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Featured Application: The findings presented herein can be directly applied for the prediction
and optimization of the compressive strength and the energy consumption of parts to be manu-
factured with the material extrusion 3D printing process with the Polyamide 6 polymer.

Abstract: Both energy efficiency and robustness are popular demands for 3D-printed components
nowadays. These opposing factors require compromises. This study examines the effects of seven
general control variables on the energy demands and the compressive responses of polyamide (PA6)
material extrusion (MEX) 3D printed samples. Nozzle Temperature, Layer Thickness, Orientation
Angle, Raster Deposition Angle, Printing Speed, Bed Temperature, and Infill Density were studied. An
L27 orthogonal array was compiled with five replicas. A total of 135 trials were conducted, following
the ASTM D695-02a specifications. The stopwatch method was used to assess the construction time
and energy usage. The compressive strength, toughness, and elasticity modulus were experimentally
determined. The Taguchi technique ranks each control parameter’s impact on each response measure.
The control parameter that had the greatest impact on both energy use and printing time was layer
thickness. Additionally, the infill density had the greatest influence on the compressive strength.
Quadratic regression model equations were formed for each of the response measures. The ideal
compromise between mechanical strength and energy efficiency is now reported, with merit related
to technological and economic benefits.

Keywords: polyamide 6 (PA6); material extrusion (MEX); optimization; compressive strength; energy
efficiency; energy consumption; robust design; Taguchi analysis

1. Introduction

The ability to manufacture intricate geometries [1], the high levels of customization,
and other benefits have contributed to the growth of additive manufacturing (AM) tech-
nology over the past 25 years [2,3]. One of these benefits is its reduced environmental
impact due to the process’s reduced material waste [4–6]. To understand this facet of the
AM technique and its role in a cyclical economy, as well as the equivalent environmental
perceptions, a lot of research has been conducted [2,4,5,7,8]. Among the several methods
of AM, Fused Filament Fabrication (FFF) is a material extrusion (MEX) process involving
layer-by-layer [9] melting of filament strands through a heated nozzle to create objects using
Computer-Aided Design (CAD) data [6,10,11]. The impact of the processing variables, such
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as the infill pattern, on the mechanical performance and dimensional precision of items
fabricated using the FFF technique has been investigated [12]. The energy used throughout
the 3D printing of components is one of the research topics that have an impact on the
sustainability of the AM method [2,13]. To establish the ecological effect of AM [14,15],
researchers have examined the consumption of energy of the AM procedure [16,17]. It is
reported that in the vat photopolymerization (VPP) process, the energy consumption varies
from (Specific Energy Consumption—SEC) 21 to 33 KWh/Kg, while in the FFF process,
it ranges from 23 to 346 KWh/Kg for the 3D printing of the ABS polymer [14,15]. From
this energy, 51.7% is the energy consumed by the motors, 41.4% by the heat elements, and
6.9% by the fans [16], while a model for the prediction of the energy consumption has been
proposed [17].

Polymers such as acrylonitrile butadiene styrene (ABS) [18], polylactic acid (PLA) [19,20],
poly (methyl methacrylate) (PMMA) [21], and polycarbonate (PC) [22], among others, have
been investigated for their energy demands during the 3D printing of parts with the MEX
method. Adaptive multi-layer customization [23], machine learning methods [24], and
statistical modeling tools [25], made for examining and maximizing the influence of the
3D printing settings on the consumption of energy in methods of additive manufactur-
ing [26], have all been used in this context. Modeling tools, such as Neural Networks [27],
Analysis of Variances (ANOVA) [28], Taguchi design of experiments [29,30], Box Behnken
design [31], have been applied for the analysis of experimental data in 3D printing, related
to the effect of the 3D printing settings on the performance of the parts. Additionally, the
economic viability and ecological impact of FFF, both have an extensive amount of room
for improvement [32].

Numerous studies have been conducted to determine how the 3D printing factors
influence the mechanical properties of the final component [26,33,34]. A crucial step in
creating 3D geometries is choosing the appropriate infill pattern as well as the printing
speed [12,35]. Christiyan et al. [36] examined the impact of printing speed and layer
height on composites consisting of ABS with hydrous magnesium silicate using the FFF
process. By properly adjusting the process parameters, the mechanical performance of the
fabricated objects can be greatly enhanced [37]. The optimization of process parameters
has drawn significant interest from numerous researchers. Some of these parameters
include the speed of printing [34], the diameter of the nozzle, the raster angle [38], layer
thickness [39], and chamber temperature [40], which are often optimized using the Taguchi
method [41]. Yao et al. [42] investigated how the mechanical properties of 3D-printed
poly-lactic acid (PLA, a thermoplastic material) pieces were affected by the orientation
angle of the parts [43]. A constitutive model for 3D printed parts was developed by
Somireddy M. et al. [44], and this model can depict how layer thickness and building
orientation affect the way 3D printed items respond based on their materials. The raster
orientation’s effects on axial loading fatigue life have been studied by Ziemian et al. [45–47].
According to the research, the 45◦/45◦ raster orientation performed the best. As previously
stated, FFF 3D printing involves a staggeringly high number of process variables [46–49],
and all of them could have an effect on the end part’s mechanical characteristics [48].
Several studies have revealed numerous variables that may potentially alter the 3D-printed
objects’ mechanical properties and fatigue life [50–53]. The mechanical characteristics and
dimensional accuracy of the FFF parts are extensively reported [54–56].

Polyamides (polymers with amide bonds connecting the monomeric units), can be
sourced from nature, such as proteins, while synthetic polyamides also exist, such as
polycaprolactam (Polyamide 6—PA6) and poly(hexamethylene adipamide) (Polyamide
6.6—PA6.6) [57]. Similar to polyesters, polyamides can be divided into three groups
based on the main chain’s chemical makeup: aliphatic, semi-aromatic, and aromatic
polyamides [58]. Among these, polyamide 6 (PA6) has emerged as one of the plastics
for engineering with a significant variety of uses due to its reasonable price, strong heat
resistance, and good processing qualities [59–62]. As expected, it has been employed in 3D
printing applications, and its performance has been investigated and reported [63]. Fur-
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thermore, the use of polyamide 6 (PA6) as a practical matrix material in lightweight carbon
fiber-reinforced, graphene nanoplatelet-reinforced, or reinforcing fibers of cement mortars
is increasing [64–68]. Its mechanical performance under tensile and fatigue loadings in 3D
printing has been thoroughly studied [68–75]. S. Terekhina et al. [48] performed a fatigue
investigation focused on the viscoelastic response of PA6 in FFF 3D printing. Flexural
tests were conducted, and the porosity and surface roughness were also assessed. The
sustainability of polyamides in 3D printing has also been investigated through their ability
to be reused after multiple thermomechanical processes during their recycling process [76].

