Dynamic Monitoring and Analysis of Mining Land Subsidence in Multiple Coal Seams in the Ehuobulake Coal Mine Based on FLAC3D and SBAS-InSAR Technology
Abstract
:1. Introduction
2. Mine General Situation
3. Numerical Analysis of Land Subsidence Caused by Repeated Mining in Multiple Coal Seams
3.1. Model Construction
3.2. Result Analysis
4. Monitoring and Analysis of Ground Deformation Based on SBAS-InSAR Technology
4.1. Monitoring Data Preparation
4.2. Data Processing Flow
5. Results
6. Discussion
6.1. Analysis of SBAS-InSAR Results
6.2. Analysis of Precision
6.3. Analysis of the Formation Time of the Deformation Region
6.4. Analysis of Cumulative Settlement of Mining Area in Time Series
7. Limitations and Prospects
8. Conclusions
- (1)
- FLAC3D numerical simulation was used to analyze the law of land subsidence under the condition of repeated mining in multiple coal seams of the Ehuobulake Coal Mine. Under the condition of multiple coal seam mining, land subsidence presented obvious asymmetry. The size and scope of land subsidence further increased due to the mining of lower layer coal. There were two obvious settlement funnels on the ground, with maximum displacement of −180 mm and −211.8 mm, respectively.
- (2)
- The land subsidence results of the Ehuobulake Coal Mine monitored by SBAS-InSAR technology were of high accuracy. The results showed two obvious subsidence areas of 1# and 2# in the mining area during the study period. The maximum displacement was −225 mm, and the maximum displacement rate was −67 mm/a. With the advancement of underground mining working face, the range of land subsidence area gradually expanded.
- (3)
- The method of combining FLAC3D and InSAR technology can accurately and reliably monitor and analyze the land subsidence situation under the repeated mining of multiple coal seams in mining areas, as well as provide an effective approach for the prediction of the land subsidence law in the later period.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, G.L.; Wang, Y.H.; Ma, Z.G. A new approach to effective control of coal mining subsidence. J. China Univ. Min. Technol. 2004, 2, 26–29. [Google Scholar]
- Przyłucka, M.; Herrera, G.; Graniczny, M.; Colombo, D.; Béjar-Pizarro, M. Combination of conventional and advanced DInSAR to monitor very fast mining subsidence with TerraSAR-X data: Bytom City (Poland). Remote Sens. 2015, 7, 5300–5328. [Google Scholar] [CrossRef] [Green Version]
- Qu, F.; Zhang, Q.; Niu, Y. Mapping the recent vertical crustal deformation of the Weihe Basin (China) using Sentinel-1 and ALOS-2 ScanSAR imagery. Remote Sens. 2022, 14, 3182. [Google Scholar] [CrossRef]
- Zhao, M. Research on Extraction Method of Surface Deformation in Mining Area Based on SBAS-InSAR Technology. Master’s Thesis, Henan Polytechnic University, Zhengzhou, China, 2017. [Google Scholar]
- Xiang, W.; Zhang, R.; Liu, G.; Wang, X.; Mao, W.; Zhang, B.; Fu, Y.; Wu, T. Saline-Soil deformation extraction based on an improved time-series InSAR approach. ISPRS Int. J. Geo-Inf. 2021, 10, 112. [Google Scholar] [CrossRef]
- Zhang, P.; Guo, Z.; Guo, S.; Xia, J. Land subsidence monitoring method in regions of variable radar reflection characteristics by integrating PS-InSAR techniques. Remote Sens. 2022, 14, 3265. [Google Scholar] [CrossRef]
- Zhou, C.; Cao, Y.; Yin, K.; Wang, Y. Landslide characterization applying Sentinel-1 images and InSAR technique: The muyubao landslide in the three gorges reservoir area, China. Remote Sens. 2020, 12, 3385. [Google Scholar] [CrossRef]
