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Abstract: Multi-robot systems can perform more complex tasks with high precision and large loads
than single-robot systems. The calibration of the base coordinate system is the basis and premise to
ensure the collaborative operation between the dual-robot. In this study, a dual-robot calibration
system based on calibration tooling components was established, which could quickly and accurately
obtain the relative position between dual robots. Based on three reference measurement points of the
orthogonal distribution in the calibration tool coordinate system, a mapping relationship between
the distance from the reference measurement point to the robot end point and the parameters of the
robot base system was established, and a fast dual-robot base system parameter calibration solution
method based on "three-point measurement calibration" was proposed. The experimental results
show that this method can quickly and accurately obtain the transformation relationship between the
dual robot base coordinate systems. The accuracy and efficiency of the calibration have been greatly
improved. It is of great significance for meeting the requirements of high efficiency, low cost, and
easy operation in the factory application process.
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1. Introduction

Robots have exhibited extremely high work and execution capabilities in the fields
of machining, production, and assembly, and are highly adaptable to harsh work environ-
ments [1,2]. Although robot technology has made great progress, in the face of increasingly
complex tasks, the load capacity and working space of a single robot are limited, and
some complex large-scale load tasks cannot be completed by a single robot. In this case,
multi-robot collaborative systems are needed. Compared with a single robot, multiple
robots have several advantages such as better flexibility, collaboration, and reliability [3].

Multi-robot systems have been widely used in the medical field [4,5], aerospace [6,7],
and industrial applications such as welding and assembly [8]. For example, Guo et al. [9]
proposed a non-destructive testing scheme for semi-enclosed workpieces with a dual-robot
system and used it for testing composite parts with complex curved surfaces. Pelle-
grinelli et al. [10] proposed a multi-robot overall cell design and motion planning opti-
mization method to reduce the manual work for assembling metal panels. In addition,
Talasaz et al. [11] used a tactile dual-arm master–slave remote operating system to measure
the interaction force between the tissue and the tool and found that direct force feedback
could minimize tissue damage. In summary, the multi-robot system has been widely
used to fulfill high-precision, large-load, and complex tasks, exhibiting high efficiency and
desirable effects.
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The calibration of the dual-robot system mainly solves the problem of the coordinate
matrix relationship of robot hand-eye, base coordinate-base coordinate, and tool-flange [12].
Among them, the calibration of the single robot system also includes robot hand-eye and
tool-flange calibration [13,14]. Therefore, the calibration of the dual-robot base coordinate
system is the basis, prerequisite, and necessary condition for realizing the dual-robot
collaborative operation. For the base coordinate system of dual-robot, there are mainly two
calibration methods, namely, contact and non-contact [15].

