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Featured Application: Variational autoencoders, which are a type of neural network, are intro-
duced in this study as a means to virtually increase the sample size of clinical studies and reduce
costs, time, dropouts, and ethical concerns. The efficiency of variational autoencoders in data
augmentation is proven through simulations of several scenarios.

Abstract: Sample size estimation is critical in clinical trials. A sample of adequate size can provide
insights into a given population, but the collection of substantial amounts of data is costly and
time-intensive. The aim of this study was to introduce a novel data augmentation approach in the
field of clinical trials by employing variational autoencoders (VAEs). Several forms of VAEs were
developed and used for the generation of virtual subjects. Various types of VAEs were explored and
employed in the production of virtual individuals, and several different scenarios were investigated.
The VAE-generated data exhibited similar performance to the original data, even in cases where
a small proportion of them (e.g., 30–40%) was used for the reconstruction of the generated data.
Additionally, the generated data showed even higher statistical power than the original data in cases
of high variability. This represents an additional advantage for the use of VAEs in situations of high
variability, as they can act as noise reduction. The application of VAEs in clinical trials can be a useful
tool for decreasing the required sample size and, consequently, reducing the costs and time involved.
Furthermore, it aligns with ethical concerns surrounding human participation in trials.

Keywords: variational autoencoders; clinical trials; data augmentation; sample size

1. Introduction

Sample size estimation is a crucial component of clinical trials since the latter serves as
the cornerstone for ensuring safety and efficacy [1]. A representative sample of an adequate
size can provide insights into a given population. However, the collection of substantial
amounts of data may prove challenging, costly, and time-intensive. It is imperative that
each clinical trial be carefully organized through the development of a protocol that outlines
the study’s objectives, primary and secondary endpoints, data collection methodology,
sample selection criteria, data handling procedures, statistical methods and assumptions,
and, on top of that, a scientifically justified sample size [1].

The determination of sample size can vary significantly based on the study design,
outcome type, and hypothesis test specified by the investigator [2]. The estimation of ap-
propriate sample size is based on the given statistical hypotheses and several study design
parameters. The aforementioned factors encompass the minimal detectable difference that
holds meaning, estimated variability in measurement, desired level of statistical power,
and level of significance [2]. Achieving an optimal balance between an insufficient or exces-
sive number of participants in the sample is imperative [3]. Insufficient statistical power
resulting from a small sample size may lead to a failure to detect a true difference, thereby
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rendering significant variations among study groups statistically insignificant. The utiliza-
tion of an excessively large sample size can be deemed unethical, result in the wasteful use
of resources, and potentially impede the feasibility of a given study. Furthermore, there is
a growing expectation from funding agencies, ethics committees, and scientific journals
for the justification of sample size. In certain scenarios, such as the evaluation of highly
variable drugs in bioequivalence assessment, it is imperative to utilize large sample sizes as
specified by regulatory bodies such as the EMA in 2010 and the FDA [4–6]. Regardless of
the underlying cause, when variability increases, demonstrating bioequivalence becomes
more challenging, despite its existence. In general, as the degree of variability increases,
it becomes increasingly challenging to prove what is sought unless a larger sample size
is employed.

In this context, computational alternatives can be found for increasing the sample
size and thus decreasing human exposure [4]. Data augmentation is a methodology
employed to expand the sample by generating modified replicas of a given dataset through
the utilization of pre-existing data. This involves implementing slight modifications to
the dataset or utilizing deep learning techniques to produce novel data instances. The
potential of artificial intelligence (AI) as a means to achieve sustainable and enhanced
drug development has been acknowledged, leading to the exploration and discussion of
various applications in clinical trials [7]. The significance of data availability in the context
of data-driven and individualized healthcare trends cannot be overstated. However, the
process of producing useful insights from accessible data necessitates the utilization of
comprehensive AI models. These models must be built and trained using suitable datasets
to effectively accelerate and simplify every step within drug research, as has been noted in
previous studies [8,9].

Recently, the Alan Turing Institute initiated a project whose primary objective was
to investigate the potential influence of machine learning and artificial intelligence on the
planning, implementation, and interpretation of randomized clinical trials [10]. Through the
augmentation of human expertise and optimization of data utilization, artificial intelligence
has the capability to forecast the probability of trial or site failure, as well as clinical patient
outcomes. AI can also be used to analyze health records to identify appropriate cohorts
for clinical trials, accelerate trial recruitment, monitor clinical trials, and effectively notify
medical personnel and patients about available trial opportunities [10]. Additionally, the
simplification of entry criteria can enhance accessibility for potential participants.

In this vein, autoencoders have been identified as a highly effective and valuable
technique for generating synthetic or artificial data from real-world data. The autoencoder
is a variant of the artificial neural network that is employed for acquiring proficient codifica-
tions of unannotated data [11]. The autoencoder acquires knowledge through two distinct
functions: an encoding function that modifies the input data and a decoding function that
reconstructs the input data from the encoded representation. Variational autoencoders
(VAEs) are a type of generative model that operates under a probabilistic framework and
incorporates neural networks as a component of its broader architecture [12,13].

The aim of this study is to introduce a new data augmentation idea in clinical trials
by using VAEs to reduce the required sample size. In order to achieve this task, several
forms of VAEs were explored and used for the generation of virtual populations. The
VAE-generated subjects were appropriately set up in the form of an equivalence study. The
first step of this analysis was tuning the VAE system by selecting the most appropriate
hyperparameters. In the next step, the previously tuned VAE model was used to explore
several scenarios between the assessments of two groups of volunteers (i.e., test (T) vs.
reference (R)).

2. Materials and Methods

Artificial intelligence refers to the replication of human intelligence in machines and
computer systems. AI involves the development of intelligent machines that possess the
ability to perform tasks that are either equivalent to or surpass those of human beings [14].
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The procedure involves gathering data, developing usage guidelines, arriving at approxima-
tions or conclusions, and self-correcting (i.e., minimizing errors during training). In several
fields, including pharmaceutical sciences, both AI and machine learning approaches have
drawn a lot of interest. Deep learning involves learning successive layers of representations
that are more and more pertinent to the data [15]. The models known as neural networks,
which are organized in layers piled on top of one another, are used in deep learning to
learn these layered representations (nearly always). The most cutting-edge deep learning
techniques take advantage of recent advances in neural networks. Compared to other
machine learning techniques, they frequently have better prediction and generalization
skills. The discovery of drugs and repurposing are two fields of pharmaceutical research
where deep learning has attracted interest and gained recognition [16].