Research in polyamides in FFF extends also to the process parameters’ effect on com-
posites having polyamides as the matrix material. Ceramics, such as Titanium Nitride
(TiN), Copper (Cu), and Cuprous Oxide (Cu2O), have been introduced to polyamide matri-
ces [77,78], as has Zirconium Dioxide (ZrO2) [79]. In this direction, Benfriha K. et al. [59]
have investigated PA6/Carbon fiber composites. The outcome of the research supported
the impact of these variables on the bonding formation during the FFF method and the
mechanical responses of the printed items. In addition, Zhongbei Li et al. [80] investigated
the effects of eight FFF parameters on the characteristics of PA6/PA66 composite samples
using the Taguchi technique. Based on the results of their study, it was found that samples
with infill patterns with a zigzag configuration and a layer thickness of 0.15 mm showed
greater surface quality, dimensional accuracy, and mechanical performance.

The compressive strength of FFF items has, however, received scant attention in the
literature [19]. Even though compression loading is a relatively typical loading type, in-
depth research on material reactions to compression loads is rarely the focus of research [81].
Furthermore, no study has yet shown the power requirements for 3D printed PA6 polymer
components or how the 3D printing settings employed for the particular polymer influence
the amount of energy needed to build the parts, despite the PA6 polymer’s outstanding
performance for sustainable applications.

In this study, Polyamide 6 was used as the material to examine the impact of seven
general control factors as well as the energy and mechanical response during the compres-
sive response of MEX 3D printed samples. These factors are Orientation Angle (ORA),
Raster Deposition Angle (RDA), Nozzle Temperature (NT), Bed Temperature (BT), Infill
Density (ID), Layer Thickness (LT), and Printing Speed (PS). PA6 was purchased in the form
of pellets, and it was made into filament using the extrusion process. The samples were
produced utilizing various 3D printing setting combinations. The 3D printed specimens
were subjected to experimental testing to ascertain their mechanical properties under com-
pression stress, in accordance with the international standard ASTM D695-02a for testing
polymers under compressive loading. The stopwatch method was used to keep track of the
amount of time. The energy required during the 3D printing process was monitored with
the respective equipment. A detailed analysis of the fracture behavior and morphological
characteristics was performed. An L27 orthogonal array was constructed using the Taguchi
method to process the experimental data, and Quadratic Regression Modeling (QRM)
was then used to develop equations for the predictions of the various response factors
explored in the research. To our knowledge, no other study examines as many variables
simultaneously for MEX 3D printed PA6 parts’ energy usage and mechanical performance,
especially in compressive loading. The modeling techniques employed demonstrated the
requirement for such an analysis, as they revealed that the parameters under study have
varying effects on the work’s response characteristics.

While the orientation angle and the infill density had a substantial impact on the
components’ compressive strength, on the other hand, printing speed and layer thickness
had a considerable impact on energy usage. A cause-and-effect has been prepared showing
the parameters affecting the compressive strength and the energy consumption and is
presented in the Supplementary material of the study (Figure S1). The given prediction
models have had their dependability confirmed and are suitable for immediate application
in industrial applications. The authors specifically decided to examine and conduct tests



Appl. Sci. 2023, 13, 8819 4 of 24

on compressive specimens despite their lengthy printing times, large volumes, and weight
(as opposed to tensile specimens):

• Existing research lacks extensive data, particularly when it comes to multi-parametric
tests. Due to the high cost of 3D printing, and the need for a more robust compression
test apparatus, there is a shortage of such scientific findings. Given that compressive
mechanical stress occurs frequently over the operational life of 3D-printed working
components, the paucity of compression test results documentation is evident [82].

• The compressive samples’ increased volume enabled the monitoring and documenta-
tion of their weight, printing time, and power consumption and resulted in measures
that are accurate and trustworthy.

The current study provides a thorough and in-depth assessment of the general process
parameter optimization for Polyamide 6 (PA6), one of the most widely used polymers in 3D
printing. With the help of the related predictive equations, the environmental, economic,
and mechanical behavior outcomes of 3D-printed PA6 samples are thus at hand.

2. Materials and Methods

The methodology used in the present investigation is depicted in Figure 1. More
particularly, Figure 1a illustrates the stages of the method used for the specimens’ prepa-
ration, assessment, and characterization, as well as the evaluation of the experimental
results of the present study. Pictures from the trial-based course are shown in Figure 1b. In
particular, Figure 1b shows: how the raw material was dried (PA6 Novamid N X 160 pellets
acquired from DSM Engineering Materials at 60 ◦C for 24 h) in subfigure no 1, the extrusion
of filament using a 3devo precision single screw extruder from the Netherlands’ Utrecht
(filament’s diameter 1.75 mm, first and fourth heat zones: 190 ◦C, second and third heat
zones: 220 ◦C, 3.50 rpm, fan: 80.0%) in subfigure no 2, the drying process of the created
filament (4 h at 60 ◦C) in subfigure no 3, and 3D printing of the samples in agreement
with ASTM D695-02a standard (five replicas for each set of 3D printing settings, using an
Intamsys 3D Printer, Funmat HT, from Shanghai, China) in subfigure no 4. The 3D printing
procedure’s parameters are displayed in Figure 2. The energy assessments conducted
during the 3D printing procedure employing a digital multimeter Rigol DM-3058E (RIGOL
Technologies, Shanghai, China) are presented in subfigure no 5 of Figure 1, the examina-
tion of the specimens’ morphology using an optical microscope (Kern OKO-1, Germany;
5-MP type with ODC-832 camera) in subfigure no 6 of Figure 1, and the evaluation of
the specimens’ compressive strength (Instron KN-1200 universal testing machine, from
Norwood, Massachusetts, USA) in subfigure no 7 of Figure 1. The robust design algorithm
implemented in this study for the optimization and evaluation of the experimental findings
is shown in Figure 1c.