Non-contact calibration generally obtains the pose relationship of the dual robots
through external sensors such as cameras and laser trackers. Ren et al. [16] proposed
a calibration method for the 3D laser sensor and robot pose, and the test showed that
the calibration accuracy reached 0.062 mm. Nguyen and Pham [17] provided a rigorous
derivation method for solving the covariance of X in the AX = XB problem, and A and B are
random perturbation matrices. The experimental results show that this method has good
accuracy in predicting the covariance of the hand-eye transformation. Zhuang et al. [18]
proposed a linear solution. Given the transformation from the robot base frame to the
robot flange frame, the transformation matrix from robot world to robot base and from
robot tool to robot flange coordinate frames can be obtained by measuring the pose of
the robot end-effector. Tan et al. [19] converted the underactuated robotic hand and soft
finger calibration problem into an AX = YB problem and compared three methods based
on nonlinear optimization and evolutionary computation. In addition, Ruan et al. [20]
used the binocular vision system and the method of coordinate transformation theory to
obtain the spatial pose relationship between the base coordinate and the base coordinate
of the grinding robots. Zhao et al. [7] proposed a dual-robot kinematic modeling and
base frame calibration method for an automatic drilling and riveting system of aircraft
panel assembly. The experimental results showed that the positioning accuracy of the
dual-robot was 0.1 mm and 0.07◦, respectively, and after compensation, the calibration
accuracy of the base frame after compensation improved from 0.187 mm and 0.052◦ to
0.053 mm and 0.022◦, respectively. Fan et al. [15] used a vision-based fast base frame
calibration method to obtain the relative pose of the coordinating robot by marking images
to meet real-time calibration requirements. Experimental results showed that the accuracy
of this calibration method reached 2 mm and 0.1◦. To sum up, X, Y, and Z in these methods
are obtained step by step, and there will be cumulative errors in the calibration process,
thus affecting the reliability of the calibration results. In order to reduce the errors of the
above calibration methods, Wang et al. [21] proposed a linear approximation iterative
algorithm to solve the matrix equation AXB = YCZ, achieving simultaneous calibration
of hand-eye, tool-flange, and robot-robot for a dual-robot system. Wu et al. [22] and Ma
et al. [23] used iterative and probabilistic methods to simultaneously solve X, Y, and Z
in the multi-robot system, respectively. However, it takes a long time for the iterative
method to calculate, and the probabilistic method is seriously affected by noise interference.
Wang et al. [12] proposed a new dual-robot calibration method by combining the closed-
form method based on the Kronecker product and the iterative method of the convex
function optimization problem. This method improved the efficiency and accuracy of
iteration. Fu et al. [24] proposed a calibration problem based on dual quaternion and
singular value decomposition algorithm, and simulation and experiment verified higher
calibration accuracy of this method. Qin et al. [25] proposed a combined solution to solve
the unknown parameters in the AXB = YCZ equation based on the dual quaternion closed
form solution and Levenberg Marquardt (LM) iterative solution, realizing the calibration
of the dual-robot system in orthopedic surgery. Although these non-contact calibration
methods can be automated, the dual-robot system using this method is complex with high
cost, and sensor measurement errors will cause calibration errors. These problems limit its
batch application in industrial production.
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Contact calibration uses special tools for auxiliary positioning and calculates the
relative positional relationship of the base coordinate system. Gan et al. [26] proposed a
dual-robot base coordinate calibration method only using a series of “handclasp” operations
and corresponding joint information. Quaternion and Lagrange multiplier methods are
used to carry out the iteration of the orthogonal normalization rotation matrix. However,
when these methods are used, the calculation process is complicated, and manual operation
will enlarge the calibration error. Wang et al. [27] proposed a method using the unit
quaternion to calibrate the robot base coordinate system, which improved the orthogonality
of the rotation matrix, and this method measured five different tool center points (TCPs),
but the TCP operation was time-consuming and inaccurate. Zhang et al. [8] used the
three-point calibration method to complete the calibration of the dual-robot base coordinate
system for the welding process. By adding a calibration bar at the end of the dual robots,
the dual robots were driven to position at three points in space, and the pose transformation
matrix of the dual robots was solved. Lu et al. [28] realized the conversion between the
base coordinates of the dual robots by measuring the coordinates of three non-collinear
calibration points. They proposed an optimization method based on Lie algebra exponential
mapping to ensure the orthogonality of the rotation matrix. Kong and Yu [29] proposed
a calibration method based on three non-collinear points to establish a new coordinate
system, which completes the calibration through transformations between coordinate
systems. Deng et al. [30] proposed a three-point calibration method using laser sensor and
buzzer. Wang et al. [31] used a planar projection-based asynchronous calibration method
with two calibration points to improve calibration efficiency and accuracy. Although
the contact calibration method has low cost and simple operation, the calibration tool
is not a standard component, and its universality needs to be improved. The manual
teaching operation will also cause a significant error in the specific constraint posture
formed by the robot. The errors will accumulate in the calibration process, thus decreasing
calibration accuracy.

The above analysis shows that the non-contact calibration method is of high accuracy,
but it is accompanied by an increase in cost, while the contact calibration method is
of low accuracy, and it cannot meet the needs of processing, production, and assembly.
Considering this, the current study proposes a “three-point measurement calibration”
multi-robot calibration method. This method obtains three positions of the end adapter
relative to the wire sensor by adjusting the pose of the robots. Then, the relationship
between the calibration tooling coordinate system and the dual-robot base coordinate
system is established by using the sensor line length, and then the transformation matrix
between the dual-robot base coordinate systems is obtained. The experimental verification
is carried out on the platform of the dual-robot collaborative system.