2.1. Strategy of the Analysis

Classically, in clinical trials, the sample size is explicitly stated in the study protocol
and, therefore, estimated before the initiation of the study. Estimation of the sample size
is a complex procedure that relies on several parameters of the trials, among which the
most important are measured endpoint (or endpoints), measurement scale of the endpoint,
variability of the endpoint, nominal level of the type I error, maximum anticipated type II
error, acceptance limits, and difference between the treatments (in the case of interventional
studies). However, when the variability of the endpoint(s) is high, the type I error is set to
be very low or we want to increase the statistical power of the study (i.e., decrease type
II error), there is a need for a large sample size. The latter leads to the inclusion of many
human participants, rather increased costs, a long duration of the study, a high possibility
of dropouts, etc. There is no much we can do to limit the sample size; only in the case
of bioequivalence studies, the scaled average approach has been proposed, where the
acceptance limits scale as a function of the residual variability of the study [4–6].

The aim of this work is to introduce a novel idea for reducing the required sample size
in clinical trials. The idea is as follows:

(a) Perform the clinical study using a limited number of volunteers;
(b) Using the results from “a”, apply in the next step a VAE in order to create virtual

subjects and increase the statistical power.

The ideal situation would be one where we could achieve high statistical power with-
out increasing the false positive rate (type I error). In the following lines, the methodology
and results are presented of such a method where the latter requirements are fulfilled. In
order to show that VAE works efficiently, an experimental method was set up. In brief, the
experimental part is outlined below:

i. Create N virtual subjects (e.g., N = 100) using Monte Carlo simulations. This is
considered the “original” dataset.

ii. Set the average endpoint value equal to 100 units and conduct sampling assuming
log-normal distribution [4]. Several levels of variability (e.g., 10%, 20%, 40%, etc.)
are used for the random creation of virtual subjects.

iii. Assume two treatments: Test (T) and Reference (R), as in the case of bioequivalence
studies. Several levels of the T/R ratios are explored.

iv. Use these virtual subjects to form a clinical trial; for the purposes of this work, a
parallel clinical design was used. Half of the subjects are considered to receive one
treatment (e.g., T) and the other half received the other (e.g., R).

v. Draw a random sample from the original dataset (steps “i” and “ii”) to create the
sub-sample.

vi. Apply VAE to the sub-sample created in the previous step (i.e., “v”). This leads to
the creation of the “generated sample of subjects”.

vii. Apply the typical statistics imposed by the regulatory authorities [5,6]. The statisti-
cal analysis compares T vs. R separately for the “original dataset”, “sub-sample”,
and “VAE-generated dataset” (or simply the “generated dataset”).
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viii. Record the success or failure of the study separately for the “original dataset”,
“sub-sample”, and “generated dataset”.

ix. Repeat steps “i”–“viii” many times (e.g., 500) to obtain robust estimates for the
percentage of acceptance (i.e., % success) of each of the three datasets.

x. Compare the performances obtained in step “ix”.

The set-up, validation, and fine-tuning of the VAE hyperparameters were conducted
exhaustively after step “vi”.

Generally speaking, it would be preferred for the VAE-generated dataset to result in
higher percentages compared to the sub-sampled dataset. It would be almost ideal if the
performance of VAE-generated data were similar to that of the original dataset. Finally, it
would be ideal if the performance of the VAE dataset were even better than the original
data. As will be shown later in this work, the latter exists, namely, the performance of
the VAE-generated data was even better than when using the original data in cases of
high variability.

2.2. Neural Networks—Autoencoders

In recent years, neural networks have gained popularity as state-of-the-art machine
learning models. There are multiple neural network architectures, each of which is opti-
mally suited for addressing distinct problem types. The fully connected neural network is
widely regarded as the most prevalent type of neural network.

The fundamental component of a neural network is the neuron, which is also referred
to as a node [11]. The vertical arrangement of numerous neurons creates a layer. In the
context of neural networks, the initial stratum is commonly referred to as the input layer,
while the final stratum is designated as the output layer. The number of nodes in the input
layer corresponds to the number of features in the model, while the number of nodes in
the output layer corresponds to the desired output. The intermediary strata within neural
network architecture are commonly referred to as hidden layers. The number of hidden
layers may vary based on the intricacy of the problem at hand. The variability of the
number of neurons in each hidden layer is contingent upon the intricacy of the problem
at hand. The determination of the optimal number of hidden layers and neurons is not
governed by a universal principle. Typically, the determination of such a choice is derived
from practical knowledge and trial and error, and it tends to vary based on the specific
dataset and problem at hand.

The determination of parameters and the number of layers in a neural network is a
crucial aspect of designing an effective and efficient model. In this study, these architectural
choices were made based on the following: (a) starting with and focusing on simple
architectures (for example, for both the encoder and the decoder, we tried to have a low
number of hidden layers and number of neurons per layer), (b) performing hyperparameter
tuning to find the optimal values for hyperparameters (see Section 2.4), and (c) using
regularization techniques (like dropout and weight decay) to avoid overfitting.

The process of training a neural network involves sequential observations passing
through the network, followed by forward and backward propagation [11]. The process
entails sequentially transmitting the input, from left to right, through the network’s layers.
Each layer executes a basic calculation (transformation) on the input and transmits the
resulting output to the subsequent layer. The computation involves a linear combination
of the input for every layer, which is weighted. Subsequently, an activation function, also
referred to as non-linear transformation, is applied prior to passing the output to the next
layer. The aforementioned procedure is iteratively executed until the input data traverse the
entirety of the neural network. Upon completion of the forward propagation process, the
error is computed by measuring the discrepancy between the output and the anticipated
output in relation to the loss function.

The method of modifying the biases and weights of a network is known as backward
propagation [11]. The ultimate objective of this particular stage is to reduce the cost function
value. The definition of the cost value in our application was the typical loss function, where
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the Kullback-Leibler (KL) loss part and the reconstruction part were equally weighted. The
gradient of the error function with respect to the weights was used to update the weights
during the training process. This was done in a right-to-left manner, where the end goal
was to minimize the error function by adjusting the weights in small incremental steps.
The complete iteration of both forward and backward propagation over the entire dataset
is referred to as an “epoch” in the context of machine learning. Upon the completion of
every epoch, the loss function, which represents the error, is computed. The objective is to
select a suitable quantity of epochs such that the error attains convergence. The number of
epochs may fluctuate based on the intricacy of the problem at hand.