Thermogravimetric Analysis (TGA) (Perkin Elmer Diamond, 30–550 ◦C heating course
with a 10 ◦C/min step) and Differential Scanning Calorimetry (DSC) (TA Instruments
DSC 25 apparatus, 25–220—25 ◦C heating cycle, 15 ◦C/min step) were used to assess
the specific PA6 material’s thermal sensitivity, and the relevant graphs are shown in
Figure 2a,b, correspondingly. This investigation aimed to examine the thermal sensitivity of
the particular PA6 material to make sure that the temperatures utilized to produce filament
through melt-extrusion and the extrusion process in the 3D printer do not affect the
thermal stability of the material or result in material degradation. The TGA measurements
(Figure 2a) show that the Bed Temperature (BT) and the Nozzle Temperature (NT) used in
the study for the 3D printing of the samples are lower than the temperature at which the
PA6 starts to degrade. So, no such phenomena are expected to affect the performance of the
3D-printed samples. Additionally, the DSC curve (Figure 2b) shows that the temperatures
used are in a range where the PA6 is not changing phase.
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accordance with ASTM D695 specifications are shown. The right side of the figure shows (a) a TGA
graph of the weight loss versus temperature for the particular PA6 utilized in the study and (b) a
DSC graph.

The three primary components of the overall electric energy consumption during the
MEX-AM course are (i) consumption at machine startup, (ii) consumption throughout the
manufacturing 3D printing stage, and (iii) consumption after the manufacturing process,
until the machine shutdown. The following equations are used to calculate total energy
consumption [18]:

Etotal = Ethermal + Emotion + Eauxiliary (1)
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where:
Ethermal = Eheating + Ecooling (2)

Emotion is the amount of the 3D printer’s motors power consumption, and

Eauxiliary = Estartup + Esteadystate + Eshutdown (3)

Is the power used by the 3D printer’s remaining components and electrical circuits.
The Specific Printing Energy (SPE) measure is produced by the subsequent equation,

and it is a ratio showing the required energy per gram of material manufactured:

SPE =
EPC

w
[MJ/g] (4)

As opposed to the Specific Printing Power Metric (SPP), which is derived from the
subsequent equation, and additionally, to the SPE metric, it also considers the required
time (power per gram):

SPP =
EPC
PT·w ·103[kW/g] (5)

where the three variables w, PT, and EPC stand for the real weight for each sample, the
actual printing time for every test run, and the total energy used by the 3D printer.

2.1. Compression Experiments

Compression experiments were conducted on an Instron KN1200 universal testing
machine (Figure 3b) to evaluate the behavior of the PA6 3D printed samples when ex-
posed to compressive loads. A compression speed of 1.30 mm/min was selected for the
test in agreement with ASTM D695 specifications. The specimens are mounted between
the two plates of the testing machine, whereas the compression load is applied in the
longitudinal direction.
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(c,d) Micrographs of two corresponding samples’ upper- and lower-fractured surfaces (Run 11, 12)
that failed by shear sliding.

2.2. Methodology for the Analysis of Variance (ANOVA) and Experimental Design

A robust design methodology was used in this work for the design of the experiment
phase of the current research, specifically the Taguchi method as defined by Phadke [83].
The Taguchi method is a statistical method for the determination of the optimum parameters
that lead to improved product quality, while at the same time, this is achieved with a
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reduced number of the required experimental repetitions [83–85]. Seven 3D printing
characteristics that are present and constant across all MEX 3D printing systems were
chosen as the control factors. The control settings, including Raster Deposition Angle (RDA,
deg), Orientation Angle (ORA, deg), Bed Temperature (BT, ◦C), Layer Thickness (LT, mm),
Infill Density (ID, %), Nozzle Temperature (NT, ◦C), and Printing Speed (PS, mm/min),
were chosen after carefully examining the available research [86] on PA6 material used in
MEX 3D printing and considering industry standards. The same references and current
body of knowledge on the subject were used to define the range of values for these factors.

An L27-array (135 separate tests for the overall modeling technique, five replicas per
run) was developed using the Taguchi design of experiments for the formulation of the
investigational procedure and the assessment of test findings. To implement an identical
full factorial modeling method, 5 × 37 distinct tests would be required, which is not possible
to implement within a research study.

This study investigated how the chosen control settings affected two different sets of
response metrics. The printing period (in seconds), the weight of the specimen (in grams),
energy per piece (EPC, in megajoules), specific energy consumption (SPE, in megajoules
per gram), and specific power consumption (SPP, in kilowatts per gram) made up the initial
set of response parameters that were related to energy. The second set was composed
of compression strength-related response settings, including compressive toughness (in
megajoules per cubic meter), compressive toughness (in megapascals), and compressive
strength (in megapascals). An analysis of variance (ANOVA) was carried out. The analysis
provided metrics related to the reliability of the process (R values) for each response
parameter studied. Additionally, prediction models for the response parameters were
formed, i.e., equations for the calculation of each response parameter as a function of
the control parameter studies (the second to last block of Figure 1a refers to this step
of the process; the block also refers to the Taguchi method for the statical analysis of
the experimental data, which preceded the ANOVA). To verify the effectiveness of these
prediction models, two additional confirmation experimental runs were carried out, and
the experimental findings were correlated with the calculated ones from the prediction
models (Figure 1a, last block). The seven parameters of control (3D printing factors) and
their respective levels are shown in Table 1, as they were created and researched in the
course of the study.

Table 1. Design of the Taguchi L27: Control Factors and Levels.