- Carnec, C.; Delacourt, C. Three years of mining subsidence monitored by SAR interferometry, Near Gardanne, France. J. Appl. Geophys. 2000, 43, 43–54. [Google Scholar] [CrossRef]
- Wegmuller, U.; Werner, C.; Strozzi, T.; Wiesmann, A. Monitoring mining induced surface deformation. IEEE Proc. Geosci. Remote Sens. Symp. 2004, 3, 1933–1935. [Google Scholar]
- Herrera, G.; Tomás, R.; Vicente, F.; Lopez-Sanchez, J.M.; Mallorquí, J.J.; Mulas, J. Mapping ground movements in open pit mining areas using differential SAR interferometry. Int. J. Rock Mech. Min. Sci. 2010, 47, 1114–1125. [Google Scholar] [CrossRef]
- Benecke, N.; Bateson, L.; Browitt, C.; Declercq, P.; Graniczny, M.; Marsh, S.; Zimmermann, K. Perspectives concerning satellite EO and geohazard risk management: The way forward—Community paper concerning inactive mines hazards. In Proceedings of the the InternatIonal Forum on Satellite EO and Geohazardas, Forum on Satellite EO and Geohazards, Santorini, Greece, 21–23 May 2012. [Google Scholar]
- Engelbrecht, J.; Inggs, M. Differential interferometry techniques on L-band data employed for the monitoring of surface subsidence due to mining. S. Afr. J. Geomat. 2013, 2, 82–93. [Google Scholar]
- Fernandez, J.; Tizanni, P.; Manzo, M.; Borgia, A.; Gonzalez, P.J.; Marti, J.; Pepe, A.; Camacho, A.G.; Casu, F.; Berardino, P.; et al. Gravity-driven deformation of Tenerife measured by InSAR time series analysis. Geophys. Res. Lett. 2009, 36, L04306. [Google Scholar] [CrossRef] [Green Version]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansoti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Nadudvari, A. Using radar interferometry and SBAS technique to detect surface subsidence relating to coal mining in Upper Silesia from 1993–2000 and 2003–2010. Environ. Socio-Econ. Stud. 2016, 4, 24–34. [Google Scholar] [CrossRef] [Green Version]
- Trasatti, E.; Casu, F.; Giunchi, C.; Pepe, S.; Solaro, G.; Tagliaventi, S.; Berardino, P.; Manzo, M.; Pepe, A.; Ricciardi, G.P.; et al. The 2004-2006 uplift episode at Campi Flegrei caldera (Italy): Constraints from SBAS-DInSAR ENVISAT data and Bayesian source Inference. Geophys. Res. Lett. 2008, 35, L07308. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.W.; Lu, Z.; Jung, H.S.; Won, J.S.; Dzurisin, D. Surface deformation of Augustine Volcano, 1992–2005, from multipleinterferogram processing using a refined small baseline subset (SBAS). U.S. Geol. Surv. 2010, 17, 453–465. [Google Scholar]
- Shanker, P.; Casu, F.; Zebker, H.A.; Lanari, R. Comparison of Persistent Scatterers and Small Baseline Time-Series InSAR Results: A Case Study of the San Francisco Bay Area. IEEE Geosci. Remote Sens. Lett. 2011, 8, 592–596. [Google Scholar] [CrossRef]
- Biggs, J.; Wright, T.J. How satellite InSAR has grown from opportunistic science to routine monitoring over the last decade. Nat. Commun. 2020, 11, 3863. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.; Lin, H. Robust Detection of Single and Double Persistent Scatterers in Urban Built Environment. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2124–2139. [Google Scholar] [CrossRef]
- Yasitli, N.E.; Unver, B. 3D numerical modeling of longwall mining with top-coal caving. Int. J. Rock Mech. Min. Sci. 2005, 42, 219–235. [Google Scholar] [CrossRef]
- Del Soldato, M.; Solari, L.; Raspini, F.; Bianchini, S.; Ciampalini, A. Monitoring Ground Instabilities Using SAR Satellite Data: A Practical Approach. ISPRS Int. J. Geo-Inf. 2019, 8, 307. [Google Scholar] [CrossRef] [Green Version]
