolerance; overlapping time; velocity profile overlap

1. Introduction

Robots are widely used in various industrial applications, such as pick and place, weld-
ing, grinding, polishing, and processing. Appropriate trajectory planning is critical in these
applications to prevent extremely high acceleration in the velocity profile, thereby avoiding
excessive torque output, which can cause machine vibration and damage components. An
acceleration/deceleration (ACC/DEC) constraint should therefore be applied when design-
ing interpolators to ensure smooth robot movements. An interpolator generates position
inputs for the servo drives in each sampling period for a given trajectory command.

Robot interpolation methods are usually divided into joint space and task space plan-
ning approaches. In the joint space planning method, inverse kinematics are used to
compute moving angles for each joint. Each joint angle is then simultaneously interpolated
to generate appropriate command positions to cause each joint to reach the task position.
This approach is used in pick-and-place applications in which only the initial and final
positions and the posture of the end-effector are relevant factors. In this approach, the con-
tinuity of the velocity and posture of the end-effector during the motion trajectory are not
considered; thus, this approach may be unsuitable for grinding, welding, or polishing pro-
cesses. In the task space method of planning the end-effector trajectory, both the continuity
of velocity and posture rotation are considered. The trajectory of an end-effector typically
comprises many line segments, and designing the velocity profile at the intersections of
these line segments is the key challenge in the design of an interpolator.

Several approaches have been used to achieve smooth motion along a trajectory [1],
such as designing trapezoidal or bell-shaped velocity profiles by using cubic, quartic, or
quintic polynomials [2]. These profiles constrain the level of acceleration and jerk, allowing
the vibrations of the robot to be used for useful work [3–7]. Rossi et al. [4] proposed that
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a trajectory could be computed by using an envelope of tangents for small line segments;
this method can describe a given path with high accuracy. Tsai et al. [5] combined the
ACC/DEC before interpolation (ADBI) and the ACC/DEC after interpolation (ADAI)
methods in a dynamic servo system to effectively reduce the contour error, but contour
error is difficult to control accurately. Interpolating a robot’s orientation is another challenge
in trajectory planning [8–10]. The Euler angle and quaternion approaches are the most used
approaches in orientation interpolation. However, the Euler angle approach can result in a
singularity (gimbal lock), which can cause robots to malfunction. The quaternion approach
can avoid this singularity by clearly defining the unit vector and the angle parameters [8,9].
Pu et al. [10] presented a logarithmic quaternion interpolation method with a cubic B-
spline curve that guaranteed the continuity of the rotation angle, angular velocity, angular
acceleration, and path. The literature has rarely considered corner smoothing control
between consecutive line segments, which may lead to a poor surface finish and high
cycle time.

Corner smoothing interpolation methods were investigated in [11–13]; these methods
were applied to three- or five-axis machine tools. Sencer et al. [11] and Tajima et al. [12]
proposed similar methods for designing a finite impulse response filter to convolve the
speed command, transform discontinuous speed to continuous speed, and generate a
smooth corner path for both three-axis and five-axis machine tools. Other approaches have
employed the B-spline [14–18] or nonuniform rational B-spline (NURBS) [19,20] methods to
fit small line segments, which can reduce frequent ACC/DECs during machine movement.
To avoid frequent ACC/DEC that affects the machining efficiency and causes vibration
of the machine, thus damaging the surface quality, employing the B-spline method to fit
line segments prevents this issue [14,15]. In addition, Sun et al. [16] and Han et al. [17]
presented a real-time lookahead interpolation methodology involving a B-spline scheme
for short line segments. Because of the flexibility of NURBS curves, the methodology has
been applied to fit any irregularly shaped curves in robotics applications [19,20]. However,
the Bezier, B-spline, and NURBS curves developed for applications in machine tools are
more complicated and time consuming, which might hinder them from being widely used
in robot computer-aided manufacturing systems. Another approach involves designing
a finite impulse response (FIR) filter [21–24] to convolve the velocity profile and achieve
corner smoothing. This method provides a one-step solution for corner transition. Fang
et al. [23] proposed a one-step corner transition solution that reduces the influence of corner
errors by adjusting the feed rate. However, the FIR filtering method involves setting a time
constant of the FIR filter to limit acceleration and jerk. A larger time constant results in a
longer cycle time and an increase in corner tolerance.

In this study, a novel velocity profile overlap (VPO) algorithm for a robot interpolator
is presented. The algorithm employs the S-shaped profile approach to design the velocity
profile of line segments, and then overlaps each segment using overlapping time. The
proposed algorithm requires only adjusting the overlapping time between the two velocity
profiles to ensure that the kinematic constraints, velocity continuity, and corner smoothing
criteria can be achieved. The approach is very easy to implement. Furthermore, the
proposed algorithm can individually specify corner tolerances at each corner, which has not
been reported in the current literature. The experimental results indicate that the reduction
of cycle time, tracking error, and contour error outperforms those of other approaches.