2. Multi-Robot Environment

In a multi-robot collaboration platform, robots need to work collaboratively. Therefore,
the positional relationship between robots needs to be obtained. In the construction of
the robot collaboration platform, due to the large weight and size of the robot, robot track
and other components, there will be deviations from the designed installation size, so it is
necessary to calibrate the robot after the installation is completed.

The multi-robot collaborative platform used in this paper is mainly composed of two
industrial robots, two robot tracks, and a rotary workpiece table (Figure 1). By replacing
the end tool of the robot, the collaborative platform can realize functions such as robot
milling, welding, measurement, and assembly.
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Figure 1. Schematic diagram of dual-robot collaboration.

3. Robot Calibration Principle
3.1. TCF Calibration

The calibration of the robot tool coordinate system is directly related to the positioning
of the tool pose, which can affect the accuracy of the robot machining or assembly parts.
The function of TCF calibration is teaching the robot to the top of the calibration rod and
obtaining the pose transformation matrix from the tool coordinate system to the end of
the robot body by the known tool coordinate system Euler angle, position and robot joint
angles, and other information.

As shown in Figure 2, defining the tool coordinate system of the robot as {T}, the body
flange end coordinate system as {E}, and the base coordinate system as {B}. According to
the coordinate system conversion relationship:

HT
E =

(
HE

B

)−1
HT

B (1)
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In Formula (1), HT
B is the transformation matrix of the tool coordinate system {T}

relative to the robot base coordinate system {B}, HE
B is the transformation matrix of the

robot flange end coordinate system {E} relative to the base coordinate system {B}, and HT
E

is the transformation matrix of the robot tool coordinate system {T} to be obtained relative
to the flange end coordinate system {E}.

When the teaching robot is at the top of the calibration rod, HT
E can be calculated from

the positive kinematics by changing the angle of each joint. By reading and recording Euler
angles α, β, γ and their positions px, py, pz from the teach pendant, the transformation
matrix of the tool coordinate system {T} relative to the robot base coordinate system {B}
can be expressed as:

HT
B = Rotz(α)Roty(β)Rotx(γ)Trans

(
px, py, pz

)
=


n11 n12
n21 n22

n13 px
n23 py

n31 n32
0 0

n33 pz
0 1

 (2)

InFormula(2), n11 = cos αcos β, n12 = cos αsin βsin γ− sin αcos β, n13 = cos αsin βcos γ+
sin αsin γ, n21 = sin αcos β, n22 = cos αsin βsin γ + cos αcos γ, n23 = sin αsin βcos γ −
cos αsin γ, n31 = −sin β, n32 = cos βsin γ, n33 = cos βcos γ.

3.2. Base Coordinate Calibration of Multi Robots

Since the robot collaboration needs to determine the positional relationship between
the robots, two robots or even multiple robots can perform different processes on the same
part to achieve an orderly and fast processing process. For the base coordinate calibration
of dual-robot, the three-point measurement and marking method is proposed, which has
the characteristics of being fast, low cost, high accuracy, and easy implementation.

The calibration tool is fixed on the steel plate base between the two robots. The tool
guide rod can be made in two different directions (can be vertical or horizontal) by adjusting
the upper knob of the tool. After adjusting the position of the wire sensor, the locking
screw should be locked (Figure). In Figure 3, {Bi} is the robot base coordinate system
(i = 1, 2 are robot 1, 2),

{
Tij
}

is the robot tool coordinate system (j = 1, 2, 3 are the three
points taught by the robot tool), {G} is the calibration tool base coordinate system, {Pk} is
the calibration point coordinate system (k = 1, 2, 3; where p1, p2 are two non-coincident
points along Z-axis direction of the base coordinate of the calibration tool {G}, and p3 is
the point along the X-axis direction of {G}), which satisfies that p1, p2 and p3 are coplanar.
The purpose of the dual-robot calibration is to determine the transformation matrix HB1

B2
of the robot base coordinate system {B1} relative to the robot base coordinate {B2}. The
requirements for HG

Bi
are as follows:

[
pk(Bi)