Autoencoders (AEs) are a distinct class of neural networks that are commonly trained
to perform input reconstruction [12,13]. Various architectures of autoencoders exist and are
comprised of two distinct components, namely, the encoder and the decoder. The process of
encoding involves the mapping of the input information into a fixed-point representation in
a latent space. If the dimensionality of the latent space is lower than that of the input data,
the encoder will acquire a more parsimonious representation of the input data, resulting in
an incomplete autoencoder, namely, the number of neurons in the bottleneck layer will be
smaller than the number of neurons in the input and output layers. On the other hand, if
the latent dimension exceeds the input dimension, the autoencoder acquires a superfluous
depiction of the input data, resulting in an overcomplete autoencoder, namely, the number
of neurons in the bottleneck layer will be larger than the number of neurons in the input
and output layers.

The utilization of autoencoders can serve two distinct purposes. Firstly, in one sce-
nario, autoencoders can be employed to reduce noise in a given dataset. Secondly, in
another scenario, autoencoders can be utilized to identify intricate patterns within the input
data, which can subsequently enhance the accuracy of their reconstruction. The decoder
component receives the encoder output as its input and performs forward propagation
until it gets to the output layer. At this stage, the error is computed in relation to the
chosen loss function. The decoder possesses identical dimensions to those of the encoder,
albeit in a mirrored orientation [12,13]. Autoencoders undergo training via forward and
backward propagation, similar to other neural networks. Throughout the training process,
the autoencoder endeavors to minimize the error in reconstruction that exists between the
input and the rebuilt output. In neural networks, loss functions are used to quantify the
difference between the predicted outputs of the neural network and the actual target values.
In this study, the convergence of the algorithm was tested with respect to the value of the
loss function, which was computed at the end of each iteration (epoch). This means that
the value of the loss function at the last epoch was stabilized.

2.3. Variational Autoencoders

Variational autoencoders represent an expansion of conventional AEs [12,13]. In
conventional autoencoders, the encoder acquires a latent representation of the data, which
is subsequently utilized by the decoder to reconstruct the initial input data. The process is
executed deterministically, indicating that identical input will yield identical output. In
contrast to other methods, VAEs aim to establish a mapping between the input data and a
probability distribution across the latent space. Specifically, this distribution is represented
by the mean and variance of a Gaussian distribution, which is typically utilized. The ability
to perform random sampling from the latent space is a valuable technique as it enables
the subsequent utilization of this output as an input for the decoder component, thereby
facilitating the generation of new data.

The primary aim of VAEs is to reduce the reconstruction loss, which is similar to that of
a conventional AE. However, VAEs also strive to minimize the KL differences between the
acquired distribution and a prior distribution across the latent space. The KL divergence
quantifies the degree of resemblance between two probability distributions, especially
the extent to which distribution Q provides an adequate approximation of distribution P.
Assuming that x refers to the input data and z represents the latent variables or the encoded
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representation of the input data, the objective in the context of VAE is to approximate the
posterior distribution P(z|x), which facilitates the projection of data into the latent space.
Due to the unknown nature of P(z|x), a simplified estimation of Q(z|x) is utilized. In
the process of training a VAE, the encoder module is trained to minimize the discrepancy
between the posterior distribution Q(z|x) and the prior distribution P(z|x) by optimizing
the KL divergence between the two distributions. Consequently, the objective function of
the VAE comprises the divergence of the KL term, necessitating its minimization.

2.4. Tuning of Hyperparameters

In a neural network, such as a VAE, the most important hyperparameters refer to the
number of hidden layers, number of neurons per hidden layer, number of epochs, activation
function, optimization function, weight initialization, dropout rate, and regularization. In
this study, the optimization of hyperparameters was performed using a grid search. In
particular, several sets of values were predefined, and the performance of the VAE model
was exhaustively evaluated through an iterative process of trial and error [11]. Various
values were tested for epochs, such as 100, 500, 1000, 5000, and 10,000. In relation to the
activation function, the experiments were conducted utilizing both “softplus” and “linear”
activation functions for both the hidden and output layers. The “softplus” activation
function is a smooth, nonlinear activation function that converts the input (logit) into a
positive range. The “softplus” function is defined by Equation (1):

“Softplus” activation function = log(1 + eX) (1)

The “softplus” function is widely used since it is continuous and differentiable every-
where. Also, its smoothness helps in training neural networks more effectively through
gradient-based optimization algorithms, such as gradient descent. Different methods
were used to assess which hyperparameters better fit our application. This included the
percentage of convergence, degree of similarity between the generated data, and original
bell-shaped source data.

The KL component and the reconstruction component of the loss function were equally
weighted, and the dimension of the latent space was chosen. Finally, with regard to
the number of hidden layers and the number of neurons in each hidden layer, various
configurations were explored consisting of 2, 3, and 4 hidden layers for both the encoder and
decoder. The encoder consisted of 128, 64, 32, and 16 neurons, while the decoder consisted
of 16, 32, 64, and 128 neurons, respectively. Table 1 displays all of the aforementioned
factors tested during the development of the VAE.

Table 1. Hyperparameter tuning during the development of the variational autoencoders. In all cases,
the latent space dimension was equal to 1.

Number of
Epochs

Activation Function Weights of Loss Function Number of
Hidden Layers

Number of Neurons in
Hidden Layers

(from Left to Right)

Hidden
Layers

Output
Layer KL Part Reconstruction

Part Encoder Decoder Encoder Decoder

100 softplus softplus 1 1 2 2 32-16 16-32

500 linear linear 3 3 64-32-16 16-32-64

1000 4 4 128-64-32-16 16-32-64-128

5000

10,000

Key: KL, Kullback–Leibler difference.

All possible combinations of the factors listed on the left-hand side of Table 1 were in-
vestigated. The experimental runs detailed in Table 1 utilized the TensorFlow 2.10.0 Python
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package and Python version 3.7, with execution taking place within a “Jupyter notebook”
environment. Figure 1 depicts the general architecture of a variational autoencoder.
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Figure 1. Visual representation of a variational autoencoder. The process of encoding involves
compressing data from their original space to a latent space, while the decoding process involves
decompressing the data. The methodology involves the utilization of neural networks as both an
encoder and a decoder, with the aim of acquiring an optimal encoding–decoding scheme through an
iterative optimization process. Variational autoencoders aim to establish mapping between the input
data and a probability distribution across the latent space.