This paper is organized into six sections. Section 2 introduces the S-shaped profile
used to generate a trajectory line segment and the orientation of the robot in the task space.
In Section 3, the VPO algorithm is introduced that can ensure that velocity is continuous be-
tween line segments and that the resulting corners are smooth. Moreover, corner trajectory
equations were derived to establish relationships among the overlapping time, machining
efficiency, and trajectory accuracy. A corner tolerance constraint (CTC) equation was then
derived, as described in Section 4, to enable recalculating the overlapping time and satisfy
the corner tolerance constraint. Section 5 presents the results of simulations and experi-
ments conducted on the HIWIN RT605 robot manipulator to validate the effectiveness of
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the VPO method. Finally, the VPO method was compared with the ADAI method [5] to
demonstrate its advantages. The conclusions are presented in Section 6.

2. Linear Motion Planning

Point-to-point (P2P) and linear motion are the two most common types of robot
trajectories. P2P is often used in pick-and-place applications. For P2P motion, only the
initial and final positions are set; the trajectory is not specified. Linear motion requires
designing an end-effector trajectory in the task space. The interpolated points at the end-
effector are transformed into joint commands through inverse kinematics to achieve linear
motion. Because velocity profiles designed for linear motion must include both translation
and orientation commands, these commands should by synchronized in the interpolator
(Figure 1a). Table 1 presents the toolpath information for Figure 1a, namely the position,
orientation, and feed rate of the robot manipulator. The orientation is represented by A, B,
and C, which indicate rotations around the X-, Y-, and Z-axes, respectively (Figure 1b).
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as the Euler angle, roll–pitch–yaw angle, angle–axis representation, unit quaternion, and 
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Figure 1. Robot manipulator. (a) Translation and orientation of a trajectory. (b) Rotations A, B, and C
around the X-, Y-, and Z-axes.

Table 1. Robot manipulator toolpath information.

No. Type Position (mm) Orientation (deg) Feed Rate
(mm/s)

Pi Linear X 368.0 Y 0.00 Z 293.5 A 180.0 B 0.0 C 90.0 F 100.0

Pi+1 Linear X 368.0 Y 200.0 Z 100.0 A 150.0 B 0.0 C 80.0 F 100.0

Pi+2 Linear X 268.0 Y −200.0 Z −100.0 A −150.0 B −10.0 C 100.0 F 100.0

A robot’s orientation is determined by a combination of rotations in the X, Y, and Z
directions. Various methods can be used to describe the orientation of a rigid body, such
as the Euler angle, roll–pitch–yaw angle, angle–axis representation, unit quaternion, and
Cayley–Rodrigues parameter methods. In this study, the equivalent angle–axis represen-
tation was adopted; this method is similar to the quaternion method but involves fewer
parameters. The rotation matrix in the equivalent angle–axis method can be represented by
a unit vector (u) and an angle (φ) of revolution about the u vector.

The parameters u and φ are used to rotate the orientation of the end-effector from
XYZ coordinates to X′Y′Z′ coordinates (Figure 2a). To obtain u and φ, rotation matrices for
the XYZ and X′Y′Z′ coordinates are defined as R1 and R2. The matrices R1 and R2 can be
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obtained from two arbitrary orientation commands (A, B, C) on the toolpath. A general
rotation matrix R can be calculated using Equation (1).

R = Rz(C)Ry(B)Rx(A)

=

 cos C − sin C 0
sin C cos C 0

0 0 1

 cos B 0 sin B
0 1 0

− sin B 0 cos B

 1 0 0
0 cos A − sin A
0 sin A cos A


=

 cos C cos B − sin C cos A + cos C sin B sin A sin C sin A + cos C sin B cos A
sin C cos B cos C cos A + sin C sin B sin A − cos C sin A + sin C sin B cos A
− sin B cos B sin A cos B cos A


=

 a11 a12 a13
a21 a22 a22
a31 a32 a33


(1)

To convert a rotation matrix R back to an orientation command, the rotation matrix
can be inverted by using Equations (2)–(4).

B = − sin−1(a31) (2)

A =

{
atan2(−a23, a22) i f cos B = 0
atan2(a32/ cos B, a33/ cos B) otherwise

(3)

C =

{
0 i f cos B = 0
atan2(a21/ cos B, a11/ cos B) otherwise

(4)

To transform R1 into R2, R1 must be multiplied by a rotation matrix R12. The relation-
ship between R1 and R2 can be expressed as follows, where R12 represents the rotation
matrix from R1 to R2:

R2 = R12R1 (5)

R12 = R2R1
−1 = Rφ,u (6)

The matrices R1 and R2 can be obtained from the orientation commands Pi and Pi+1.
Matrix R12 can then be calculated from Equation (6). However, the parameters u and φ are
still unknown. The equivalent angle–axis representation can be employed to determine
matrix R12 by applying Rφ ,u.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 19 
 

the XYZ and X′Y′Z′ coordinates are defined as R1 and R2. The matrices R1 and R2 can be 
obtained from two arbitrary orientation commands (A, B, C) on the toolpath. A general 
rotation matrix R can be calculated using Equation (1). 