Run ORA RDA LT ID PS NT BT

1 0.0 0.0 0.1 60.0 20.0 230 30.0
2 0.0 0.0 0.1 60.0 40.0 250 50.0
3 0.0 0.0 0.1 60.0 60.0 270 70.0
4 0.0 45.0 0.2 80.0 20.0 230 30.0
5 0.0 45.0 0.2 80.0 40.0 250 50.0
6 0.0 45.0 0.2 80.0 60.0 270 70.0
7 0.0 90.0 0.3 100.0 20.0 230 30.0
8 0.0 90.0 0.3 100.0 40.0 250 50.0
9 0.0 90.0 0.3 100.0 60.0 270 70.0
10 45.0 0.0 0.2 100.0 20.0 250 70.0
11 45.0 0.0 0.2 100.0 40.0 270 30.0
12 45.0 0.0 0.2 100.0 60.0 230 50.0
13 45.0 45.0 0.3 60.0 20.0 250 70.0
14 45.0 45.0 0.3 60.0 40.0 270 30.0
15 45.0 45.0 0.3 60.0 60.0 230 50.0
16 45.0 90.0 0.1 80.0 20.0 250 70.0
17 45.0 90.0 0.1 80.0 40.0 270 30.0
18 45.0 90.0 0.1 80.0 60.0 230 50.0
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Table 1. Cont.

Run ORA RDA LT ID PS NT BT

19 90.0 0.0 0.3 80.0 20.0 270 50.0
20 90.0 0.0 0.3 80.0 40.0 230 70.0
21 90.0 0.0 0.3 80.0 60.0 250 30.0
22 90.0 45.0 0.1 100.0 20.0 270 50.0
23 90.0 45.0 0.1 100.0 40.0 230 70.0
24 90.0 45.0 0.1 100.0 60.0 250 30.0
25 90.0 90.0 0.2 60.0 20.0 270 50.0
26 90.0 90.0 0.2 60.0 40.0 230 70.0
27 90.0 90.0 0.2 60.0 60.0 250 30.0

3. Results
3.1. Evaluation of Compressive Failure Modes and Morphological Traits

Figure 4 shows microscopic images that were captured from the top surface of speci-
mens that were fabricated using various control parameter settings. Since each specimen
was 3D printed using different 3D printing settings, the distinction between the created
structures is clear. Every image displays the texture of the 3D-printed specimen from the
run mentioned in the image. As shown, excellent layer fusion is presented in the images,
with layers having a uniform shape and no defects or voids visible. This indicates that the
settings were appropriate for the PA6 specimens’ 3D printing with the MEX method. For a
presentation of one microscopic image from each one of the 27 experimental runs, please
see the paper’s Supplementary material (Figure S2).
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The samples that underwent a compression test in accordance with ASTM D695 are
shown in Figure 5. Depending on the results of the compression experiments, a categoriza-
tion of the compressive failure types can be determined. The resulting compressive modes
of failure due to these tests can be classified into three primary failure categories that are
each split into subcategories. The main categories are flexural buckling, kinking, and shear
failures. The first and most common type is flexural buckling failure, which involves three
distinct sub-modes: lateral buckling (runs 4, 5, 6, 9, 16, 17, 18); interlaminar delamination
causes buckling (runs 19, 20, 21, 22), interfacial debonding and buckling (runs 7, 8, 25, 26,
27); and buckling associated with twisting around the longitudinal axis (runs 11, 13, 24).
The kinking failure is the second one, either with a single (run 10) or double (runs 1, 2, 3,
14, 15) kink, and the third failure mode is shearing failure with sliding (runs 12, 23).
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The factors in the 3D printing process are related to each distinct failure mode. The
infill density (ID), in conjunction with the printing orientation angle (ORA), are the primary
factors that influence the failure mechanism of the samples. Changes in the values of these
factors affect the failure mechanism in the samples, as explained below. The samples (runs
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1 to 9) show the flexural failure of buckling or kinking mode at a printing angle of 0◦,
demonstrating maximal compressive strength, which even grows in proportion to the infill
density (ID), in contrast to other printing angle values. The combination of ORA and RDA
control settings that results in specimens with 45-degree-inclined layers causes shear failure
because, in the case of low nozzle temperature (runs 11, 12), insufficient interlayer bonding
causes sliding at the 45-degree shear plane.

For specimens with a 90◦ printing angle, flexural buckling failure is observed, either
with interlaminar delamination (samples 19, 20, and 21) for a 0◦ RDA or with debonding
at the interfaces of adjacent layers for a 90◦ RDA. As a result, the RDA contributes by
altering the primary failure mechanism, which causes secondary failure modes. For a 45◦

RDA, for instance, the specimen experiences a twist-type shearing failure concerning the
longitudinal axis. Additionally, a specimen that experiences laminar failure is typically
strengthened by a 45◦ RDA angle because it prevents layer separation brought on by
significant interlaminar pressures operating at the boundary of two adjacent layers. Finally,
the experimental findings exposed a straightforward correlation between the infill density
and the 3D-printed samples’ highest compressive resistance.

The highest compressive load that the specimen can withstand during the compression
test is known as the ultimate compressive strength. This indicates that the distortion
caused by the maximum compression load signifies the beginning of the material rupture.
No matter the particular failure mode that might take place, the sample’s infill density
maintains its consistent compressive strength [19].

The process for examining the failure of the 3D-printed PA6 samples brought on by
compressive force is demonstrated in Figure 3. The specific failure mechanism in question
in this case is buckling. The examined sample is precisely positioned, with its longitudinal
axis aligned with the plunger’s center line and its ends parallel to the compression plates
between them. The compression load is then applied by moving the plunger axially at
the 1.3 mm/min standard testing speed. After being subjected to compressive stress, the
specimen gradually buckles and is deformed into the C-shape because of the specimen
contact friction, the square shape of the specimen end surface, and the support conditions
that result. According to the 3D printed structure, buckling failure occurs when the elastic
critical compressive load is exceeded. The buckling happens on the plane where the sample
has the lower second moment of area value. The samples were exposed to compressive
loading until they entirely failed. An optical microscope is used to study the fractured
surfaces in order to comprehend the failure mechanism. The markings on the PA6 strands
caused by shear sliding, which originated due to the compressive loading, are visible in the
micrographs of two example sample failures (runs 11 and 12).