- Raucoules, D.; Maisons, C.; Garnec, C.; Le Mouelic, S.; King, C.; Hosford, S. Monitoring of slow ground deformation by ERS Radar interferometry on the Vauvert Salt Mine (France)-comparison with ground-based measurement. Remote Sens. Environ. 2003, 88, 468–478. [Google Scholar] [CrossRef]
- Baek, J.; Kim, S.W.; Park, H.J.; Jung, H.S.; Kim, K.D. Analysis of ground subsidence in coal mining area using SAR interferometry. Geosci. J. 2008, 12, 277–284. [Google Scholar] [CrossRef]
- Niu, Y.F. Applications of SAR interferometry for co-seismic, interseismic and volcano deformation monitoring, modeling and interpretation. Acta Geod. Cartogr. Sin. 2022, 51, 471. [Google Scholar]
- Jessica, M.W.; Mccarter, M.K. Comparison of L-band and X-band differential interferometric synthetic aperture radar for mine subsidence monitoring in central Utah. Int. J. Min. Sci. Technol. 2017, 27, 159–163. [Google Scholar]
- Mohammadimanesh, F.; Salehi, B.; Mahdianpari, M.; English, J.; Chamberland, J. Monitoring surface changes in discontinuous permafrost terrain using small baseline SAR interferometry, object-based classification, and geological features: A case study from Mayo, Yukon Territory, Canada. GIScience Remote Sens. 2018, 56, 485–510. [Google Scholar] [CrossRef]
- Bock, S.H. New open-source ANSYS-SolidWorks-FLAC3D geometry conversion peograms. J. Sustain. Min. 2015, 14, 124–132. [Google Scholar] [CrossRef] [Green Version]
- Ji, H.; Yu, X.Y. Research on mining influence mechanism based on FLAC computer numerical simulation. J. Shanxi Coal 2011, 30, 70–71+74. [Google Scholar]
- Jin, F. Numerical Simulation Analysis of Surface Movement Deformation with Coal Seam Dip Angle and Surface Slope. Master’s Thesis, Taiyuan University of Technology, Taiyuan, China, 2016. [Google Scholar]
- Deng, X.L.; Li, L.H.; Tan, Y.F. Numerical simulation of surface subsidence induced by underground mining. J. Min. Saf. Eng. 2018, 49, 188–192. [Google Scholar]
- Yan, D.P. Application research of mining subsidence monitoring in Yunjaling Coal Mine based on D-InSAR technology. Master’s Thesis, China University of Geosciences, Beijing, China, 2011. [Google Scholar]
- Liu, Y.L. Monitoring and Inversion Analysis of Large-Scale Deformation of Mining Subsidence in Mining Area. Master’s Thesis, Chang’an University, Xi’an, China, 2013. [Google Scholar]
Lithology | Thickness (m) | Density (kg·m−3) | Bulk Modulus (GPa) | Shear Modulus (GPa) | Cohesion (MPa) | Internal Friction Angle (°) | Tensile Strength(MPa) |
---|---|---|---|---|---|---|---|
A-horizon | 38 | 2000 | 3.1 | 2.2 | 1.1 | 15 | 0.18 |
Sandstone | 128 | 2850 | 7.6 | 5.2 | 5.5 | 38 | 6.8 |
Medium fine sandstone | 52 | 2650 | 5.6 | 5.0 | 5.6 | 38 | 6.7 |
Kern stone | 32 | 2850 | 5.3 | 4.5 | 6.5 | 36 | 4.9 |
The first layer of coal | 3.5 | 1350 | 2.6 | 1.5 | 2.0 | 22 | 1.4 |
Mudstone | 3 | 2543 | 5.3 | 4.1 | 2.9 | 32 | 2.0 |
Post stone | 24.5 | 2800 | 6.6 | 4.0 | 4.5 | 35 | 5.1 |
Kern stone | 11 | 2750 | 7.5 | 5.5 | 5.0 | 36 | 6.0 |
Medium coarse sandstone | 17.5 | 2850 | 6.3 | 4.5 | 5.8 | 37 | 4.9 |
Fine sandstone | 16 | 2800 | 8.6 | 6.0 | 19.8 | 42 | 10.0 |
Sandy mudstone | 3 | 2600 | 5.6 | 3.8 | 7.9 | 40 | 2.9 |
The fifth layer of coal | 8.5 | 1350 | 4.6 | 2.8 | 7.5 | 39 | 2.0 |
Mudstone | 2.5 | 2500 | 4.3 | 2.1 | 4.5 | 33 | 1.8 |
Medium coarse sandstone | 26 | 2750 | 9.6 | 5.8 | 9.8 | 40 | 5.0 |
Serial Number | Data Type | Date | Polarization Mode | Track Configuration | Spatial Baseline (m) |
---|---|---|---|---|---|