( ) ( ) ( )
cos sin 0 cos 0 sin 1 0 0

    = sin cos 0 0 1 0 0 cos sin
0 0 1 sin 0 cos 0 sin cos

cos cos sin cos cos sin sin sin sin cos sin cos
    = sin cos cos cos sin sin sin co

z y xC B A

C C B B
C C A A

B B A A

C B C A C B A C A C B A
C B C A C B A

−     
     −     
     −     

− + +
+ −

R = R R R

11 12 13

21 22 22

31 32 33

s sin sin sin cos
sin cos sin cos cos

    =

C A C B A
B B A B A

a a a
a a a
a a a

 
 + 
 − 
 
 
 
  

 

(1)

To convert a rotation matrix R back to an orientation command, the rotation matrix 
can be inverted by using Equations (2)–(4). 

( )1
3 1s inB a−= −  (2)

( )
( )

23 22

32 33

atan 2 , cos 0
atan 2 / cos , / cos

a a if B
A

a B a B otherwise
− == 

  
(3)

( )21 11

0 cos 0
atan2 / cos , / cos

if B
C

a B a B otherwise
=

= 
  

(4)

To transform R1 into R2, R1 must be multiplied by a rotation matrix R12. The relation-
ship between R1 and R2 can be expressed as follows, where R12 represents the rotation 
matrix from R1 to R2: 

2 12 1= R R R  (5)

1
12 2 1 ,uφ

−= =R R R R  (6)

The matrices R1 and R2 can be obtained from the orientation commands Pi and Pi+1. 
Matrix R12 can then be calculated from Equation (6). However, the parameters u and ϕ are 
still unknown. The equivalent angle–axis representation can be employed to determine 
matrix R12 by applying Rϕ,u. 

  
(a) (b) 

Figure 2. (a) Rotation in and (b) parameters of the equivalent angle–axis representation. 

𝑿ᇱ𝑿
𝒀ᇱ𝒀

𝒁ᇱ 𝒁
u∅

𝜷
𝜸 𝒖

𝒖′𝒖′′ ∅ 𝒖𝒊

𝒖j

𝒖k

i

j

k

Figure 2. (a) Rotation in and (b) parameters of the equivalent angle–axis representation.

As shown in Figure 2b, the angle between the u vector and the i-k plane is represented
by γ, and β represents the angle between the u′ vector and the k-axis. The projection of
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the u vector onto the i-, j-, and k-axes is represented by ui, uj, and uk, respectively. The
following relationships can be determined from Figure 2b:

sin γ = uj (7)

sin β =
ui√

ui
2 + uk

2
(8)

cos γ =
√

ui
2 + uk

2 (9)

cos β =
uk√

ui
2 + uk

2
(10)

The rotation matrix Rφ ,u, which describes the rotation φ around vector u, can be
obtained as follows. First, vector u is rotated by angle γ on the i-axis to vector u′ located
on the ik plane; the corresponding rotation matrix is represented by Rγ ,i. Vector u′ is then
rotated by angle −β on the j-axis to vector u′′, which is located on the k-axis. This rotation
matrix is represented by R−β,j. Vector u′′ is then rotated by φ on the k-axis; the rotation
matrix is Rφ ,k. The reverse sequence of rotations and their respective opposite angles can
be expressed as Rβ,j and R−γ,i. After this sequence of rotations, the matrix Rφ ,u can be
represented as

Rφ,u = R−γ,iRβ,jRφ,kR−β,jRγ,i (11)

Rφ,u =

1 0 0
0 cγ sγ
0 −sγ cγ

 cβ 0 sβ
0 1 0
−sβ 0 cβ

cφ −sφ 0
sφ cφ 0
0 0 1

cβ 0 −sβ
0 1 0
sβ 0 cβ

1 0 0
0 cγ −sγ
0 sγ cγ

 (12)

where sγ = sinγ, cγ = cosγ, sβ = sinβ, cβ = cosβ, sφ = sinφ, and cφ = cosφ.
By substituting Equations (7)–(10) into Equation (12), the following equation can be

derived, where the abbreviation vφ = 1− cosφ is used:

Rφ,u =

 ux
2vφ + cφ uxuyvφ− uzsφ uxuzvφ + uysφ

uxuyvφ + uzsφ uy
2vφ + cφ uyuzvφ− uxsφ

uxuzvφ− uysφ uyuzvφ + uxsφ uz
2vφ + cφ

 =

a11 a12 a13
a21 a22 a22
a31 a32 a33

 (13)

The rotational angle and the unit vector can be obtained from Equations (14) and (15).
After u and φ are obtained, φ can be used as the variable for interpolation.