2.5. Monte Carlo Simulations

The methodology employed for the generation of subjects was as follows: Initially, a
sample of 100 subjects was generated for the reference (i.e., R) group through a random
process, utilizing a normal distribution with a mean of µR (i.e., the average endpoint value)
and a standard deviation of σR. Then, a random subsampling procedure was performed on
the original R group, whereby a proportion (gradually decreasing from 90% to 10% with
a step of 10%) of the data, termed “subsample size”, was selected from the distribution.
Subsequently, the subsample was utilized to train the VAE model, followed by sampling
from the inferred latent distribution and generating a total of 100 virtual subjects for the R
group. Similarly, the aforementioned procedure was also repeated for the test (i.e., T) group
of subjects. In the case of the T group, random generation was based on a mean endpoint
value of µT and standard deviations (σT). The aforementioned procedure is schematically
shown in Figure 2.

Several ratios between the average endpoint values of the T and R groups were
explored. In order to achieve this task, the mean endpoint value for R was set at 100,
while for the T group, it was equal to 1.00×, 1.10×, 1.25×, and 1.50× times that of R. In all
cases, the coefficient of variation (CV) was equal between the T and R groups, and three
different CV values were explored: 10% (low variability), 20% (medium variability), and
40% (high variability).

According to the aforementioned procedure, three different types of samples were
utilized in the simulations: (a) the original dataset, (b) the subsampled group, and (c) the
regenerated group by using the VAE system. To find out how well the VAE approach works,
statistical analyses were conducted to compare the original, subsampled, and made-up
data within and between the R and T groups. In addition, comparisons were made between
the T and R groups of each dataset, namely, the T vs. R of the original dataset, the T vs. R
of the sub-sampled dataset, and the T vs. R of the VAE dataset.
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erated datasets were generated for the test (T) and reference (R) groups. Then followed subsampling
to draw parts of the original population. Finally, the variational autoencoder was applied to the
subsampled data in order to produce the generated datasets. The aim of the generated datasets was
to exhibit the same properties as the original data. In this study, comparisons were made among the
three datasets (original vs. subsampled vs. generated), as well as between the T and R groups of
all datasets.

After the generation of the virtual subjects, they were appropriately classified into
two groups in order to construct a parallel clinical design [4]. Ln-transformation (Napierian)
was applied to the generated values before proceeding to the statistical analysis. Since
the data obtained from bioequivalence studies may not follow a normal distribution, the
official approach to address this issue is to apply a natural logarithm transformation to
the data before conducting statistical analyses [5,6]. Thus, regardless of the distribution of
the original data, ln-transformation is always applied in the field of bioequivalence before
statistical analysis [4–6]. After the analysis is completed, the results are transformed back
to the original scale to interpret the findings in a clinically meaningful way, as we did in
our study. The statistical analysis was performed using the typical bioequivalence criteria
(90% confidence interval), and a decision regarding equivalence or not was made if the 90%
confidence interval fell within the acceptance limits of 80.00–125.00% [5,6]. The statistical
assessment followed the principles of equivalence testing, namely, the two-one-sided test
(TOST) procedure [5,6]. The above-mentioned procedure was repeated several times (500)
to allow for reliable estimates.

3. Results

Initially, an analysis was carried out to ascertain the optimal activation function for
the hidden layers. The effectiveness of the linear and “softplus” activation functions was
assessed. The implementation of the “softplus” activation function yielded faster and
superior convergence. The “softplus” activation function demonstrated a convergence
rate of 92%, while the linear activation function exhibited a convergence rate of 74%.
Furthermore, the loss function’s final value was thrice higher when employing the linear
activation function in contrast to the “softplus” activation function.

The next step of the analysis was the assessment of the activation function employed in
the output layer. The “softplus” and linear functions were evaluated as potential activation
functions. The aim of the study was to assess the degree of similarity between the generated
data and the bell-shaped distribution of the source data. The outcomes are depicted in
Figure 3.

As illustrated in Figure 3, the data generated for both R and T groups exhibited a
bell-shaped distribution when a linear activation function was used for the output layer
(Figure 3b). It was observed that the utilization of a linear activation function for the
output layer resulted in a more optimal distribution as opposed to the “softplus” activation
function, which led to a right-skewed distribution (Figure 3a). Overall, it appears that the
utilization of the “softplus” activation function in the output layer yields an exponential-
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like distribution for the resultant data, whereas the adoption of a linear activation function
generates data with a bell-shaped distribution.
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The process of optimizing the number of epochs for model training was also executed.
The values of 100, 500, 1000, 5000, and 10,000 underwent testing. Each of the variables
mentioned above was used to train a VAE model and, after that, the trained model was
used to generate data for the R and T groups. The results are illustrated in Figure 4.
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Figure 4 presents a graphical representation that reveals a considerable degree of
variance in the data over 100 epochs (Figure 4a). Moreover, the data were not centered
around the actual mean of both the R and T groups, which was 100. Similarly, this pertained
to the situation in which 500 epochs were employed (Figure 4b). On the other hand, it was
observed that increasing the number of epochs beyond 1000 made a significant difference
in how well data were centered around the mean (which was 100) and how well variance
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was placed within the desired range (Figure 4c). A similar pattern was further observed
when the number of epochs was increased to 5000 and 10,000 (Figure 4d,e, respectively).

Finally, an investigation was carried out to ascertain the optimal number of hidden
layers for both the encoder and decoder components. The investigation analyzed the
values of 2, 3, and 4 as the number of hidden layers in both the encoder and decoder. As a
consequence, overall numbers of 4, 6, and 8 hidden layers were evaluated, correspondingly.
The shape and statistical properties of the generated data were evaluated for both the R
and T groups in all cases (Figure 5).
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Figure 5 shows that the generated data did not exactly match the normal distribution
of the original data and had a central tendency of about 100, especially when the encoder
and decoder were limited to two hidden layers (Figure 5a). The findings indicate that
there was a noteworthy enhancement in outcomes when the encoder and decoder were
equipped with three hidden layers (Figure 5b). This particular arrangement facilitated a
more effective capture of the shape and mean of the original dataset. This held true in cases
where both the encoder and decoder had four hidden layers (Figure 5c).

