A New Approach to Quantify Soccer Players’ Readiness through Machine Learning Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. External Load Data Collection
3. Data Analysis
3.1. Algorithm Selection
- Extreme gradient boosting (XGBoost)
- Random Forest Regression (RF)
- Linear Regression (LR)
3.2. Data Pre-Processing
3.3. Feature Elimination, Hyperparameter Tuning, and Cross-Validation
3.4. Model Evaluation
3.5. Calculation of Locomotor Efficiency Index
3.6. Analysis of the Relationship between LEI and Weekly Training Load
- Decrease in weekly training load (D-WL): the player registered a z-score < −1.
- Stability in the weekly training load (S-WL): the player registered a z-score between −1 and 1.
- Increase in weekly training load (I-WL): the player registered a z-score > 1.
4. Statistical Analysis
5. Results
6. Discussion
6.1. ML Model Development
6.2. Relationship between LEI and Period of the Season and Day of the Week
6.3. Effect of Training Load Variations on LEI
7. Practical Applications
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barnes, C.; Archer, D.T.; Hogg, B.; Bush, M.; Bradley, P. The Evolution of Physical and Technical Performance Parameters in the English Premier League. Int. J. Sports Med. 2014, 35, 1095–1100. [Google Scholar] [CrossRef] [PubMed]
- Carling, C.; Lacome, M.; McCall, A.; Dupont, G.; Le Gall, F.; Simpson, B.; Buchheit, M. Monitoring of Post-Match Fatigue in Professional Soccer: Welcome to the Real World. Sports Med. 2018, 48, 2695–2702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, J.R.; Rumpf, M.C.; Hertzog, M.; Castagna, C.; Farooq, A.; Girard, O.; Hader, K. Acute and Residual Soccer Match-Related Fatigue: A Systematic Review and Meta-Analysis. Sports Med. 2018, 48, 539–583. [Google Scholar] [CrossRef] [PubMed]
- Leduc, C.; Tee, J.; Lacome, M.; Weakley, J.; Cheradame, J.; Ramirez, C.; Jones, B. Convergent Validity, Reliability, and Sensitivity of a Running Test to Monitor Neuromuscular Fatigue. Int. J. Sports Physiol. Perform. 2020, 15, 1067–1073. [Google Scholar] [CrossRef] [PubMed]
- Cormack, S.J.; Mooney, M.G.; Morgan, W.; McGuigan, M.R. Influence of Neuromuscular Fatigue on Accelerometer Load in Elite Australian Football Players. Int. J. Sports Physiol. Perform. 2013, 8, 373–378. [Google Scholar] [CrossRef]
- Fitzpatrick, J.F.; Hicks, K.M.; Russell, M.; Hayes, P.R. The Reliability of Potential Fatigue-Monitoring Measures in Elite Youth Soccer Players. J. Strength Cond. Res. 2021, 35, 3448–3452. [Google Scholar] [CrossRef]
- Garrett, J.; Graham, S.R.; Eston, R.G.; Burgess, D.J.; Garrett, L.J.; Jakeman, J.; Norton, K. A Novel Method of Assessment for Monitoring Neuromuscular Fatigue in Australian Rules Football Players. Int. J. Sports Physiol. Perform. 2019, 14, 598–605. [Google Scholar] [CrossRef]
- Rowell, A.E.; Aughey, R.J.; Clubb, J.; Cormack, S.J. A Standardized Small Sided Game Can Be Used to Monitor Neuromuscular Fatigue in Professional A-League Football Players. Front. Physiol. 2018, 9, 1011. [Google Scholar] [CrossRef]
- Lacome, M.; Simpson, B.; Broad, N.; Buchheit, M. Monitoring Players’ Readiness Using Predicted Heart-Rate Responses to Soccer Drills. Int. J. Sports Physiol. Perform. 2018, 13, 1273–1280. [Google Scholar] [CrossRef]
- Winter, E.M.; Maughan, R.J. Requirements for Ethics Approvals. J. Sports Sci. 2009, 27, 985. [Google Scholar] [CrossRef]
- Gómez-Carmona, C.D.; Pino-Ortega, J.; Sánchez-Ureña, B.; Ibáñez, S.J.; Rojas-Valverde, D. Accelerometry-Based External Load Indicators in Sport: Too Many Options, Same Practical Outcome? Int. J. Environ. Res. Public Health 2019, 16, 5101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Carmona, C.D.; Bastida-Castillo, A.; García-Rubio, J.; Ibáñez, S.J.; Pino-Ortega, J. Static and Dynamic Reliability of WIMU PROTM Accelerometers According to Anatomical Placement. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2019, 233, 238–248. [Google Scholar]