φ = ± cos−1[(a11 + a22 + a33 − 1)/2 ] (14)

u =

ux
uy
uz

 =
1

2sφ

a32 − a23
a13 − a31
a21 − a12

 (15)

As shown in Figure 1, the toolpath can be used to compute the translation distance
L and the rotational angle φ determined using Equations (1)–(15). The S-shaped design
method can be employed to generate a velocity profile for L or φ. The velocity profile can be
divided into five phases (Figure 3) by Equation (16), where Si represents the linear motion
distance L or rotational angle φ of the end-effector.

S1 = Vst + Jm(t− t0)
3/6 t0 ≤ t < t1

S2 = S1 + Vm(t− t1)− 0.5 · Jm ·
[
t2

2(t− t1)− t2
(
t2 − t1

2)+ (t3 − t1
3)/3

]
t1 ≤ t < t2

S3 = S2 + Vm(t− t2) t2 ≤ t < t3
S4 = S3 + Vm(t− t3)− Jm(t− t3)/6 t3 ≤ t < t4
S5 = S4 + Ve(t5 − t) + 0.5 · Jm ·

[
t5

2(t− t4)− t5
(
t2 − t4

2)+ (t3 − t4
3)/3

]
t4 ≤ t < t5

(16)

where Jm represents the maximum jerk, Vm represents the maximum feed rate, and Vs and
Ve represent initial and final velocity (usually 0), respectively.
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For example, consider the toolpath from Pi to Pi+1 for the position command for trans-
lation from (368, 0, 293.5) to (368, 200, 100) and the orientation command for rotation from
(180, 0, 90) to (150, 0, 80). The interpolation should simultaneously plan both the translation
and orientation commands. Table 2 presents the constraints on the interpolation parame-
ters, where Vlf and Vof represent the maximum feed rate for translation and orientation,
respectively, and Jlm and Jom represent the maximum jerk for translation and orientation,
respectively. The velocity profile for the translation is planned first; Equation (17) is used
to determine if the maximum jerk limit Jlm is exceeded. If so, the acceleration time can
be adjusted using Equation (18), and the orientation can then be planned in accordance
with the translation results. If the angular jerk still does not exceed the limit, planning
is complete. However, if the angular jerk exceeds the limit, orientation must be planned
first, and translation must be allocated afterwards in the same manner. In this example, the
translation distance is 278.28 mm and the rotational angle is 31.58◦; the results indicate that
translation can be planned first.

Jm = Vm/Trr
2 (17)

Trr =
√

Vm/Jm (18)

0
6R =


Px

Rφ,uR1 Py
Pz

0 0 0 1

 (19)

Table 2. Constraints on interpolation parameters.

Parameter Unit Value

Trr s 0.1

Vlf mm/s 100

Vof deg/s 100

Jlm mm/s3 10,000

Jom deg/s3 2000
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Figure 4 reveals that the resulting single program command achieves both translation
and orientation. After the interpolation points (Px, Py, Pz) and the rotation matrix (Rφ ,uR1)
for each sampling period are obtained, they can be substituted into Equation (19) to obtain
the rotation matrix (0

6R). The joint commands can then be solved through inverse kinematics
and used to command the motor drives, achieving synchronized translation and orientation
for linear motion.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 19 
 

, 10
6

0 0 0 1

x

u y

z

P
P
P

φ

 
 
 =
 
 
 

R R
R

 

(19)

Table 2. Constraints on interpolation parameters. 

Parameter Unit Value 
Trr s 0.1 
Vlf mm/s 100 
Vof deg/s 100 
Jlm mm/s3 10,000 
Jom deg/s3 2000 

Figure 4 reveals that the resulting single program command achieves both translation 
and orientation. After the interpolation points (Px, Py, Pz) and the rotation matrix (Rϕ,uR1) 
for each sampling period are obtained, they can be substituted into Equation (19) to obtain 
the rotation matrix ( 𝑹 ). The joint commands can then be solved through inverse kinemat-
ics and used to command the motor drives, achieving synchronized translation and ori-
entation for linear motion. 

  

(a) (b) 

Figure 4. Planning result of a single program command (a) Translation. (b) Orientation. 

3. Corner Smoothing 
In addition to single-line segment motion in positioning applications, corner interpo-

lation must also be considered for tracking multi-line segment motion in polishing and 
grinding applications. Corner smoothing techniques can be employed to improve machin-
ing efficiency and reduce vibration at junctions. The motion of end-effector translation 
and orientation should be designed to ensure smoothness and continuity throughout the 
entire trajectory. Conventional methods for generating a smooth trajectory without exces-
sive ACC/DEC can be categorized as ADBI and ADAI methods [5]. The ADBI method 
constrains the acceleration and the jerk of the trajectory; this prevents specifying the cor-
ner tolerance. However, the ADBI method can cause velocity discontinuities at block junc-
tions, which can result in vibration. As shown in Figure 5, the feed rate (tangential veloc-
ity) is distributed across x- and y-axes in accordance with the direction of movement. The 
axis velocities Vx and Vy at the junction are not continuous. 

