Study on the Deformation and Failure Characteristics of the Long Composite Insulated Cold Transmission Pipe in Deep Mines
Abstract
:1. Introduction
2. Engineering Background
3. Filling Material Mechanical Properties Tests
3.1. Specimens Preparation and Testing Equipment
3.2. Results and Analysis
3.2.1. Uniaxial Compressive Properties of Filling Materials
3.2.2. Tensile Properties of the Filling Material
4. Overall Stability of Insulated Cold Transfer pipes
4.1. Numerical Modeling
4.2. Stability of the Surrounding Rock on the Outside of the Cold Transmission Pipe
4.3. Overall Structural Stability of Long-Distance Insulated Cold Transmission Pipes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sasmito, A.P.; Kurnia, J.C.; Birgersson, E.; Mujumdar, A.S. Computational evaluation of thermal management strategies in an underground mine. Appl. Therm. Eng. 2015, 90, 1144–1150. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Zhou, G.-Q.; Wu, L. Unsteady heat-moisture transfer of wet airway in deep mining. J. Cent. South. Univ. 2013, 20, 1971–1977. [Google Scholar] [CrossRef]
- del Castillo, D. Air cycle refrigeration system for cooling deep mines. Int. J. Refrig. 1988, 11, 87–91. [Google Scholar] [CrossRef]
- Chen, W.; Liang, S.; Liu, J. Proposed split-type vapor compression refrigerator for heat hazard control in deep mines. Appl. Therm. Eng. 2016, 105, 425–435. [Google Scholar] [CrossRef]
- Guo, P.; He, M.; Zheng, L.; Zhang, N. A geothermal recycling system for cooling and heating in deep mines. Appl. Therm. Eng. 2017, 116, 833–839. [Google Scholar] [CrossRef]
- van der Walt, J.; de Kock, E.M. Developments in the engineering of refrigeration installations for cooling mines. Int. J. Refrig. 1984, 7, 27–40. [Google Scholar] [CrossRef]
- Qi, P.; Manchao He Li, M.; Chen, C. Working principle and application of HEMS with lack of a cold source. Chin. J. Min. Sci. Technol. 2011, 21, 433–438. [Google Scholar] [CrossRef]
- du Plessis, G.E.; Liebenberg, L.; Mathews, E.H. Case study: The effects of a variable flow energy saving strategy on a deep-mine cooling system. Appl. Energ. 2013, 102, 700–709. [Google Scholar]
- Du Plessis, G.E.; Liebenberg, L.; Mathews, E.H.; Du Plessis, J.N. A versatile energy management system for large integrated cooling systems. Energ. Convers. Manag. 2013, 66, 312–325. [Google Scholar] [CrossRef]
- Bornman, W.; Dirker, J.; Arndt, D.C.; Meyer, J.P. Integrated energy simulation of a deep level mine cooling system through a combination of forward and first-principle models applied to system-side parameters. Appl. Therm. Eng. 2017, 123, 1166–1180. [Google Scholar] [CrossRef] [Green Version]
- Bahadori, A.; Vuthaluru, H.B. A simple method for the estimation of thermal insulation thickness. Appl. Energ. 2010, 87, 613–619. [Google Scholar] [CrossRef]
- Daouas, N.; Hassen, Z.; Aissia, H.B. Analytical periodic solution for the study of thermal performance and optimum insulation thickness of building walls in Tunisia. Appl. Therm. Eng. 2010, 30, 319–326. [Google Scholar] [CrossRef]
- Ozel, M. Thermal performance and optimum insulation thickness of building walls with different structure materials. Appl. Therm. Eng. 2011, 31, 3854–3863. [Google Scholar] [CrossRef]
- Brecani, R.; Dervishi, S. Thermal and energy performance evaluation of underground bunkers: An adaptive reuse approach. Sustain. Cities Soc. 2019, 46, 101444. [Google Scholar] [CrossRef]
- Wagner, H. The management of heat flow in deep mines. Geomech. Tunn. 2013, 4, 157–163. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Gao, S.; Zheng, X.; Darkwa, J. The impact of thermal insulation on cooling energy consumption and optimal insulation thickness for underground tunnel. Sustain. Energy Technol. Assess. 2021, 47, 101495. [Google Scholar] [CrossRef]
- Crawford, J.A.; Joubert, H.P.R.; Mathews, M.J.; Kleingeld, M. Optimised dynamic control philosophy for improved performance of mine cooling systems. Appl. Therm. Eng. 2019, 150, 50–60. [Google Scholar] [CrossRef]
- He, M.C. Application of HEMS cooling technology in deep mine heat hazard control. Min. Sci. Technol. 2009, 19, 269–275. [Google Scholar] [CrossRef]