3.2. Experimental Results and Taguchi Design

For Compressive Strength (MPa), Toughness (MJ/m3), Modulus of Elasticity (MPa),
and Weight (g) response settings, Table 2 shows, for each individual run, the average values
and standard deviations. The response components related to energy, alongside their
average values and standard deviations (Printing Time, SPE, EPC, and SPP), are shown in
Table 3 (the deviation presented is the calculated one from the experimental results. It refers
only to the specific data, so there is no coverage factor). Please consult the Supplementary
file for more information about the experimental findings from the completed experiments
that are presented (Tables S1 and S2). It should be noted that the average values of the
printing time were calculated from the values of the measured printing time for each
repetition of each run. The average values come from the five measurements in each run for
the printing time. These values are presented analytically in Table S2 of the supplementary
material of the study. The printing time measurements were integer numbers without
decimal parts since there was no point in measuring the fragment of the seconds. Therefore,
it is not strange that most of the average values are also integer numbers. As expected, this
is not the case for their deviation.
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Table 2. Weight, Compressive Strength (sB), Compressive Modulus of Elasticity (E), and Compressive
Toughness Means and Standard Deviations of Evaluated Responses.

Run Weight (g) sB (MPa) E (MPa) Toughness (MJ/m3)

1 5.62 ± 0.15 11.66 ± 1.92 224.78 ± 25.77 1.30 ± 0.17
2 5.49 ± 0.11 14.42 ± 0.81 224.41 ± 4.44 1.68 ± 0.12
3 5.53 ± 0.07 18.19 ± 0.81 258.81 ± 12.40 2.17 ± 0.09
4 6.74 ± 0.18 13.63 ± 0.66 249.80 ± 7.99 1.40 ± 0.10
5 6.35 ± 0.13 21.82 ± 2.43 300.78 ± 29.62 2.55 ± 0.40
6 6.38 ± 0.17 24.12 ± 1.62 243.90 ± 11.32 3.15 ± 0.24
7 6.64 ± 0.29 26.73 ± 3.92 286.52 ± 27.15 2.80 ± 0.53
8 8.41 ± 0.41 31.76 ± 4.32 318.56 ± 38.38 3.91 ± 1.01
9 8.36 ± 0.11 30.31 ± 1.19 261.54 ± 10.04 3.86 ± 0.07
10 8.15 ± 0.12 31.50 ± 1.52 281.00 ± 27.99 4.08 ± 0.23
11 6.40 ± 0.08 34.49 ± 0.36 290.70 ± 20.54 4.54 ± 0.16
12 8.00 ± 0.12 22.81 ± 2.36 229.48 ± 24.95 3.14 ± 0.33
13 5.53 ± 0.04 9.99 ± 0.72 66.49 ± 9.12 1.35 ± 0.06
14 5.44 ± 0.13 10.39 ± 0.83 76.96 ± 1.77 1.44 ± 0.07
15 5.72 ± 0.56 3.04 ± 1.91 28.18 ± 13.62 0.33 ± 0.29
16 7.24 ± 0.41 17.20 ± 1.02 128.45 ± 17.33 2.16 ± 0.18
17 7.10 ± 0.13 17.60 ± 0.79 145.80 ± 11.10 2.25 ± 0.13
18 6.84 ± 0.17 12.46 ± 1.97 99.42 ± 15.86 1.64 ± 0.16
19 6.10 ± 0.52 0.57 ± 0.19 52.46 ± 35.37 0.06 ± 0.01
20 6.02 ± 0.12 5.29 ± 4.43 173.53 ± 103.52 0.55 ± 0.36
21 6.19 ± 0.27 1.24 ± 0.52 60.27 ± 39.53 0.16 ± 0.04
22 7.64 ± 0.16 36.99 ± 2.21 321.08 ± 50.55 4.91 ± 0.27
23 7.12 ± 0.16 18.07 ± 4.24 206.92 ± 61.23 2.40 ± 0.58
24 8.18 ± 0.18 26.97 ± 4.27 323.68 ± 32.31 3.40 ± 0.70
25 5.65 ± 0.05 5.91 ± 1.13 66.93 ± 5.70 0.84 ± 0.18
26 5.22 ± 0.06 9.93 ± 1.88 86.75 ± 17.95 1.29 ± 0.23
27 5.52 ± 0.09 11.82 ± 2.11 108.24 ± 19.73 1.62 ± 0.31

Table 3. Printing time (s), EPC (MJ), SPE(MJ/g), and SPP’s (kW/g) mean values and standard
deviations of measured responses.

Run Printing Time (s) EPC (MJ) SPE (MJ/g) SPP (kW/g)

1 8755.00 ± 253.07 0.935 ± 0.039 0.166 ± 0.005 0.019 ± 0.001
2 3965.00 ± 171.75 0.719 ± 0.029 0.131 ± 0.006 0.033 ± 0.002
3 3145.20 ± 156.99 0.713 ± 0.034 0.129 ± 0.007 0.041 ± 0.003
4 3500.00 ± 165.61 0.787 ± 0.052 0.117 ± 0.010 0.033 ± 0.003
5 2620.00 ± 88.87 0.431 ± 0.029 0.068 ± 0.005 0.026 ± 0.002
6 2040.00 ± 89.17 0.467 ± 0.011 0.073 ± 0.001 0.036 ± 0.002
7 3775.00 ± 83.68 0.468 ± 0.028 0.071 ± 0.004 0.019 ± 0.001
8 1950.00 ± 64.68 0.359 ± 0.025 0.043 ± 0.003 0.022 ± 0.002
9 1430.00 ± 45.45 0.361 ± 0.015 0.043 ± 0.002 0.030 ± 0.001