- Muñoz-López, A.; Granero-Gil, P.; Pino-Ortega, J.; De Hoyo, M. The Validity and Reliability of a 5-Hz GPS Device for Quantifying Athletes’ Sprints and Movement Demands Specific to Team Sports. J. Hum. Sport Exerc. 2017, 12, 156–166. [Google Scholar] [CrossRef]
- Kensert, A.; Alvarsson, J.; Norinder, U.; Spjuth, O. Evaluating Parameters for Ligand-Based Modeling with Random Forest on Sparse Data Sets. J. Cheminformatics 2018, 10, 49. [Google Scholar] [CrossRef] [Green Version]
- Kiangala, S.K.; Wang, Z. An Effective Adaptive Customization Framework for Small Manufacturing Plants Using Extreme Gradient Boosting-XGBoost and Random Forest Ensemble Learning Algorithms in an Industry 4.0 Environment. Mach. Learn. Appl. 2021, 4, 100024. [Google Scholar] [CrossRef]
- Mandorino, M.; Figueiredo, A.J.; Cima, G.; Tessitore, A. Predictive Analytic Techniques to Identify Hidden Relationships between Training Load, Fatigue and Muscle Strains in Young Soccer Players. Sports 2021, 10, 3. [Google Scholar] [CrossRef]
- Mandorino, M.; Figueiredo, A.J.; Cima, G.; Tessitore, A. Analysis of Relationship between Training Load and Recovery Status in Adult Soccer Players: A Machine Learning Approach. Int. J. Comput. Sci. Sport 2022, 21, 1–16. [Google Scholar] [CrossRef]
- Singh, D.; Singh, B. Investigating the Impact of Data Normalization on Classification Performance. Appl. Soft Comput. 2020, 97, 105524. [Google Scholar] [CrossRef]
- Mandorino, M.; Figueiredo, A.J.; Cima, G.; Tessitore, A. A Data Mining Approach to Predict Non-Contact Injuries in Young Soccer Players. Int. J. Comput. Sci. Sport 2021, 20, 147–163. [Google Scholar] [CrossRef]
- Rossi, A.; Pappalardo, L.; Cintia, P.; Iaia, F.M.; Fernández, J.; Medina, D. Effective Injury Forecasting in Soccer with GPS Training Data and Machine Learning. PLoS ONE 2018, 13, e0201264. [Google Scholar] [CrossRef] [Green Version]
- Pao, H.-T. Forecasting Energy Consumption in Taiwan Using Hybrid Nonlinear Models. Energy 2009, 34, 1438–1446. [Google Scholar] [CrossRef]
- Buchheit, M.; Lacome, M.; Cholley, Y.; Simpson, B.M. Neuromuscular Responses to Conditioned Soccer Sessions Assessed via GPS-Embedded Accelerometers: Insights into Tactical Periodization. Int. J. Sports Physiol. Perform. 2018, 13, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Barrett, S.; Midgley, A.W.; Towlson, C.; Garrett, A.; Portas, M.; Lovell, R. Within-Match PlayerLoadTM Patterns during a Simulated Soccer Match: Potential Implications for Unit Positioning and Fatigue Management. Int. J. Sports Physiol. Perform. 2016, 11, 135–140. [Google Scholar] [CrossRef]
- Hulin, B.T.; Gabbett, T.J.; Lawson, D.W.; Caputi, P.; Sampson, J.A. The Acute: Chronic Workload Ratio Predicts Injury: High Chronic Workload May Decrease Injury Risk in Elite Rugby League Players. Br. J. Sports Med. 2016, 50, 231–236. [Google Scholar] [CrossRef] [Green Version]
- Thorpe, R.T.; Strudwick, A.J.; Buchheit, M.; Atkinson, G.; Drust, B.; Gregson, W. Tracking Morning Fatigue Status across In-Season Training Weeks in Elite Soccer Players. Int. J. Sports Physiol. Perform. 2016, 11, 947–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J. Quantitative Methods in Psychology: A Power Primer. Psychol. Bull. 1992, 112, 1155–1159. [Google Scholar] [CrossRef]
- Zhang, C.-X.; Wang, G.-W.; Zhang, J.-S. An Empirical Bias–Variance Analysis of DECORATE Ensemble Method at Different Training Sample Sizes. J. Appl. Stat. 2012, 39, 829–850. [Google Scholar] [CrossRef]