In the next step, a statistical analysis was conducted to compare the properties of
the generated datasets, which were obtained from subsamples of different sizes ranging
from 10 to 90, with those of the original dataset. The assessment of equivalence (or non-
equivalence) was explored for this objective. The research included exploration with diverse
autoencoder configurations and data variability. Specifically, coefficient of variation values
of 10%, 20%, and 40% were employed. Furthermore, the investigation examined the effects
of distinct activation functions, specifically “softplus” and linear, on the hidden layer of the
convolutional neural networks. The aforementioned procedure was implemented multiple
times utilizing Monte Carlo simulations and the percentage of equivalence acceptance
(i.e., the probability to reject the null hypothesis) was counted.

Figure 6 illustrates the probability of accepting equivalence under the TOST hypothesis.
The diagram depicts the diverse subsample levels, alongside the two groups characterized
by the three coefficients of variation values (10%, 20%, and 40%) and the two discrete
activation functions employed for the hidden layers.

Figure 6 demonstrates the trend of equivalence acceptance as the subsample size
proportion increased (from left to right) in the case of CVs 10% and 20% (Figure 6a,b,
respectively). On the contrary, when the CV was equal to 40%, the probability of accepting
equivalence rose with an increase in the subsample size (Figure 6c). This attribute could be
observed in both the R and T groups. Ultimately, it seems that the probability of rejecting
the null hypothesis (namely, declaring equivalence) is higher for the “softplus” when
compared to the linear activation function.



Appl. Sci. 2023, 13, 8793 11 of 20Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 21 
 

 
Figure 6. Probability of accepting equivalence between the original and the generated datasets for 
three levels of variability (CV): (a) 10%, (b) 20%, and (c) 40%. The results are shown separately for 
the test and reference groups, as well as the two types of activation functions (“softplus” and linear) 
used for the hidden layers. 

Figure 6 demonstrates the trend of equivalence acceptance as the subsample size pro-
portion increased (from left to right) in the case of CVs 10% and 20% (Figure 6a and Figure 
6b, respectively). On the contrary, when the CV was equal to 40%, the probability of ac-
cepting equivalence rose with an increase in the subsample size (Figure 6c). This attribute 
could be observed in both the R and T groups. Ultimately, it seems that the probability of 
rejecting the null hypothesis (namely, declaring equivalence) is higher for the “softplus” 
when compared to the linear activation function. 

In a subsequent step, T–R group comparisons were carried out. The datasets of the 
reference group, including the original, generated, and subsampled datasets, were com-
pared to their corresponding counterparts in the test group (Figure 7). Several subsample 
sizes were assessed, spanning from 10% to 90%, with intervals of 10%. This statistical anal-
ysis aimed to investigate equivalence and was performed across multiple CV levels. It 
should be mentioned that these comparisons were exclusively carried out in the case in 
which the activation function of the hidden layers was “softplus”. 

Figure 6. Probability of accepting equivalence between the original and the generated datasets for
three levels of variability (CV): (a) 10%, (b) 20%, and (c) 40%. The results are shown separately for
the test and reference groups, as well as the two types of activation functions (“softplus” and linear)
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In a subsequent step, T–R group comparisons were carried out. The datasets of the ref-
erence group, including the original, generated, and subsampled datasets, were compared
to their corresponding counterparts in the test group (Figure 7). Several subsample sizes
were assessed, spanning from 10% to 90%, with intervals of 10%. This statistical analysis
aimed to investigate equivalence and was performed across multiple CV levels. It should
be mentioned that these comparisons were exclusively carried out in the case in which the
activation function of the hidden layers was “softplus”.

Figure 7 reveals that for low/medium CV values (10% and 20%), the probability
of showing equivalence was quite high for all datasets. Especially for the original data
(Figure 7a), where the probability is 100% since both the T and R groups were assumed
to exhibit identical average performances at the endpoint. In the case of the subsampled
(Figure 7b) and generated (Figure 7c) datasets, the probability of accepting equivalence
was found to be low only in the cases using a very small part of the original dataset
(e.g., 10% or 20%), and it increased to almost 100% acceptance when portions larger than
30% of this original sample size were used. When the high variability of the data was
considered (CV = 40%), the observed performance was as expected. For the original dataset,
the probability of acceptance fell to low values (close to 20%, Figure 7a). Similarly, the
subsampled dataset showed poor performance since, not only for small portions of the
original data but also for large parts, the probability of acceptance remained quite low
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(Figure 7b). On the contrary, the VAE-generated (Figure 7c) dataset showed superior
performance since, for all portions, the probability of acceptance was much higher than for
the original and subsampled datasets. It is worth mentioning that even for low proportions
(e.g., 10% or 20%), the statistical power of the VAE data was three times higher than that of
the original data. For larger proportions, the probability of acceptance of the VAE-generated
data reached rather high values (close to 80%), which was around four times higher than
that of the original data.
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In Figure 7, it becomes evident that for highly variable data, the application of the
VAE worked rather efficiently as a data augmentation method. In all cases, the average
performance (i.e., the mean endpoint value) between the two compared groups (T vs. R)
was considered to be identical. In order to investigate additional situations where the two
compared groups differed, Figure 8 was constructed. In Figure 8, the mean values for the T
group are 100, 110, 125, and 150, while the mean value for the R group is always 100. This
means that the T group is thought to be the same (T/R = 1) or different by 10%, 25%, or 50%
(T/R = 1, 1.1, 1.25, and 1.50). Also, the statistical characteristics of the original, subsampled,
and generated data were investigated for a range of subsample sizes spanning from 10% to
90%. The impact of the CV on the clinical study outcomes was investigated based on two
distinct values, specifically, 10% and 20%. Several iterations were used for each case, and
the probability of accepting equivalence was subsequently calculated.