, 1
]T

= HG
Bi

[
pk(G), 1

]T
(3)

HB1
B2

= HG
B2

(
HG

B1

)−1
(4)

In Formula (3), pk(Bi)
is the position of the calibration point pk relative to the base

coordinate system {Bi}, and pk(G) is the position of the calibration point pk relative to the
base coordinate system {G} of the calibration tool. In Formula (4), HG

B1
is the transformation

matrix of the calibration tool base coordinate system {G} relative to the robot i = 1 base
coordinate system {B1} and HG

B2
is the transformation matrix of the calibration tool base

coordinate system {G} relative to the robot i = 2 base coordinate system {B2}.
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Figure 3. Principle of dual-robot calibration.

The three-point measurement and marking method determines the position of the
calibration point. As shown in Figure 4, the cable output end of the positioning wire sensor
is the calibration point pk which connecting the robot tool end adapter through the rope.
The robot end adapter is taught to three points

{
Tij
}
(j = 1, 2, 3) (actually, there should be

more than three points in the experiment). Measuring the length of
{

Tij
}

to {Pk} as Lij_k,
and reading the position of the coordinate system

{
Tij
}

from the teach pendant as tij, the
position of the calibration point pk(Bi)

can be calculated by the following formula∥∥∥tij − pk(Bi)

∥∥∥ = Lij_k (5)

In Formula (5), ‖n‖ is the Euclidean norm on Euclidean space R3.
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As shown in Figure 5a, it is determined that the unit direction vector X̂G, ŶG, ẐG of
the calibration tool base coordinate system {G} is projected to the robot base coordinate
system as X̂G(Bi)

, ŶG(Bi)
and ẐG(Bi)

.

ẐG(Bi)
=

p1
2
‖p1

2‖
=

p1(Bi)
−p2(Bi)∥∥∥p1(Bi)
−p2(Bi)

∥∥∥
ŶG(Bi)

=
ẐG(Bi)

×p3
2

‖p3
2‖

=
ẐG(Bi)

×
(

p3(Bi)
−p2(Bi)

)
∥∥∥p3(Bi)

−p2(Bi)

∥∥∥
X̂G(Bi)

= ŶG(Bi)
× ẐG(Bi)

(6)
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In Formula (6), the positions of the calibration points p1, p2 and p3 are shown in
Figure 5b. From p1, p2 are any two points in the ZG direction, p3 is a point in the XG
direction, the formula can be determined:

p1(G) = (0, 0, z1)

p2(G) = (0, 0, z2)

p3(G) = (x3, 0, 0)
(7)

In Formula (7), z1, z2 and x3 are variables which z1 6= z2; z1 6= 0; z2 6= 0; x3 6= 0. p1(G),
p2(G) and p3(G) are the positions of the calibration points p1, p2, p3 relative to the tool base
coordinate system {G}.

From Formulas (3) and (6), HG
Bi

can be denoted as

HG
Bi
=


n11 n12
n21 n22

n13 pG(BiX)

n23 pG(BiY)
n31 n32
0 0

n33 pG(BiZ)
0 1

 =


X̂G(Bi)

pG(BiX)

ŶG(Bi)
pG(BiY)

ẐG(Bi)
pG(BiZ)

01×3 1

 (8)

In Formula (8), pG(Bi M)(M = X, Y, Z) is the value of the calibration tool base coordinate
system origin pG projected to the M direction of the robot base coordinate system {Bi}.
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From Formulas (3), (5), (7) and (8), can be obtained:
pG(BiX) =

Q
W

pG(BiY) = p3(BiY) −
(

p3(Bi X)−pG(Bi X)

)
r21

r11

pG(BiZ) = p3(BiZ) −
(

p3(Bi X)−pG(Bi X)

)
r31

r11

(9)

In Formula (9), W = r13r21 − r11r23, Q =
(

p1(BiY) − p3(BiY)

)
r11r13 − p1(BiX)r11r23 +

p3(BiX)r13r21.
HG

Bi
can be obtained, and Formula (4) can be combined to obtain the transformation

matrix HB1
B2

of the base coordinate {B1} of robot 1 relative to the base coordinate {B2} of
robot 2.