- Feng, X.P.; Jia, Z.; Liang, H.; Wang, Z.; Wang, B.; Jiang, X.; Cao, H. A Full Air Cooling and Heating System Based on Mine Water Source. Appl. Therm. Eng. 2018, 145, 610–617. [Google Scholar] [CrossRef]
- Zhang, L.; Du, B.-C.; Gui, K.-W. Research on pipeline cooling technology for mine cooling system. Chin. J. Xiangtan Min. Inst. 1992, S1, 23–30. [Google Scholar]
- Yue, F.-T.; Liu, C.-Y.; Wei, J.-S.; Gao, T.; Wu, X.-H. Energy Consumption Analysis and Optimization of Mine Cooling System During Mine Construction. Chin. J. Coal Sci. Technol. 2014, 42, 57–60. [Google Scholar]
- Wei, J.-S.; Yue, F.-T. Optimized Design and Application of Refrigeration System with Multi-Function Varied Performance Heat Pump Unit. Chin. J. Coal Eng. 2014, 46, 36–40. [Google Scholar]
- Zhu, H.; Zhang, W.; Feng, G.; Qi, X. Fluid–structure interaction computational analysis of flow field, shear stress distribution and deformation of three-limb pipe. Eng. Fail. Anal. 2014, 42, 252–262. [Google Scholar] [CrossRef]
- Zhang, J.; Liang, Z.; Zhao, G. Mechanical behaviour analysis of a buried steel pipeline under ground overload. Eng. Fail. Anal. 2016, 63, 131–145. [Google Scholar] [CrossRef]
- Mou, B.; Li, X.; Qiao, Q.; He, B.; Wu, M. Seismic behaviour of the corner joints of a frame under biaxial cyclic loading. Eng. Struct. 2019, 196, 109316. [Google Scholar] [CrossRef]
- Wang, K.; Xie, K.; Zhang, H.; Qiang, Y.; Du, Y.; Xiong, Y.; Zou, Z.; Zhang, M.; Zhong, L.; Akkurt, N.; et al. Numerical evaluation of the coupled/uncoupled effectiveness of a fluid-solid-thermal multi-field model for a long-distance energy transmission pipeline. Energy 2022, 251, 123964. [Google Scholar] [CrossRef]
- Qin, G.; Huang, Y.; Wang, Y.; Frank Cheng, Y. Pipeline condition assessment and finite element modeling of mechano-electrochemical interaction between corrosion defects with varied orientations on pipelines. Tunn. Undergr. Space Technol. 2023, 136, 105101. [Google Scholar] [CrossRef]
- Guan, L.; Chen, Y.; Ye, W.; Wu, D.; Deng, Y. Foamed concrete utilizing excavated soil and fly ash for urban underground space backfilling: Physical properties, mechanical properties, and microstructure. Tunn. Undergr. Space Technol. 2023, 134, 104995. [Google Scholar] [CrossRef]
- Leng, X.-Q.; Yan, J.-X.; Han, Y.-X. Research on Influence of Ground Stress on the Stability of Deep and Large Shafts. Chin. J. Undergr. Space Eng. 2020, 16, 1451–1458+1483. [Google Scholar]
Bulk Density/g/cm3 | Compressive Strength/MPa | Tensile Strength/MPa | Elastic Modulus/GPa | Shear Modulus/GPa | Poisson’s Ratio | Cohesion/MPa | Internal Friction Angle/° | |
---|---|---|---|---|---|---|---|---|
Steel pipe | 7.82 | 235 | 450 | 220 | 80 | 0.29 | 900 | 45 |
Mudstone | 2.46 | 18.29 | 1.82 | 2.63 | 3.35 | 0.23 | 1.71 | 29.65 |
Foam concrete | 0.98 | 1.13 | 0.10 | 1.47 | 0.61 | 0.2 | 1.8 | 38 |
Ordinary concrete | 2.4 | 2.27 | 0.25 | 2.07 | 0.86 | 0.2 | 2.3 | 43.5 |
In-Situ Stress/MPa | Maximum Vertical Stress/MPa |
---|---|
3 | −1.49 |
6 | −3.19 |
9 | −4.87 |
12 | −6.58 |
15 | −8.22 |
17.5 | −9.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Yue, F.; Wei, J.; Gao, T.; Qi, Y. Study on the Deformation and Failure Characteristics of the Long Composite Insulated Cold Transmission Pipe in Deep Mines. Appl. Sci. 2023, 13, 8805. https://doi.org/10.3390/app13158805
Wang W, Yue F, Wei J, Gao T, Qi Y. Study on the Deformation and Failure Characteristics of the Long Composite Insulated Cold Transmission Pipe in Deep Mines. Applied Sciences. 2023; 13(15):8805. https://doi.org/10.3390/app13158805
Chicago/Turabian StyleWang, Wenlong, Fengtian Yue, Jingsheng Wei, Tao Gao, and Yanjun Qi. 2023. "Study on the Deformation and Failure Characteristics of the Long Composite Insulated Cold Transmission Pipe in Deep Mines" Applied Sciences 13, no. 15: 8805. https://doi.org/10.3390/app13158805
APA StyleWang, W., Yue, F., Wei, J., Gao, T., & Qi, Y. (2023). Study on the Deformation and Failure Characteristics of the Long Composite Insulated Cold Transmission Pipe in Deep Mines. Applied Sciences, 13(15), 8805. https://doi.org/10.3390/app13158805