In all cases in Figure 8, a decrease in statistical power can be observed with an increase
in the T/R ratio. In particular, for the original data (Figure 8a), a high probability of
acceptance (almost 100%) can be observed when the two groups (T vs. R) do not differ
(T/R = 1) or differ a little (T/R = 1.1). As the discrepancy between T and R gets larger (to
25% or 50%), a dramatic decrease in statistical power is observed. A similar performance
is observed for the subsampled data (Figure 8b). Again, at low T/R ratios (e.g., 1 or
1.1), there is a high probability of equivalence acceptance, whereas, as the discrepancy
between T and R becomes higher, the statistical power decreases and reaches almost zero
values. Also, when small portions of the original data are used (around 10% to 30%), the
probability of acceptance is even lower. For the VAE-generated datasets (Figure 8c), the
results obtained for low T/R ratios (1 or 1.1) show a profile similar to the one observed
before for the original and subsampled data. However, a desired performance with much
higher statistical power can be observed when the two groups differ by 25%. For larger
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discrepancies, namely, when T/R = 1.50, as expected, the probability of acceptance falls to
zero since these high discrepancies in the average performance are outside the acceptance
limits of equivalence. Since the acceptance limits in equivalence trials are between 80.00
and 125.00, there should be almost no probability of acceptance for discrepancies higher
than 25%, namely, those exceeding the upper limit of 125.00 (or being below the lower limit
of 80.00). This is reflected in Figure 8c, where the probability of acceptance is found to be
almost zero when the T/R ratio is 1.25. The latter is in full agreement with the theoretical
expectations. In other words, by applying the VAE-generated methodology, high statistical
power is achieved for any variability level of the data, and, in addition, no false positives
are observed when the discrepancy between the two groups exceeds the acceptance limits.
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Figure 8. Probability of accepting equivalence between the test and reference groups for several
ratios (1, 1.10, 1.25, 1.50) of the average test (T)/reference (R) performance. The comparisons were
made separately for the original (a), subsampled (b), and generated datasets by the variational
autoencoder (c). In all cases, the “softplus” activation function was used for the hidden layers and
two levels of variability (coefficient of variation, CV) were used: 10% and 20%.

4. Discussion

The objective of the present study was to examine the process of reducing the required
sample size of a clinical study by generating novel data through the utilization of a varia-
tional autoencoder [11]. Conducting a clinical trial with a large sample size can be extremely
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expensive and time-consuming [1–4]. The recruitment, enrollment, and follow-up of a large
number of participants require significant financial and logistical resources. Also, in some
cases, using a large sample size might expose a larger number of participants to potential
risks associated with the experimental intervention. The enrollment of many participants
in a clinical trial can extend its duration, thus increasing the chances of there being external
factors that influence the results and potentially affecting the study’s validity. In addition,
with a large number of participants, there is a higher likelihood of attrition and dropout
during the course of the trial [1–4]. In this context, over the last few years, efforts have been
made to conduct in silico clinical trials and/or virtually increase the sample size in order to
face off all the previously mentioned drawbacks. Data augmentation techniques, such as
the introduced VAE method, involve generating additional data points based on existing
data. These methods can increase the effective sample size and improve the robustness of
the analysis.

In order to accomplish this task, datasets were generated for two groups of volunteers
(test vs. reference) using a normal distribution, while the conditions of an equivalence
clinical trial were simulated. The most important factors affecting the outcome of a clinical
trial refer to the mean difference between the two interventions (i.e., the relationships
between the average T and R values), the variability of the measured endpoint (i.e., the
coefficient of variation), and the sample size (i.e., the proportion of the “subsampled”
population with regard to the original dataset). The impact of all these factors on the
efficiency and robustness of the VAE methods was explored using a wide range of values.
The desired situation would be one where the performance of the generated datasets is
better than the one observed from the subsampled population. In other words, it would
be desirable for the generated dataset to show equivalence when this truly exists (namely,
when it is proven from the analysis of the original dataset) and to show non-equivalence
when this is also shown from the original dataset. Any discrepancy with the original dataset
indicates a deficiency in the analysis dataset. In order to investigate the efficiency of the
VAE method, the performance of the VAE-generated datasets was compared with that of the
original as well as with that of the subsampled dataset. In all cases, the performance of the
VAE-generated data was found to be superior to any subsampled group and similar to the
original (large) dataset (Figures 6–8). It is noteworthy that for high variabilities (Figure 7c),
the performance of the VAE method became even better than with the original dataset.

The R group was assumed to have a mean endpoint value of 100, while several end-
point means were utilized for the T group; the T means were set at 100, 110, 125, and 150 in
order to express identical performance (i.e., 100%) and a 10%, 25%, and 50% discrepancy,
respectively. The aforementioned data were produced using varying coefficients of varia-
tion, specifically, 10%, 20%, and 40%. Subsequently, the data generated through a random
process underwent subsampling at various percentages ranging from 10% to 90% of the
original size. The subsampled data were then utilized to train a VAE, which was ultimately
employed to generate novel data.

An initial analysis was conducted to determine the most suitable activation function
for the hidden layers. The utilization of the “softplus” activation function resulted in
more rapid and superior convergence. The initial stage involved conducting a test to
determine the superior activation function between “softplus” and linear for the hidden
layers. The findings indicate that the utilization of “softplus” activation leads to a higher
rate of convergence in the neural network. Additionally, the average value of the loss
function was observed to be three times greater when linear activation was employed
as opposed to “softplus” activation. The “softplus” activation function is a modified
version of rectified linear unit (ReLU) non-linearity designed to provide a continuous and
differentiable approximation of the ReLU function. Its primary application is to ensure that
the output of a computational model is always positive, thereby constraining the model
predictions to a specific range [11].

The next step involved conducting a test to explore the performance of the two tested ac-
tivation functions for the output layer (linear and “softplus”). In this case, the utilization of
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the linear activation function demonstrated a tendency for the produced data to exhibit a
greater degree of centralization around the true mean of the source datasets. Furthermore,
it was observed that the choice of a linear activation function was more effective in rep-
resenting the distribution shape of the initial data for both the R and T groups (Figure 3).
Subsequently, a determination had to be made regarding the appropriate number of epochs
used in the VAE. As illustrated in Figure 4, the most favorable number of epochs was
1000. This was because, for the cases where the number of epochs was 100 and 500, the
generated data did not exhibit a satisfactory level of centralization around the true mean of
100. Furthermore, while the results for the cases where the number of epochs was 5000 and
10,000 differed slightly from the case with 1000 epochs, the differences were not significant.
Based on the training time of the model, namely, the significantly more time needed as
the number of epochs increased, it was concluded that utilizing 1000 epochs was the most
effective option.