D
is

.(m
m

)
Ve

l.(
m

m
/s

)
Ac

c.
(m

m
/s

2 )
Je

rk
(m

m
/s

3 )

An
gl

e(
de

g)
Ve

l.(
de

g/
s)

Ac
c.

(d
eg

/s
2 )

Je
rk

(d
eg

/s
3 )

Figure 4. Planning result of a single program command (a) Translation. (b) Orientation.

3. Corner Smoothing

In addition to single-line segment motion in positioning applications, corner interpo-
lation must also be considered for tracking multi-line segment motion in polishing and
grinding applications. Corner smoothing techniques can be employed to improve machin-
ing efficiency and reduce vibration at junctions. The motion of end-effector translation
and orientation should be designed to ensure smoothness and continuity throughout the
entire trajectory. Conventional methods for generating a smooth trajectory without exces-
sive ACC/DEC can be categorized as ADBI and ADAI methods [5]. The ADBI method
constrains the acceleration and the jerk of the trajectory; this prevents specifying the corner
tolerance. However, the ADBI method can cause velocity discontinuities at block junctions,
which can result in vibration. As shown in Figure 5, the feed rate (tangential velocity) is
distributed across x- and y-axes in accordance with the direction of movement. The axis
velocities Vx and Vy at the junction are not continuous.
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The ADAI method, in which digital convolution is used eliminate velocity discon-
tinuities on each axis, can resolve this problem (Figure 6). Corner tolerance occurs be-
cause the velocities of blocks N1 and N2 overlap. Digital convolution is performed using
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Equation (20), where N = τ/Ts, Ts represents the sample time and τ represents the time
constant of the ACC/DEC. The input signal x(kTs) represents a velocity command.

y(kTs) =
1
N

N−1

∑
i=0

x[(k− i)Ts] (20)
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Although the ADAI method is commonly used for interpolators, its applicability
is limited because it can only be applied to the entire trajectory; the tolerance for each
corner cannot be specified. To achieve both corner smoothing and a specified tolerance
function, this paper proposes a VPO algorithm that calculates the overlapping time of line
segments to produce blended S-shaped ACC/DEC profiles. This approach improves cycle
times and enables the trajectory to be systematically designed to meet different accuracy
requirements.

An example of the overlapping time of line segments is presented in Figure 7, which
depicts two identical blocks with velocity blending. First, blocks 1 and 2 are planned using
S-shaped ACC/DEC. Block 2 is then blended into block 1, and Tol is the overlapped area of
the two blocks; this represents as overlapping time. To calculate the overlapping time, the
OVLP parameter is defined as a percentage. If OVLP is 100%, the overlapping time is 2Trr,
and the junction of the two blocks occurs exactly at half of Vm. Therefore, 2Vc is equal to
Vm. The relationship between the OVLP parameter and the velocity can be expressed as
follows:

OVLP =
2Vc

Vm
× 100% (21)

where Vc is the velocity junction between the two blocks.
The relationship between Vc and the overlapping time (Tol) can be calculated using

the A–T diagram in Figure 7. For an S-shaped velocity profile, Am = Vm/Trr, where Am
represents the maximum acceleration and Trr is equal to the time of acceleration from 0 to
Am within the ACC/DEC period. Ac represents Vc at the junction and can be calculated
using Equation (22).

Ac =
AmTol
2Trr

=
VmTol
2T2

rr
(22)

The parameter Vc can be calculated by integrating the area of the A–T diagram and is
given as follows:

Vc =
AcTol

4
(23)
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By substituting Equation (22) into Equation (23), Vc can be represented by

Vc =
VmTol

2

8T2
rr

(24)
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Tol can be calculated from OVLP by substituting Equation (21) into Equation (24) as
follows:

Tol =

√
8VcTrr2

Vm
= 2Trr

√
OVLP

100
(25)

Equation (25) indicates that Tol is a function of OVLP and Trr. Because Trr is already
known, OVLP can be adjusted to quickly control the smoothing of the corner, improving
the cycle time. The velocity profiles on the x- and y-axes for different values of OVLP are
shown in Figure 8c,d, in which OVLP is equal to 0% and 80%, respectively. When OVLP
is 80%, the starting time for the N2 block moves forward by Tol on both the x- and y-axes.
The VPO approach ensures that the velocity is continuous at the junction for each axis, and
the cycle time decreases from 1.6 to 1.38 s. However, a corner tolerance can occur at the
junction if OVLP increases (Figure 8a). The next section describes the derivation of the CTC
equation, which can be used to systematically evaluate the corner tolerance on the basis of
the overlapping time.
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4. CTC Algorithm

A corner tolerance occurs when the velocity profiles of line segments overlap. The
maximum corner tolerance occurs at half of the overlapping time (Tol/2). Figure 9 presents
the overlapping area of Figure 7. Figure 9a shows the trajectory of block 1 and block 2 at
the corner after overlapping; P1, P4, and P3 and are produced from P1, P2, and P3. Here,
the distance from P2 to P4 is the maximum corner tolerance. Figure 9b presents the velocity
profiles of block 1 and block 2 and the overlapped velocity profile, where Vx1 and Vx2
represent the velocity profiles on the x-axis of block 1 and block 2, respectively, and the
blue solid line formed by P1, P4, and P3 represents the velocity profile of the two blocks
after overlapping. The maximum corner tolerance occurs at point P4.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 19 
 

  
(a) (b) 

Figure 9. Schematic of corner tolerance. (a) Trajectory. (b) X-axis velocity profile. 