3.3. Comparison of Calibration Methods for Dual-Robot

Combining the existing dual-robot calibration methods: handshake method [30,31]
and coordinate measuring machine method [27], the three calibration methods are com-
pared in terms of accuracy, cost, human factors, and robot workspace limitation. The
comparison results are shown in Table 1. The meanings of “-”, “o” and “+” in Table 1 are
poor, medium, and good.

Table 1. Comparison of the three calibration methods for dual-robot.

Comparison Condition Accuracy Cost Human Factor Workspace Limitation

Handshake o + - -
Coordinate measuring

machine + - + +

Three-point
measurement o + + +

The handshake method is limited by the working space of the robots, which requires
that the working spaces of the two robots overlap. Since the operator needs to manually
control the connection of the two robot end adapters, the results of this calibration method
will be affected by human factors and produce errors.

The coordinate measuring machine method has good calibration accuracy, but the equip-
ment used for calibration is expensive, and there are difficulties in practical application.

The accuracy of the three-point measurement calibration method meets the calibration
requirements. The coordinate data of the robot calibration point comes from the robot data
and the wire sensor measurement and is not affected by the human factors of the operator.
This method does not have the limitation of the working space of the robot and the cost is
very low, so it has good practicability when used in the actual factory.

4. Calibration Experiment
4.1. Repeated Positioning and Calibration Experiment of Single Robot

The experiment uses the 1600 ABB robot to carry out the repeated calibration experi-
ment of the base coordinates of the single robot (i = 1). The lower computer communicates
with the wire sensor through the MODBUS protocol through the single chip microcomputer
(the chip is STM32F103ZET6).

As shown in Figure 6, the robot is controlled to different positions through the teach
pendant (in order not to lose generality, there are 14 groups of teaching point measurement,
j = 1, 2, · · · , 14), the rope length which output by the sensor and tool end adapter position
shown on the teach pendant are recorded (Figure 7). After that, adjust the calibration
tooling to continue the measurement, and the recorded data is shown in Table A1.
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The 14 items of data in Table A1 are divided into two groups (7 items of data in each
group), and the objective function is constructed to calculate the optimal value of pk(Bi)

in
Formula (5). L1j_k is the rope length output by the wire sensor and t1j is the position of the
robot end adapter. 

Sk_1 =
7
∑

j=1

(∥∥∥t1j − pk_1(B1)

∥∥∥− L1j_k

)2

Sk_2 =
14
∑

j=8

(∥∥∥t1j − pk_2(B1)

∥∥∥− L1j_k

)2 (10)

In Formula (10), Sk_1 and Sk_2 are the objective functions of the first seven groups and
the last seven groups of data corresponding to the calibration point pk. pk_1(B1)

and pk_2(B1)

are the value of pk(B1)
calculated corresponding to the two groups of data.

The objective function is written by MATLAB 2022b, and the optimal value of the
objective function is calculated by genetic algorithm. Set the number of optimization
variables to 3 and set the number of initial populations to 50. In order to find the local
optimal value, the definition domain is set to [1400,−400, 50] ∼ [1600,−50, 350], and other
conditions are defaulted. The final result is rounded to three decimal places.
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p1_1(B1)=
[1557.915,−172.479, 293.644]

p2_1(B1)=
[1549.650,−176.344, 186.724]

p3_1(B1)=
[1553.236,−356.504, 83.975]

p1_2(B1)=
[1554.390,−172.439, 293.414]

p1_2(B1)=
[1548.649,−175.940, 185.964]

p1_2(B1)=
[1553.048,−355.722, 83.659]

Write a MATLAB program to calculate HG
Bi

corresponding to the above two groups of
data through Formulas (6), (8), (9), named HG

B1
1

and HG
B2

1
.