In addition, various numbers for the hidden layers were explored for both the encoder
and the decoder. In this study, the general idea of deciding on architectural choices was
based on the simplicity of the neural network and a trial-and-error procedure. Using a
backward propagation procedure optimized the biases and weights of the network, which
were reflected in the reduction of cost function values. For example, when utilizing two
hidden layers for each, the original data bell shape was effectively represented. However,
the generated data exhibited poor centering around the true mean (i.e., 100 for the R group).
In instances where there were three or four hidden layers, the dataset typically consisted
of approximately 100 observations and exhibited a well-defined bell shape. In accordance
with Occam’s razor principle, it is recommended that the optimal number of hidden layers
for both the encoder and decoder be set at three (Figure 5).

After adjusting the VAE system’s hyperparameters (number of hidden layers, activa-
tion functions, number of neurons, etc.), simulation results showed that the VAE system
could successfully recreate data that were similar to those of the original dataset. For
all scenarios studied, it was shown that the subsampled datasets, as expected, had the
worst performance. Because of the reduced sample size, the subsampled datasets failed to
imitate the behavior of the original data since they did not exhibit the required statistical
power to show equivalence whenever this existed (Figures 7b and 8b). On the contrary, the
generated data using the VAE showed increased statistical power when the data exhibited
either low or high variability (Figures 7c and 8c). It should be underlined that for all low
variabilities, the VAE-generated data exhibited a performance similar to the one observed
with the original data, even when only a small portion of the original data was used. When
the variability of the original data was low (i.e., CV = 10% or 20%), the use of one-third
of the original sample through the VAE system could lead to statistical power that was
only slightly less than that observed with the original data (Figure 7c). By increasing
the proportion of subjects to around 50–70%, almost the same statistical power could be
achieved. This attribute became even more evident in the case of highly variable data. In
this situation, the VAE system not only succeeded in showing a similar performance as that
for the original data but also presented even better behavior (Figure 7c). For highly variable
data, the VAE could act as a noise (variability) filter and lead to increased statistical power.

It should be stated that high variability (“noise”) is an issue of paramount importance
in the field of bioequivalence [4]. Highly variable drugs refer to medicines that exhibit
substantial variability in their pharmacokinetic parameters, specifically their absorption,
distribution, metabolism, and elimination processes, when administered to individuals.
However, for highly variable drugs, achieving strict bioequivalence can be challenging
due to the inherent variability in their pharmacokinetics. When conducting bioequivalence
studies for such drugs, the variability between individuals’ responses can lead to wider con-
fidence intervals, making it more difficult to demonstrate equivalence within the standard
regulatory requirements. As a result, regulatory authorities often have specific guidelines
and acceptance criteria for highly variable drugs to account for the expected variability.
These criteria could include widening the acceptable range for certain pharmacokinetic
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parameters (e.g., Cmax), using different statistical methods to evaluate bioequivalence
(e.g., scaled equivalence), or increasing the number of samples in the study [4]. Thus, it
is crucial to find methods to decrease this unwanted variability and avoid increasing the
number of study participants, the costs, and the complexity of the study.

The good performance of the VAE-generated data was also shown in cases where the
two comparison groups differed (Figure 8). Again, it was shown that the use of a VAE can
mimic the performance of the original data and, in cases of high variability, result in higher
statistical power (Figure 8c). These results are consistent with the existing literature in the
field of highly variable drugs [4]. The findings indicate that a sufficient level of acceptable
probability can be achieved even for data with high variability by utilizing only 40% of the
original data for accepting equivalence. Conversely, for data with low variability, a very
small proportion (i.e., 10%) of the original data can be adequate (Figure 6).

The present investigation is a novel attempt to employ an artificial intelligence tech-
nique in the field of clinical trials, aiming at reducing sample size. As mentioned above,
the high variability of data encountered in bioequivalence studies is a limiting factor for
proving equivalence and leads to inflation in type II errors. There are two ways to tackle
this problem: increase the sample size, which is followed by increases in the duration of the
study, cost, complexity, and ethical concerns [5,6], or apply computational approaches (such
as the use of scaled limits) [4–6]. In this study, neural networks were introduced as a tool to
increase the statistical power of clinical studies without recruiting additional volunteers
and avoiding all the drawbacks that follow. Thus, the use of VAE in the analysis of clinical
trials can reduce the time needed for completing a trial, reduce costs, and certainly be fully
in line with the ethical concerns of reducing unnecessary human exposure in clinical trials.

In particular, this study introduced the use of variational autoencoders in the statistical
analysis of clinical trials. A literature search revealed that there is a lack of research
pertaining to the use of artificial intelligence in clinical data augmentation. It is evident
that while there are articles that evaluate data augmentation methods for image data, there
is a dearth of literature that comprehensively assesses data augmentation techniques for
numerical data in the clinical trials field [17,18]. A recent study tried to increase the quantity
of data derived from a limited sample size [19]. This study aimed to create a simulated
population of human coronary arteries for the purpose of conducting in silico clinical trials
on stent design. The findings exhibit promise; however, there is a lack of information
pertaining to the requisite sample size needed to maintain the statistical properties of the
produced data in comparison to the original dataset. One objective of this investigation
was to examine precisely that [19].

The recognition of the potential of AI in clinical trials has prompted the examination
and discourse of its diverse implementations in the literature [7,10]. Artificial intelligence
possesses the ability to predict the probability of trial or site failure, along with patient
outcomes. Also, AI possesses the ability to scrutinize medical records to ascertain suitable
groups for clinical trials [10]. The acceleration of trial recruitment can be achieved through
the implementation of AI technologies, which can effectively notify medical personnel and
patients about available trial opportunities. Moreover, the implementation of AI technology
facilitates the streamlined monitoring of clinical trials, while the simplification of entry
criteria can potentially improve accessibility for prospective participants.

Thus far, data augmentation approaches have been applied in the field of image analy-
sis. Indeed, considerable emphasis has been placed on the utilization of data augmentation
techniques in the field of computer vision, particularly with respect to images. Quite
recently, Goceri presented a comprehensive survey of prior studies that have investigated
the field of data augmentation in the context of medical imagery [17]. The objective of
these studies was to enhance image data through the implementation of various techniques
such as random rotation, noise addition, sharpening, and shifting [20,21]. Other advanced
techniques, including generative adversarial networks, have also been proposed for simi-
lar purposes [22,23]. In the same vein, researchers have attempted to generate authentic
fetal ultrasound images in the context of medical imaging [24]. The process involved the
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extraction of the region of interest from each image using various techniques, followed by
the application of a de-noising algorithm and, ultimately, an approximation method. In
the present study, as the data consisted of randomly generated numerical values conform-
ing to a normal distribution, the initial two steps were deemed unnecessary. Variational
autoencoders have also been used in the augmentation of medical images [25]. Addition-
ally, Chadebec and colleagues attempted to implement data augmentation techniques for
high-dimensional data, such as images [26].