The three-dimensional corner tolerance (ε) can be calculated from the x, y, and z pa-
rameters as follows: 

2 2 2
x y zε ε ε ε= + +

 
(26)

In Figure 9a, εx1 is the distance from P1 to P2 for block 1 in the x direction and can be 
calculated by integrating the area of BDE in Figure 9b; this area represents the distance 
from P5 to P2 in the X direction. To obtain εx1, the S1 term in Equation (16) can be replaced 
by Equation (27), where t is substituted with Tol/2 and J is substituted with Jx1, obtaining 
Equation (28). 

3 / 6 S Jt=  (27)

3
1

1 48
x ol

x
J Tε =

 
(28)

When considering the overlap effect, P5 should move to a distance projected on the 
x-axis relative to P4, represented as 𝜀௫ଶ. The value of 𝜀௫ଶ represents the area under ACD 
and is given by Equation (29), where Jx2 represents the jerk of N2 along the x direction. 

3
2

2 48
x ol

x
J Tε =

 
(29)

The distance between P4 and P2 on the X-axis is represented by 𝜀௫ and can be calcu-
lated using the following equation. 

1 2x x xε ε ε= −  (30)

Here, 𝜀௫ represents the corner tolerance 𝜀 projected on the x-axis. Similarly, the cor-
ner tolerance components in the y and z directions can be calculated using Equations (31) 
and (32). 

1 2y y yε ε ε= −  (31)

1 2z z zε ε ε= −  (32)

where 𝜀௬ଵ = 𝐽௬ଵ𝑇ଷ/48, 𝜀௬ଶ = 𝐽௬ଶ𝑇ଷ/48, 𝜀௭ଵ = 𝐽௭ଵ𝑇ଷ/48, and 𝜀௭ଶ = 𝐽௭ଶ𝑇ଷ/48. 
The relationship between Tol and 𝜀 can be obtained by substituting Equations (30)–

(32) into (26). 

Figure 9. Schematic of corner tolerance. (a) Trajectory. (b) X-axis velocity profile.



Appl. Sci. 2023, 13, 8789 11 of 18

The three-dimensional corner tolerance (ε) can be calculated from the x, y, and z
parameters as follows:

ε =
√

εx2 + εy2 + εz2 (26)

In Figure 9a, εx1 is the distance from P1 to P2 for block 1 in the x direction and can be
calculated by integrating the area of BDE in Figure 9b; this area represents the distance
from P5 to P2 in the X direction. To obtain εx1, the S1 term in Equation (16) can be replaced
by Equation (27), where t is substituted with Tol/2 and J is substituted with Jx1, obtaining
Equation (28).

S = Jt3/6 (27)

εx1 =
Jx1Tol

3

48
(28)

When considering the overlap effect, P5 should move to a distance projected on the
x-axis relative to P4, represented as εx2. The value of εx2 represents the area under ACD
and is given by Equation (29), where Jx2 represents the jerk of N2 along the x direction.

εx2 =
Jx2Tol

3

48
(29)

The distance between P4 and P2 on the X-axis is represented by εx and can be calculated
using the following equation.

εx = εx1 − εx2 (30)

Here, εx represents the corner tolerance ε projected on the x-axis. Similarly, the corner
tolerance components in the y and z directions can be calculated using Equations (31) and (32).

εy = εy1 − εy2 (31)

εz = εz1 − εz2 (32)

where εy1 = Jy1Tol
3/48, εy2 = Jy2Tol

3/48, εz1 = Jz1Tol
3/48, and εz2 = Jz2Tol

3/48.
The relationship between Tol and ε can be obtained by substituting Equations (30)–(32)

into (26).