10 7030.00 ± 367.74 1.583 ± 0.071 0.194 ± 0.010 0.028 ± 0.002
11 4615.40 ± 164.19 0.504 ± 0.035 0.079 ± 0.006 0.017 ± 0.001
12 3280.00 ± 211.83 0.576 ± 0.036 0.072 ± 0.004 0.022 ± 0.002
13 4155.00 ± 251.41 0.901 ± 0.059 0.163 ± 0.010 0.039 ± 0.003
14 2380.00 ± 59.30 0.252 ± 0.016 0.046 ± 0.004 0.020 ± 0.002
15 1915.00 ± 74.52 0.323 ± 0.017 0.057 ± 0.004 0.030 ± 0.002
16 10,980.00 ± 540.65 1.804 ± 0.079 0.250 ± 0.020 0.023 ± 0.003
17 7739.80 ± 285.72 1.009 ± 0.046 0.142 ± 0.006 0.018 ± 0.001
18 5970.00 ± 188.00 1.052 ± 0.073 0.154 ± 0.014 0.026 ± 0.002
19 2652.00 ± 135.27 0.396 ± 0.028 0.065 ± 0.005 0.025 ± 0.002
20 1345.00 ± 54.80 0.288 ± 0.022 0.048 ± 0.003 0.036 ± 0.002
21 1020.00 ± 40.79 0.144 ± 0.009 0.023 ± 0.001 0.023 ± 0.000
22 10,030.20 ± 357.64 1.300 ± 0.102 0.170 ± 0.013 0.017 ± 0.002
23 5258.00 ± 195.42 0.972 ± 0.028 0.137 ± 0.007 0.026 ± 0.001
24 3911.20 ± 179.09 0.468 ± 0.033 0.057 ± 0.004 0.015 ± 0.001
25 3360.00 ± 133.82 0.504 ± 0.029 0.089 ± 0.006 0.027 ± 0.001
26 1825.00 ± 85.67 0.360 ± 0.016 0.069 ± 0.003 0.038 ± 0.003
27 1379.80 ± 82.81 0.180 ± 0.006 0.033 ± 0.001 0.024 ± 0.002
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Box plots are created and shown in Figure 6 for the Weight (g), the Printing time (sec),
the EPC (MJ), and the Compressive strength (MPa) based on the experimental findings
presented in the tables above. The results’ dispersion on the graphs suggests that a par-
ticular control parameter’s value has a bigger impact on the related response parameter.
As can be observed in Figure 6a, only the LT of 0.1 mm, the PS of 20 mm/s, and the ORA
of 45 deg show a scattered distribution of the values for the Printing Time. For the Part
Weight (Figure 6b), apart from the ID of 60%, all the other parameters show a scattered
distribution of their values. For the Compressive Strength (Figure 6c), all the parameters
show a scattered distribution of their values, indicating that all significantly affect how
mechanically the components behave when subjected to this specific kind of loading. Only
the LT, in particular at 0.30 mm, and the PS, at 40 and 60 mm/s, have compact values
for the EPC (Figure 6d), whereas the values of the other control factors are dispersed. In
summary, the boxplot presentation of the data showed that it is impossible to draw any
firm conclusions about the impact of the control factors and their values on the study’s
response factors. To determine the influence and relationships between the factors, further
information on the experimental data is therefore needed. The study provides such an
analysis further below.
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Figure 6. Box plots showing the relationship between the response and the work’s control parameters:
(a) Printing time vs. PS, LT, ORA; (b) Part weight versus ID, RDA, ORA; (c) Compressive strength
versus ID, ORA, RDA; (d) EPC versus PS, LT, ORA.

Main Effect Plots (MEP) were also created using the experimental data shown in the
tables above. The MEP are shown in Figures 7 and 8 for the work’s most important response
parameters. Please refer to the work’s supplemental information for extra MEP graphs
for the other response factors that were examined in this study (Figures S3 and S4). The
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MEP provides details on how each control parameter affects a certain response factor. In
addition, the significance of the control parameters for a particular response parameter
was graded (from most essential to least important). According to Mostafa et al. [87], the
ranking depends on the study of the mean of means and the signal-to-noise ratio. All of the
control parameters have a negligible impact on the particular response factor, according to
the MEP for the Part Weight (g) (Figure 7), except ID (%), with the increase of it leading
to an increase in part weight. The LT and PS control factors have a significant impact on
the MEP for the Printing Time (PT), with their rise having the desired effect of causing a
decrease in PT. The most important criteria for the PT are LT and PS, which are classified as
no. 1 and no. 2, respectively. For the ID, the converse effect occurs: when the ID rises, the
PT rises as well. When the ORA factor is between 0◦ and 90◦degrees, reduced PT is given;
when the ORA factor is between 45◦ and 90◦degrees, higher PT is reported. NT, RDA, and
BT have no considerable impact on PT.
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RDA, BT, and PS had no appreciable impact on the Compressive Strength (Figure 8)
as a response parameter. The compressive strength is mostly affected by the ID, which is
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listed as the top characteristic; as the ID increases, the compressive strength also increases.
Compressive strength diminishes as ORA (ranked no2) increases. Furthermore, the highest
LT value of 0.3 mm leads to reduced compressive strength values, while lower LT values of
0.1 mm and 0.2 mm produce higher compressive strength values, as shown in Figure 8. The
higher compressive strength is achieved with the 0.2 mm LT, which is the median control
parameter value still, the difference in compressive strength with the lowest LT value of
0.1 mm is marginal. Also, an increase in compressive strength is caused by an increase
in NT.

Higher levels of LT cause a decrease in EPC, making it the dominant parameter in
terms of the EPC response factor (ranked no1). Since PS is the second-most important
control factor for the EPC, higher PS levels also result in a fall in the EPC. Regarding ORA
(ranked as no3), EPC was lower at 0- and 90-degree ORA, while the maximum EPC was
recorded at 45 degrees ORA. The EPC is increased by higher BT (ranked fourth) and ID
(ranked fifth) values. The EPC is not severely impacted by NT or RDA.

The interaction plots in Figure 9 were created to show the link between the control fac-
tors in a graph. Please refer to the work’s Supplementary information for extra interaction
graphs for the rest of the response factors under consideration (Figure S5). For the EPC:

• The ORA control parameter exhibits synergistic relationships with the LT and PS and
antagonistic relationships with the other control parameters.

• The RDA control parameter exhibits a synergistic relationship with the PS and antago-
nistic relationships with the other control parameters.

• The LT control parameter exhibits a synergistic relationship with the PS, NT, and BT
and antagonistic relationships with the other control parameters.

• The ID control parameter exhibits a synergistic relationship with the PS, NT, and BT
and antagonistic relationships with the other control parameters.

• The PS control parameter exhibits a synergistic relationship with the ID, LT, and RDA
and antagonistic relationships with the other control parameters.