VAEs have already been successfully applied in diverse scientific areas. In a study,
a conditional VAE was used for intrusion detection in an internet of things network [27].
The significance of the latter is quite important as the economic importance of intrusion
detection systems expands, rendering them susceptible to future intrusion attacks. The
authors utilized a conditional VAE with a distinct architecture that incorporated intrusion
labels within the decoder layers. The proposed methodology exhibited several advantages,
such as a lower level of complexity, high accuracy, and superior classification outcomes
when compared to other well-known classifiers [27]. Another study utilized VAE in the area
of choice modeling [28]. Choice modeling plays a pivotal role in transportation research,
particularly in the areas of demand forecasting and infrastructure development. The process
comprises two primary stages: the generation of a set of choices and the modeling of the
decision-making process based on the provided choice set. The procedure of generating
choice sets is very important as the inclusion or exclusion of certain options in the choice
set can lead to inaccuracies in estimating parameters. The authors developed a generalized
extreme value model that served to connect the value-added evaluation approach with
choice modeling [28]. In another recent study, the authors applied a VAE model along with
image processing methods in game design [29]. This study is considered to be the first to
investigate various mathematical properties associated with VAE models. The VAE model
demonstrated its proficiency in data clustering, and it was observed to be particularly
efficient in generating images that exhibit a certain graphical structure or in managing and
creating images that have low resolution demands [29]. Finally, another study presented a
novel approach that combined a disentangled VAE with a bidirectional long short-term
memory network backend in order to detect anomalies in heart rate data collected during
sleep using a wearable device [30]. The performance of this model was compared with that
of other established anomaly detection algorithms. It was shown that the developed model
exhibited superior performance across a wide range of scenarios and with all participants
under consideration [30].

In this study, VAEs are proposed as a data augmentation method in clinical trials,
namely, as a way to reduce the required sample size. VAEs can be considered an extension
of traditional autoencoders [11]. In contrast to autoencoders, variational autoencoders
employ an encoder network that maps input data to a multivariate normal distribution,
rather than a fixed point. In other words, VAEs strive to create a correlation between the
input data and a probability distribution throughout the latent space [11–13]. The use of
VAEs offers several advantages; for example, they have been identified as a highly effective
and valuable approach for the development of generative models, namely, models that
are utilized to produce novel synthetic or artificial data based on existing data. A notable
benefit of VAEs in comparison to conventional autoencoders lies in their ability to generate
novel data from the same embedding distribution as the input data through sampling
from the embedded distribution. These unique features were exploited in this study in
order to virtually increase the sample size of a clinical trial. This study showed that by
applying VAE, it became feasible to use only 20% of the original dataset without changing
the true outcome of the study (Figure 6a,b). It is worth noting that even for data exhibiting
high variability (e.g., 40%), the use of a VAE can reduce the need for a sample size to less
than half of the one typically needed for a trial (Figure 6c). This dramatic reduction in
sample size can accelerate clinical trials, significantly reduce costs, and certainly diminish
human exposure. To the best of our knowledge, this study represents the first attempt



Appl. Sci. 2023, 13, 8793 18 of 20

to employ autoencoders (and neural networks in a general sense) within the domain of
clinical research aimed at reducing the necessary sample size.

A limitation of this study is the limited number of iterations performed for each
scenario. Considering the quite long duration of execution, the completion of 500 runs
consumed a considerable amount of time. However, within the realm of clinical trials,
this quantity may be deemed modest, and, in any case, this number of iterations offered
an adequate degree of convergence, as depicted in Figures 6–8. Another possible limita-
tion is the fact that the statistical analysis performed in this study was based only on the
equivalence criterion, expressed in the context of the two-one-sided t-test procedure [4].
However, this test is frequently utilized in clinical trials, required by regulatory authorities
(e.g., FDA, EMA), and explained in detail from a regulatory standpoint [5,6]. Additional
clinical designs (e.g., crossover, replicate, etc.) and statistical hypotheses must be explored,
as in the case of non-inferior and superior clinical trials. In addition, with regard to the
model architecture, it may be worthwhile to investigate more sophisticated models that
incorporate additional hidden layers and/or a greater number of neurons per layer, while
taking computational efficiency into account. Also, it is worth exploring additional activa-
tion functions that could be applied to the hidden and output layers. Finally, application to
real clinical data, as in the case of any computational approach, is necessary before adopting
it in practice. It should be underlined that the integration of real data into simulated studies
is essential for improving the accuracy, reliability, and applicability of the simulations, mak-
ing them valuable tools for understanding real-world phenomena, making predictions, and
informing decision-making processes. A comparative analysis of applying the introduced
VAE procedure to real clinical data would allow for the identification of its applicability
and efficiency.

5. Conclusions

The aim of this study was to introduce the use of neural networks, particularly vari-
ational autoencoders, as a tool to virtually increase the sample size in clinical studies
and thereby decrease the required number of actual participants. This study began by
developing the most appropriate architecture for the VAE and tuning hyperparameters,
such as the number of hidden layers (for both the encoder and the decoder), number of
neurons per layer, selection of the activation function, number of epochs, and weights.
The next step involved applying the developed VAE model in simulated Monte Carlo
clinical studies under various scenarios that can occur in practice. These scenarios included
several levels of variability in the measured endpoints, different average performances
between compared groups, and varying sizes of the subsampled group. The efficiency
of the VAE-generated data was then compared with that of the original data and also
against that of the subsampled data. In all cases, using the VAE-generated data resulted
in an increase in the statistical power of the study, especially in cases of high variability.
Importantly, the type I error was kept at low values and remained at the same level as with
the original data, while the type II error of the VAE method was even lower compared
to the original datasets. Overall, the combined use of VAE with Monte Carlo simulated
clinical trials demonstrated the desired performance, leading to less human exposure in
clinical studies and significantly reduced costs and time for trial completion. To the best of
our current understanding, this study represents a novel effort to employ autoencoders
and neural networks within the realm of clinical research, specifically aiming to reduce the
necessary sample size.
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