HG
B1

1
=


0.058
0.848
0.077

0

−0.85
0.055
0.036

0

0.026
−0.068
0.996

0

1564.579
−189.606

99.142
1



HG
B2

1
=


0.049
0.852
0.053

0

−0.853
0.047
0.032

0

0.025
−0.047
0.998

0

1562.684
−187.948

94.137
1


In order to better evaluate the error of this calibration experiment, the error ∆ is

defined as:
∆ =

[
∆p, ∆a

]
(11)

In Formula (11), ∆p is the calibration error in the position and ∆a is the calibration error
in the angle. The definitions of the position error ∆p and the angle error ∆a are followed:

∆p =

√
(px1 − px2)

2 +
(

py1 − py2

)2
+ (pz1 − pz2)

2 (12)

∆a =

√
(α1 − α2)

2 + (β1 − β2)
2 + (γ1 − γ2)

2 (13)

In Formula (12), px1 and px2 are the distances on X-axis of the two groups data. py1 ,
py2 and pz1 , pz2 are the distances on Y-axis and Z-axis. In Formula (13), α1,2, β1,2 and γ1,2
are Euler angles of the wo groups data.

According to Formula (2), the calculation formulas of Euler angles α, β, γ can
be obtained:

α = tan−1(n21/n11) (14)

β = sin−1(−n31) (15)

γ = tan−1(n32/n33) (16)
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Based on Formulas (14)–(16), Euler angles of the two groups data can be obtained by
HG

B1
1

and HG
B2

1
.

[α1, β1, γ1] = [86.087◦,−4.416◦, 2.070◦]

[α2, β2, γ2] = [86.708◦,−3.038◦, 1.837◦]

Though Formulas (12) and (13), the error of this calibration experiment ∆ can
be obtained:

∆ = [5.603 mm, 1.529◦]

4.2. Dual-Robot Base Coordinate Calibration Experiment

As shown in Figure 8, the right side is the ABB robot (i = 1), and its base coordinate
system is {B1}, the left side is the KUKA robot (i = 2), and its base coordinate system is
{B2}, and the measurement data are shown in Table A2. Figures 9 and 10 show the position
of the robot i = 1 and robot i = 2 end adapters.
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According to the data in Table A2, construct the objective function, calculate the
positions of p1, p2, p3 relative to the base coordinate system {B1} and {B2}, and calculate
HG

B1
and HG

B2
by Formulas (6), (8), (9). Then, based on Formula (4), the base coordinate

transformation relationship HB1
B2

of the ABB robot relative to the KUKA robot is calculated.

HG
B1

=


0.030
0.858
0.023

0

−0.858
0.031
−0.042

0

−0.037
−0.019
0.999

0

1601.866
−122.710
94.0803

1



HG
B2

=


−0.103
−0.848
0.001

0

0.848
−0.103
0.019

0

−0.016
0.003
0.999

0

1545.780
78.066
131.368

1



HB1
B2

=


−0.989
0.085
−0.072

0

−0.084
−0.991
−0.023

0

−0.054
−0.013
0.997

0

3124.378
−178.282
149.727

1

 ≈

−1
0
0
0

0
−1
0
0

0
0
1
0

3124
−178
145

1


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Through the base coordinate transformation relationship HB1
B2

, the base coordinate
relationship of the two robots in this dual-robot collaborative platform can be obtained. The
X-axis of the base coordinates of the two robots is parallel and reversed, and the distance is
px = 3124 mm; the Y-axis is parallel and reversed, and the distance is py = 178 mm; the
Z-axis is parallel and the same direction, and the distance is pz = 145 mm. This result is
consistent with the platform design value.

The error between the experimental results and the design value of the collaboration
platform comes from:

(a) Processing accuracy of robot end adapter and calibration tooling

In order to make the calibration simple and fast, an adjustable magnetic base and an
easy-to-remove end adapter are used in the experimental equipment uses. Therefore, the
calibration accuracy will be affected by its processing error in calibration.

(b) Repeated positioning error of robots and measuring accuracy of the wire sensor

The fast calibration method for base coordinates of the dual-robot is limited by the
accuracy of the wire sensor used in the measurement, and the error also comes from the
repeated positioning accuracy of the robot to be calibrated.