1 | IW | 2019/1/1 | VV | Ascending | −48.8038 |
2 | IW | 2019/2/6 | VV | Ascending | 40.7249 |
3 | IW | 2019/3/2 | VV | Ascending | −111.4171 |
4 | IW | 2019/4/7 | VV | Ascending | −80.8265 |
5 | IW | 2019/5/1 | VV | Ascending | −141.0416 |
6 | IW | 2019/6/6 | VV | Ascending | −61.6024 |
7 | IW | 2019/7/12 | VV | Ascending | −86.6237 |
8 | IW | 2019/8/5 | VV | Ascending | −127.5768 |
9 | IW | 2019/9/10 | VV | Ascending | −110.7101 |
10 | IW | 2019/10/4 | VV | Ascending | −222.6741 |
11 | IW | 2019/11/9 | VV | Ascending | −93.2896 |
12 | IW | 2019/12/3 | VV | Ascending | −85.9224 |
13 | IW | 2020/1/8 | VV | Ascending | 0 |
14 | IW | 2020/2/1 | VV | Ascending | −80.3267 |
15 | IW | 2020/3/8 | VV | Ascending | −77.1596 |
16 | IW | 2020/4/1 | VV | Ascending | −140.8206 |
17 | IW | 2020/5/7 | VV | Ascending | −37.0035 |
18 | IW | 2020/6/12 | VV | Ascending | −96.7407 |
19 | IW | 2020/7/6 | VV | Ascending | 17.7273 |
20 | IW | 2020/8/11 | VV | Ascending | −193.3529 |
21 | IW | 2020/9/4 | VV | Ascending | −31.4781 |
22 | IW | 2020/10/10 | VV | Ascending | −229.5516 |
23 | IW | 2020/11/3 | VV | Ascending | −44.8282 |
24 | IW | 2020/12/9 | VV | Ascending | −82.3615 |
25 | IW | 2021/1/2 | VV | Ascending | −64.9575 |
26 | IW | 2021/2/7 | VV | Ascending | −53.6469 |
27 | IW | 2021/3/3 | VV | Ascending | −84.0527 |
28 | IW | 2021/4/8 | VV | Ascending | −148.4881 |
29 | IW | 2021/5/2 | VV | Ascending | −24.3244 |
30 | IW | 2021/6/7 | VV | Ascending | −99.6694 |
31 | IW | 2021/7/1 | VV | Ascending | −121.5081 |
32 | IW | 2021/8/6 | VV | Ascending | −63.1232 |
33 | IW | 2021/9/11 | VV | Ascending | −118.5095 |
34 | IW | 2021/10/5 | VV | Ascending | −22.7560 |
35 | IW | 2021/11/10 | VV | Ascending | −144.0481 |
36 | IW | 2021/12/4 | VV | Ascending | −22.2346 |
37 | IW | 2022/1/9 | VV | Ascending | −13.2906 |
38 | IW | 2022/2/2 | VV | Ascending | 57.3173 |
39 | IW | 2022/3/10 | VV | Ascending | −126.0634 |
40 | IW | 2022/4/3 | VV | Ascending | −122.9171 |
41 | IW | 2022/5/9 | VV | Ascending | −99.0737 |
42 | IW | 2022/6/2 | VV | Ascending | −155.8066 |
43 | IW | 2022/7/8 | VV | Ascending | −165.9644 |
44 | IW | 2022/8/1 | VV | Ascending | −105.5399 |
45 | IW | 2022/9/6 | VV | Ascending | −301.3169 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Wang, H.; Shan, C.; Liu, H.; Li, Y.; Li, G.; Yang, F.; Kang, H.; Xie, G. Dynamic Monitoring and Analysis of Mining Land Subsidence in Multiple Coal Seams in the Ehuobulake Coal Mine Based on FLAC3D and SBAS-InSAR Technology. Appl. Sci. 2023, 13, 8804. https://doi.org/10.3390/app13158804
Zhou S, Wang H, Shan C, Liu H, Li Y, Li G, Yang F, Kang H, Xie G. Dynamic Monitoring and Analysis of Mining Land Subsidence in Multiple Coal Seams in the Ehuobulake Coal Mine Based on FLAC3D and SBAS-InSAR Technology. Applied Sciences. 2023; 13(15):8804. https://doi.org/10.3390/app13158804
Chicago/Turabian StyleZhou, Shihang, Hongzhi Wang, Chengfang Shan, Honglin Liu, Yafeng Li, Guodong Li, Fajun Yang, Haitong Kang, and Guoliang Xie. 2023. "Dynamic Monitoring and Analysis of Mining Land Subsidence in Multiple Coal Seams in the Ehuobulake Coal Mine Based on FLAC3D and SBAS-InSAR Technology" Applied Sciences 13, no. 15: 8804. https://doi.org/10.3390/app13158804
APA StyleZhou, S., Wang, H., Shan, C., Liu, H., Li, Y., Li, G., Yang, F., Kang, H., & Xie, G. (2023). Dynamic Monitoring and Analysis of Mining Land Subsidence in Multiple Coal Seams in the Ehuobulake Coal Mine Based on FLAC3D and SBAS-InSAR Technology. Applied Sciences, 13(15), 8804. https://doi.org/10.3390/app13158804