ε =

√√√√( (Jx1 − Jx2)Tol
3

48

)2

+

((
Jy1 − Jy2

)
Tol

3

48

)2

+

(
(Jz1 − Jz2)Tol

3

48

)2

(33)

Summing the squares of Equation (33) produces Equation (34), where (Jx1 − Jx2)
2 +(

Jy1 − Jy2
)2

+ (Jz1 − Jz2)
2 is abbreviated to Jxyz

ε2 =
Tol

6 Jxyz

482 (34)

After jerk and corner tolerance have been determined, Tol can be obtained using
Equation (35), and the CTC equation can be expressed as follows:

Tol =
6

√
482ε2

Jxyz
(35)

In Section 2, the S-shaped design method was adopted to plan the translation and
orientation. In Section 3, the VPO method was applied to plan a line segment, solving
the discontinuity problem. By contrast with the conventional ADAI approach, the VPO
method can explicitly specify the corner tolerance for each corner. Finally, the designed
velocity profile can be integrated to obtain positions and substituted into Equation (19) to
generate the command points for each axis, completing the interpolation process.
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5. Results of Simulations and Experiments

Experiments were conducted to evaluate the effectiveness of the proposed algorithm
for the HIWIN RT605 robot manipulator. The robotic equipment was equipped with a PC-
based controller with a real-time operating system enabling multitasking; the sampling time
was set to 1 ms. The software included a human–machine interface, a numerical control
(NC) interpreter, a kinematics module, an interpolator, and a multiaxis contour trajectory
motion system. Figure 10 presents the hardware used in the experiment, which comprised
Sanyo Denki servo motors and drivers. The six-axis servo drives were commanded through
the EtherCAT protocol to ensure that the robotic equipment moved synchronously.
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5.1. Simulation Results for Difference OVLP Parameters

To evaluate the VPO methodology, a simple polygon trajectory comprising six line
segments was tested (Figure 11a). The corresponding NC code is listed in Table 3, and the
interpolation parameters are provided in Table 4. The trajectory planning process must
satisfy both kinematic constraints and tolerance constraints, and simultaneous translation
and orientation were required. The velocity and acceleration profiles of the tool center
point (TCP) at a full stop in Case 1 and in Case 2 are shown in Figure 12. In the full stop
scenario, movement stops completely at each corner. Although this case has no corner
tolerance, it has the longest cycle time of approximately 6.37 s. In Case 1, all of the OVLP
parameters were set to 100%, reducing the cycle time from 6.37 to 5.12 s (19.6%). However,
the corner tolerance was larger than in other cases. In Case 2, the OVLP parameters were
adjusted to control the smoothness of each corner. This method is more flexible than the
ADAI method. The corner smoothing results for each case are presented in Figure 11b–f.
In the VPO algorithm, the parameter OVLP controlled the level of overlap in the velocity
profiles. Higher OVLP values result in smoother corner trajectories and shorter cycle times.
However, increasing the OVLP parameter leads to a larger corner tolerance.

Table 3. NC code for simple polygon.

No.
Position (mm) Orientation (deg) Case 1 Case 2 Case 3 Feed Rate

(mm/s)X Y Z A B C OVLP (%) OVLP (%) Corner Tolerance (mm)

O 468 −100 0 180 0 0 - - - -

A 468 0 0 170 10 10 100 90 4.2 150

B 368 0 0 150 20 30 100 80 3.4 150

C 350 100 0 180 0 0 100 0 2.6 150

D 268 0 0 −160 10 −10 100 60 0 150

E 268 −100 0 −170 20 −30 100 70 4.0 150

O 468 −100 0 180 0 0 - - - -
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Table 4. Kinematic constraints of robot manipulator.

Parameters X-Axis (mm) Y-Axis (mm) Z-Axis (mm) Orientation (deg)

Velocity (mm/s, deg/s) 2000 2000 2000 500

Acceleration (mm/s2, deg/s2) 3500 3500 3500 2000

Jerk (mm/s3, deg/s3) 50,000 50,000 50,000 30,000
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5.2. Simulation Results for the CTC Method

To confirm that the VPO algorithm not only satisfies the kinematic constraints but can
also be used to specify the tolerance at the corner of the corner, another experiment, Case 3,
was performed. The NC code for Case 3 is shown in Table 3. The velocity and acceleration
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of the TCP for Case 3 are shown in Figure 13a. The feed rate reached 150 mm/s with a
maximum acceleration of −1430 mm/s2 and a cycle time of 5.45 s. Figure 13b presents the
profiles of axial velocity, axial acceleration, and axial jerk. The maximum axial acceleration
and jerk occurred on the y-axis and were −1684 mm/s2 and 20,000 mm/s3, respectively.
For orientation planning, the rotational angles were calculated from Equations (1), (6),
(14) and (15), obtaining 17.8◦, 33.2◦, 49.7◦, 25.1◦, 22.2◦, and 38.6◦. The results for the x,
y, and z rotations are presented in Figure 14. The maximum velocity was 48.48 deg/s,
the maximum acceleration was 509.7 deg/s2, and the maximum jerk was 5309 deg/s3.
Hence, the position and orientation of the end-effectors of the robot manipulator satisfy
the kinematic constraints. Finally, the rotation matrix and position were substituted back
into Equation (19), and the joint commands were obtained through inverse kinematics.
Figure 15 presents the joint commands, angular velocity, angular acceleration, and angular
jerk. The maximum values of velocity, acceleration, and jerk are −69.7 deg/s, −932 deg/s2,
and −9701 deg/s3, respectively.
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Figure 13. Kinematic profile of the TCP and axial direction. (a) Velocity and acceleration. (b) Velocity,
acceleration, and jerk.
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Figure 14. Simulation results for the orientation profile. (a) Position. (b) Velocity, acceleration,
and jerk.