(c) Actual installation error of the dual-robot collaborative platform

There will be a certain deviation between the actual value and the design value of the
dual-robot collaborative platform due to factors such as the installation site, installation
tools, and installers.
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5. Conclusions

The calibration of the base coordinate system of the dual-robot is crucial for realizing
the coordinated operation of dual-robot in processing, production, and assembly. In this
study, a dual-robot calibration system is established based on calibrated tooling components,
and this calibration system is easy to operate. By adjusting the vertical or horizontal
direction of the tooling guide rod and the position of the wire sensor, the conversion matrix
between the dual-robot base coordinate systems can be obtained. An effective method for
the calibration of the base coordinate system of the contact dual-robot based on the “three-
point measurement calibration method” is proposed. A fast solution method for calibrating
the parameters of the dual-robot base coordinate system is obtained by calibrating the
mapping relationship between the distance from the three reference measurement points
of the orthogonal distribution on the tooling components to the end point of the robot
and the robot base coordinate system. Further, the dual-robot base coordinate conversion
matrix is solved. The experimental results show that our calibration method can effectively
improve the calibration accuracy and efficiency. Meanwhile, the base coordinate calibration
between robots with arbitrary position distance can be realized by replacing the wire sensor
stroke, which exhibits good adaptability. The calibration method can also be applied to
the calibration of three or more robot base coordinate systems, which provide valuable
references and guidance for robot processing, production, and assembly.
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Appendix A

Table A1. Single-robot experiment record data.

Calibration Point k Teaching Point j Rope Length
L1j_k (mm)

End Adapter Position
tkj (mm)

1

1 804.29199 [1295.78, −46.49, 1042.74]
2 881.30255 [1295.80, 209.68, 1042.73]
3 841.0332 [1295.84, −452.11, 1042.68]
4 1026.1182 [1188.90, −393.30, 1226.34]
5 995.62207 [1189.90, −5.61, 1203.27]
6 655.6239 [1083.19, −160.56, 748.53]
7 524.83978 [1185.55, −344.85, 617.74]
8 811.8349 [1183.51, 486.36, 592.35]
9 511.94385 [1183.51, 12.84, 592.32]
10 612.43469 [1183.52, −399.40, 726.54]
11 684.37616 [1183.53, −79.43, 860.12]
12 804.41364 [1183.53, 261.18, 860.11]
13 811.26715 [1183.54, −213.55, 1013.35]
14 909.52759 [1183.55, −378.61, 1098.11]
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Table A1. Cont.

Calibration Point k Teaching Point j Rope Length
L1j_k (mm)

End Adapter Position
tkj (mm)

2

1 571.39484 [1183.55, −378.60, 574.92]
2 640.6192 [1242.34, 82.64, 684.60]
3 878.05829 [1242.35, 329.93, 836.34]
4 933.41345 [1242.35, 253.74, 956.09]
5 944.32227 [1242.32, −185.89, 1079.38]
6 871.93476 [1242.33, −761.67, 755.57]
7 1073.4843 [851.20, −761.64, 755.55]
8 628.61548 [1320.24, −309.33, 755.49]
9 744.27325 [1320.32, −650.78, 712.68]
10 736.04095 [1116.61, 102.07, 712.66]
11 900.36261 [1094.85, 397.44, 712.63]
12 868.85272 [1365.47, 263.65, 912.28]
13 553.59198 [1392.19, −166.39, 716.20]
14 868.97437 [831.75, −157.43, 675.53]

3

1 535.82971 [1291.28, −427.45, 545.64]
2 755.26318 [1150.48, −427.44, 719.50]
3 802.1427 [1120.64, −747.38, 634.62]
4 889.89984 [879.12, −543.42, 634.60]
5 892.25195 [1147.75, −929.28, 634.58]
6 1102.2771 [823.17, −973.16, 633.98]
7 1035.486 [676.96, −387.26, 633.97]
8 309.01553 [1333.11, −387.26, 295.92]
9 506.99634 [1097.99, −425.64, 295.88]
10 756.56085 [911.11, −425.64, 479.18]
11 905.06677 [875.38, −718.42, 562.85]
12 790.13892 [1099.97, −891.76, 444.98]
13 785.5564 [1284.93, −772.33, 693.52]
14 1066.6714 [917.88, −641.63, 892.68]

Table A2. Dual-robot experiment record data for robot i = 1.