• The NT control parameter exhibits a synergistic relationship with the LT and ID and
antagonistic relationships with the other control parameters.

• The BT control parameter exhibits a synergistic relationship with the ID and LT and
antagonistic relationships with the other control parameters.

• For compressive strength:
• The ORA control parameter exhibits synergistic relationships with the NT and antago-

nistic relationships with the other control parameters.
• The RDA control parameter exhibits a synergistic relationship with the NT and antag-

onistic relationships with the other control parameters.
• The LT control parameter exhibits antagonistic relationships with all the control

parameters.
• The ID control parameter exhibits a synergistic relationship with the NT and antago-

nistic relationships with the other control parameters.
• The PS control parameter exhibits antagonistic relationships with all the control

parameters.
• The NT control parameter exhibits a synergistic relationship with the ORA and ID and

antagonistic relationships with the other control parameters.
• The BT control parameter exhibits antagonistic relationships with all the control

parameters.

Such complex relations between the control parameters indicate that further analysis
is required to derive their effect on the response measures studied.
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3.3. Regression Analysis

Each response’s Reduced Quadratic Regression Model (RQRM) is computed as follows:

Yk = ak +
n

∑
i=1

bi,kxi +
n

∑
i=1

ci,kx2
i + ek (6)

where k stands for the output quality (for example, printing time, weight, modulus of
elasticity, toughness, compressive strength, SPE, SPE, EPC), a, b, c, e, and xi stand for the
value that remains persistent, the coefficients of the linear terms, the quadratic terms, the
error amount, and the seven control factors, respectively (layer thickness, printing speed,
infill density, raster deposition angle, orientation angle, bed, and nozzle temperatures).

The ANOVA for the response measures examined here is shown in tables in the
Supplementary material of the work (Tables S3–S10). This investigation resulted in the
formation of the related prediction equations for the response factors, which are (7)–(14).
It should be noted that in the adjusted mathematical models there are non-significant
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parameters, as shown by the collection of p-values obtained. It would be interesting to
eliminate these non-significant parameters and adjust the models again to avoid over-fitting
problems. This was not performed due to the added complexity and length of the work.
From the analysis of the ANOVA, the following was derived:

• The F-value for the weight response factor is 45.20 (>4), the p-value is almost zero,
and the calculated values for the regression parameters are higher than 79.82%. These
measures show that the Equation (7) prediction model is adequate for forecasting the
weight response factor.

• The F-value for the printing time response factor is 96.61 (>4), the p-value is nearly zero,
and the calculated values for the regression parameters are higher than 89.69%. These
measures show that the Equation (8) prediction model is adequate for forecasting the
printing time response factor.

• The F-value for the compressive strength response factor is 67.08 (>4), the P-value is
nearly zero, and the calculated values for the regression parameters are higher than
85.66%. These measures show that Equation (9), which serves as the prediction model,
is adequate for forecasting the compressive strength response factor.

• The F-value for the compression modulus of elasticity response factor is 43.86 (>4),
the p-value is nearly zero, and the calculated values for the regression parameters are
higher than 79.31%. Based on these metrics, it can be concluded that Equation (10)’s
prediction model is adequate for forecasting the compression modulus of the elasticity
response factor.

• The F-value for the compression toughness response factor is 59.30 (>4), the p-value
is nearly zero, and the calculated values for the regression parameters are higher
than 84.02%. These measures demonstrate that Equation (11)’s prediction model is
adequate for forecasting the compression toughness response factor.

• The EPC response factor’s F-value is 168.97 (>4). The regression factor values are
computed to be greater than 93.89%, and the p-value is almost zero. According to these
statistics, the prediction model outlined in Equation (12) is appropriate for predicting
the EPC response factor.

• The F-value for the SPE response factor is 233.02 (>4), the p-value is nearly zero, and
the regression factor values were computed to be larger than 95.51%. These metrics
show that Equation (13) in the prediction model is adequate for forecasting the SPE
response factor.

• The F-value for the SPP response factor is 34.29 (>4), the p-value is nearly zero, and the
estimated values for the regression parameter are higher than 74.69%. These measures
show that the Equation (14) prediction model is adequate for forecasting the SPP
response factor.

Weight = −46.1 + 0.00681 × ORA + 0.00361 × RDA − 6.55 × LT + 0.0381 × ID − 0.0510 × PS
+0.3927 × NT + 0.0465 × BT − 0.000102 × ORA2 + 0.000008 × RDA2 + 13.10 × LT2

+0.000095 × ID2 + 0.000686 × PS2 − 0.000782 × NT2 − 0.000418 × BT2
(7)

PrintingTime = 3301 + 83.88 × ORA − 3.20 × RDA − 68576 × LT + 108.3 × ID − 249.7 × PS
+75 × NT − 38.5 × BT − 0.9374 × ORA2 + 0.0713 × RDA2 + 117089 × LT2

−0.496 × ID2 + 2.074 × PS2 − 0.140 × NT2 + 0.389 × BT2
(8)

sB = −221 − 0.0701 × ORA + 0.0936 × RDA + 101.4 × LT − 2.369 × ID + 0.240 × PS + 2.323 × NT
−0.244 × BT − 0.000262 × ORA2 − 0.000717 × RDA2 − 328.7 × LT2 + 0.01766 × ID2

−0.00311 × PS2 − 0.00434 × NT2 + 0.00272 × BT2
(9)

E = −2261 − 3.853 × ORA + 0.472 × RDA + 678 × LT − 12.89 × ID + 3.80 × PS + 22.61 × NT
−2.83 × BT + 0.02952 × ORA2 − 0.00927 × RDA2 − 2540 × LT2 + 0.1045 × ID2

−0.0497 × PS2 − 0.0445 × NT2 + 0.0266 × BT2
(10)
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Toughness = −26.8 − 0.00006 × ORA + 0.01273 × RDA + 15.62 × LT − 0.3244 × ID + 0.0336 × PS
+0.282 × NT − 0.0193 × BT − 0.000104 × ORA2 − 0.000105 × RDA2 − 49.39 × LT2

+0.002393 × ID2 − 0.000401 × PS2 − 0.000517 × NT2 + 0.000251 × BT2
(11)