To validate the effectiveness of the CTC equation in the VPO algorithm, the results for
Case 3 (Table 3) were analyzed. The corner tolerance is the shortest distance from the sharp
corner to the ultimate trajectory. By inputting the overlapping time calculated with the CTC
equation to the VPO algorithm, the corner tolerance at each corner can be correctly con-
strained within the specified tolerance. When the corner tolerances of A, B, C, D, and E on
the trajectory in Figure 16a were set to 4.2, 3.4, 2.6, 0, and 4.0 mm, respectively, the resulting
trajectories at each corner in Figure 16b–f satisfied these constraints with overlapping times
of 0.237, 0.226, 0.181, 0, and 0.22 s, respectively. Hence, the simulation results confirm that
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the proposed VPO algorithm, unlike the conventional ADAI approach, enables separately
setting corner tolerances at each corner to satisfy the specified constraints.
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Figure 15. Simulation results for the joint profile. (a) Position and angular velocity. (b) Angular
acceleration and angular jerk.
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5.3. Experimental Comparison of VPO and ADAI

The simulation results discussed in the previous sections clearly indicate that the
OVLP parameter affects the cycle time and corner tolerance. In this section, experiments
were conducted for the HIWIN robot RT605 using real trajectories; the results are shown
in Figure 17. Trajectories were obtained using the VPO method and the conventional
interpolation method (ADAI). The feed rate, tolerance, and maximum acceleration of the
TCP were the same for both algorithms. For the ADAI method with a time constant of
500 ms and the VPO method with the acceleration time set to 0.25 s and OVLP to 74%, the
contour and tracking errors in the x, y, and z directions were almost identical (Figure 17c,d).
However, the cycle time of the VPO method was only 8.98 s, 10.6% less than that of the
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ADAI method. However, if the acceleration time and OVLP parameter in the VPO method
were adjusted to 0.35 s and 58% (to maintain a similar cycle time), the contour error [25]
at point A decreased from 0.1841 mm to 0.1566 mm, a reduction of approximately 15.22%
(Figure 17e,f). This result indicates that the trajectory planning of the VPO algorithm is
excellent. Table 5 reveals that the cycle time of the VPO method was 9.19–12.30% lower
than that of the ADAI method. For Cases A, B, and C, the cycle times of the VPO method
were approximately 8.98, 9.18, and 6.42 s, respectively. Table 6 reveals that the contour error
in the VPO method was 6–15% lower than that of the ADAI method. For Cases D, E, and F,
the maximum contour errors of the VPO method were approximately 0.1566, 0.1693, and
0.1883 mm, respectively. The statistical results presented in Tables 5 and 6 demonstrate that
the VPO method outperforms ADAI in terms of both feasibility and performance.
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Table 5. Cycle times of the VPO and ADAI trajectories with approximately equal maximum contour
and tracking errors.

Case Feed Rate
(mm/s)

VPO ADAI Cycle Time

Acceleration Time (s)/
OVLP (%)

Maximum
Acceleration (mm/s)/
Time Constant (ms)

ADAI (s)/
VPO (s)/

Reduced (%)

Case A 100 0.25/74 1200/500 10.05/8.98/10.60
Case B 100 0.35/81 1600/700 10.11/9.18/9.19
Case C 150 0.28/85 1600/600 7.32/6.42/12.30

Table 6. Contour error of the VPO and ADAI trajectories with approximately equal cycle times.

Case Feed Rate
(mm/s)

VPO ADAI Point A Contour Error

Acceleration Time (s)/
OVLP (%)

Maximum
Acceleration (mm/s)/
Time Constant (ms)

ADAI (mm)/
VPO (mm)/

Reduced (%)

Case D 100 0.35/58 1200/500 0.1841/0.1566/15.22
Case E 100 0.44/81 1600/700 0.1826/0.1693/7.28
Case F 150 0.33/84 1600/600 0.2005/0.1883/6.08

6. Conclusions

This study proposed a VPO algorithm for designing robotic interpolators that uses the
velocity overlap method on each axis to remove the discontinuities caused by projecting
the velocity profile of the TCP onto each axis. A superior balance between smoothness
and cycle time can be achieved by adjusting the overlapping time. This paper described
the derivation of the CTC equation, which enables using the VPO method to individually
control the tolerance for each corner. Other interpolation design methods, such as the
conventional ADAI approach, do not incorporate these features. The experimental results
indicate that the VPO algorithm outperformed the ADAI method by reducing the cycle time
by 6.08–15.22% if the parameters of the methods were adjusted to obtain approximately
equal contour error. Experiments were also conducted to confirm that the contour errors
could be reduced by 9.19–12.30% if the cycle times of both algorithms were adjusted to be
approximately equal. The results confirm the effectiveness of the VPO method.
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