Calibration Point k Teaching Point j Rope Length
L1j_k (mm)

End Adapter Position
tkj (mm)

1

1 603.26971 [1384.59, −236.38, 819.10]
2 552.45648 [1421.48, −97.68, 788.31]
3 567.33954 [1380.72, −166.95, 788.28]
4 552.86206 [1307.30, −265.06, 715.18]
5 571.84094 [1256.81, −344.70, 670.12]
6 605.784 [1186.12, −404.16, 614.38]
7 654.08289 [1131.13, −435.67, 605.88]
8 611.13702 [1140.43, −350.05, 605.81]
9 643.98511 [1083.60, −398.44, 545.23]
10 603.83746 [1137.74, −451.52, 488.08]

2

1 808.75287 [1229.18, −423.74, 845.20]
2 742.69165 [1264.41, −376.20, 804.28]
3 718.60303 [1293.55, −463.75, 745.99]
4 702.50343 [1327.68, −507.81, 713.20]
5 668.68207 [1351.13, −574.71, 617.97]
6 573.62531 [1308.20, −526.70, 480.69]
7 574.88245 [1324.42, −559.91, 447.93]
8 656.67828 [1229.56, −603.47, 450.41]
9 659.8009 [1251.96, −631.34, 433.26]
10 678.8609 [1251.95, −670.43, 398.73]



Appl. Sci. 2023, 13, 8799 15 of 16

Table A2. Cont.

Calibration Point k Teaching Point j Rope Length
L1j_k (mm)

End Adapter Position
tkj (mm)

3

1 449.08636 [1435.53, −443.97, 473.23]
2 396.44827 [1385.01, −363.58, 412.82]
3 396.97546 [1345.13, −411.26, 364.54]
4 402.04462 [1324.28, −449.74, 327.71]
5 352.04251 [1358.84, −464.42, 265.54]
6 352.04251 [1389.23, −501.13, 320.50]
7 384.52563 [1408.98, −488.70, 287.69]
8 347.41943 [1418.09, −513.93, 265.90]
9 347.50055 [1383.09, −484.86, 261.06]
10 345.22955 [1408.05, −456.91, 213.79]

Table A3. Dual-robot experiment record data for robot i = 2.

Calibration Point k Teaching Point j Rope Length
L1j_k (mm)

End Adapter Position
tkj (mm)

1

1 907.58105 [1119.17, 87.08, 1087.22]
2 915.81335 [1125.13, −217.85, 1045.38]
3 823.47369 [1167.65, −334.74, 888.71]
4 679.22589 [1219.71, 29.90, 872.91]
5 724.96991 [1183.83, 313.41, 858.93]
6 747.67969 [1151.50, 497.45, 745.08]
7 641.71417 [1180.49, 481.53, 592.28]
8 525.08307 [1215.77, 390.95, 498.04]
9 413.72394 [1479.82, 311.29, 626.07]
10 271.62546 [1476.73, 227.68, 496.36]

2

1 462.75278 [1412.96, 1.45, 651.90]
2 479.13629 [1407.24, −162.82, 610.44]
3 456.79147 [1402.31, −222.09, 534.68]
4 565.23077 [1397.74, −60.30, 748.18]
5 575.81519 [1380.21, 237.45, 740.18]
6 567.90729 [1362.25, 375.05, 652.09]
7 796.87079 [1409.91, 519.25, 868.02]
8 599.29547 1460.99, 492.77, 638.04 []
9 483.96213 [1538.52, 310.33, 646.87]
10 362.62689 [1564.49, 174.00, 575.08]

3

1 350.17706 [1577.84, 544.55, 267.43]
2 467.70029 [1548.53, 646.68, 328.53]
3 597.67334 [1482.34, 784.46, 320.59]
4 715.35876 [1429.55, 886.67, 364.30]
5 878.99103 [1373.98, 984.15, 528.43]
6 939.65863 [1388.06, 943.87, 707.46]
7 941.19965 [1449.27, 783.60, 878.32]
8 844.52081 [1521.57, 640.62, 863.99]
9 669.97974 [1579.38, 569.90, 703.42]
10 467.7814 [1625.95, 461.11, 530.22]

.
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