- Scott, B.R.; Lockie, R.G.; Knight, T.J.; Clark, A.C.; de Jonge, X.A.J. A Comparison of Methods to Quantify the In-Season Training Load of Professional Soccer Players. Int. J. Sports Physiol. Perform. 2013, 8, 195–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchheit, M.; Simpson, B.M. Player-Tracking Technology: Half-Full or Half-Empty Glass? Int. J. Sports Physiol. Perform. 2017, 12, S2-35–S2-41. [Google Scholar] [CrossRef] [Green Version]
- Nobari, H.; Aquino, R.; Clemente, F.M.; Khalafi, M.; Adsuar, J.C.; Pérez-Gómez, J. Description of Acute and Chronic Load, Training Monotony and Strain over a Season and Its Relationships with Well-Being Status: A Study in Elite under-16 Soccer Players. Physiol. Behav. 2020, 225, 113117. [Google Scholar] [CrossRef]
- Nobari, H.; Fani, M.; Clemente, F.M.; Carlos-Vivas, J.; Pérez-Gómez, J.; Ardigò, L.P. Intra-and Inter-Week Variations of Well-Being across a Season: A Cohort Study in Elite Youth Male Soccer Players. Front. Psychol. 2021, 12, 671072. [Google Scholar] [CrossRef] [PubMed]
- Hader, K.; Rumpf, M.C.; Hertzog, M.; Kilduff, L.P.; Girard, O.; Silva, J.R. Monitoring the Athlete Match Response: Can External Load Variables Predict Post-Match Acute and Residual Fatigue in Soccer? A Systematic Review with Meta-Analysis. Sports Med. Open 2019, 5, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
External Load Data | Training Duration (minutes), Total Distance (m), Distance > 7.2 km/h (m), Distance > 14.4 km/h (m), Distance > 19.8 km/h (m), Distance > 25.2 km/h (m), Max Speed (km/h), Average Speed (km/h), Number of accelerations > 2.5 (m/s2), Number of decelerations < −2.5 (m/s2), Number of accelerations > 3.5 (m/s2), Number of decelerations < −3.5 (m/s2), Number of accelerations > 4.5 (m/s2), Number of decelerations < −4.5 (m/s2), Max Accelerations (m/s2), Max Deceleration (m/s2), Number of Sprints (count) |
Additional Information | Playing Position (center-back, full-back, midfielder, winger, forward) |
Type of session (Training, Match) |
Team | Day of the Week | Total Distance (m) | Distance > 19.8 km/h (m) | Distance > 25.2 km/h (m) | N° Accelerations > 3.5 m/s2 (cnt) | N° Decelerations < −3.5 m/s2 (cnt) |
---|---|---|---|---|---|---|
First Team | MD−4 | 5450 ± 1413 | 360 ± 235 | 45 ± 62 | 22 ± 11 | 24 ± 12 |
MD−3 | 5504 ± 2073 | 464 ± 314 | 98 ± 100 | 17 ± 9 | 19 ± 11 | |
MD−2 | 3333 ± 1294 | 68 ± 143 | 11 ± 36 | 9 ± 7 | 9 ± 8 | |
MD−1 | 4026 ± 782 | 107 ± 95 | 10 ± 18 | 12 ± 6 | 13 ± 6 | |
MD | 10591 ± 1343 | 630 ± 186 | 112 ± 72 | 26 ± 7 | 46 ± 11 |
ML Models | MAPE (%) | RMSE (a.u) |
---|---|---|
RF | 0.10 ± 0.01 | 14.90 ± 5.18 |
XGBoost | 0.14 ± 0.03 | 15.63 ± 4.75 |
LR | 0.24 ± 0.03 | 17.36 ± 4.01 |
B1 | 0.98 ± 0.25 | 53.54 ± 30.59 |
B2 | 0.79 ± 0.09 | 52.04 ± 6.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandorino, M.; Tessitore, A.; Leduc, C.; Persichetti, V.; Morabito, M.; Lacome, M. A New Approach to Quantify Soccer Players’ Readiness through Machine Learning Techniques. Appl. Sci. 2023, 13, 8808. https://doi.org/10.3390/app13158808
Mandorino M, Tessitore A, Leduc C, Persichetti V, Morabito M, Lacome M. A New Approach to Quantify Soccer Players’ Readiness through Machine Learning Techniques. Applied Sciences. 2023; 13(15):8808. https://doi.org/10.3390/app13158808
Chicago/Turabian StyleMandorino, Mauro, Antonio Tessitore, Cédric Leduc, Valerio Persichetti, Manuel Morabito, and Mathieu Lacome. 2023. "A New Approach to Quantify Soccer Players’ Readiness through Machine Learning Techniques" Applied Sciences 13, no. 15: 8808. https://doi.org/10.3390/app13158808
APA StyleMandorino, M., Tessitore, A., Leduc, C., Persichetti, V., Morabito, M., & Lacome, M. (2023). A New Approach to Quantify Soccer Players’ Readiness through Machine Learning Techniques. Applied Sciences, 13(15), 8808. https://doi.org/10.3390/app13158808