EPC = −15.35 + 0.014425 × ORA − 0.000084 × RDA − 6.779 × LT + 0.03310 × ID − 0.04749 × PS
+0.1320 × NT − 0.00464 × BT − 0.000169 × ORA2 + 0.000004 × RDA2 + 9.34 × LT2

−0.000177 × ID2 + 0.000441 × PS2 − 0.000266 × NT2 + 0.000122 × BT2
(12)

SPE = −1.390 + 0.001746 × ORA − 0.000079 × RDA − 1.1149 × LT + 0.002868 × ID − 0.006256 × PS
+0.01347 × NT − 0.000936 × BT − 0.000021 × ORA2 + 0.000001 × RDA2

+1.707 × LT2 − 0.000018 × ID2 + 0.000056 × PS2 − 0.000027 × NT2

+0.000020 × BT2

(13)

SPP = 0.146 − 0.000146 × ORA + 0.000013 × RDA + 0.1033 × LT + 0.000355 × ID
−0.000001 × PS − 0.001065 × NT − 0.000121 × BT + 0.000001 × ORA2 − 0.000000 × RDA2

−0.2243 × LT2 − 0.000004 × ID2 + 0.000001 × PS2 + 0.000002 × NT2

+0.000004 × BT2

(14)

For the response parameters, Pareto plots were created to determine the significant
control variables statistically (Pareto charts are provided in the Supplementary part of this
study; please see Figures S6–S9).

• The ORA, ORA2, LT, LT2, PS, and PS2 parameters for printing time pass the
1.98 margins, making them statistically significant factors for the particular response
factor. The calculated MAPE value of 19.61% is a respectable outcome. Additionally,
the Durbin-Watson metric was estimated at 0.4, demonstrating a positive autocorrela-
tion in the prediction residuals.

• ORA2, PS, PS2, NT, NT2, BT, and BT2 were the statistically significant characteristics
for the part weight. MAPE was computed at 5.05%, which is a highly acceptable result
and confirms the model’s dependability. The prediction residuals show a positive
autocorrelation, according to the 0.96 Durbin-Watson factor calculation.

• The statistically significant parameters for compressive strength include ORA, RDA,
RDA2, LT, LT2, ID, ID2, NT, and NT2. MAPE was computed at 47.53%, which is a
moderate result and shows that the expected accuracy of the model in the prediction is
not very good. The residuals of the forecast show a positive autocorrelation, according
to the Durbin-Watson factor calculation, which came out to be 1.04.

• The statistically significant factors for the EPC are ORA, ORA2, LT, LT2, ID, ID2, PS,
PS2, NT, NT2, and BT2. MAPE was determined to be 15.63%, which is a respectable
outcome. The residuals of the forecast show a positive autocorrelation, according to
the Durbin-Watson factor calculation, which came up at 0.69.

A three-dimensional surface graph of behavior vs. control factors is shown in Figure 10.
The two most important control parameters for each response measure are used to plot the
three-dimensional surface graphs, to depict their effect and dependence on the
specific measure.

3.4. Confirmation

Two verification runs (28 and 29) were executed to assess the precision of the ANOVA
modeling technique. In Run 28, the control parameter values that gave the highest com-
pressive strength results were selected (or values close to them), while in Run 29, the
corresponding control parameter values that minimized the EPC were selected. Five repli-
cas of each run were used. Table 4 provides the control variables for these verification runs.
Tables 5 and 6 respectively, show the means and variances of the response components
for each run (the deviation presented is the calculated one from the experimental results.
It refers only to the specific data, so there is no coverage factor). The tables in the work’s
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Supplementary file contain the experimental results for each replica in the two validation
runs, which are displayed analytically (Tables S11 and S12).
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Table 4. Confirmation Runs’ Control Parameters.

Run ORA RDA LT ID PS NT BT

28 0 65.5 0.15 100 38.6 267.6 70
29 90 10.0 0.30 60 53.9 270.0 30

Table 5. Weight, compressive strength, modulus of elasticity, and toughness mean values and
standard deviations of observed responses for the validation runs.

Run Weight (g) sB (MPa) E (MPa) Toughness (MJ/m3)

28 7.12 ± 0.19 36.94 ± 1.58 422.58 ± 20.59 5.06 ± 0.19
29 5.32 ± 0.15 3.26 ± 0.55 67.18 ± 3.53 0.56 ± 0.04

Table 6. Printing Time, EPC, SPE, and SPP Measured Responses: Average Values and Standard
Deviations for the Confirmation Runs.

Run Printing Time (s) EPC (MJ) SPE (MJ/g) SPP (kW/g)

28 4745.80 ± 164.74 0.780 ± 0.037 0.120 ± 0.005 0.023 ± 0.001
29 822.80 ± 94.73 0.119 ± 0.009 0.022 ± 0.002 0.028 ± 0.005

For the two confirmation runs, the response factors sB and EPC, predicted vs. actual
values, are shown in Table 7, and the difference between these values is calculated. The
difference between the two response parameters’ actual and projected values in confir-
mation run 28 is minimal. The difference between predicted and actual values for sB in
confirmation run 29 is negligible. It should be noted that in the specific run (29), the model
failed to predict the EPC value, and as a result, the error with the experimental value was
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not possible to be calculated (hence the “vague” values in Table 7). In this specific case, the
model produced a negative EPC value, which is not physically possible. This shows that
the model has restrictions and is expected to produce reliable and accurate results within
a specific range of control parameter values. This range was not calculated, as it was not
within the scope of the work.

Table 7. Validation Table A.

Run 28 29

Actual
sB (MPa) 36.94 3.26
EPC (MJ) 0.78 0.12

Predicted
sB (MPa) 41.30 3.56
EPC (MJ) 0.75 Vague

Absolute Error
sB (%) 11.79 8.95

EPC (%) 3.97 Vague

4. Discussion

Herein, the effect of seven generic 3D printing settings on the compressive strength
and the energy demands for the fabrication of PA6 parts with the MEX method is presented.
Experiments were conducted, and the findings were analyzed with statistical modeling.
The aim was to locate a set of 3D printing parameters that optimize both the compres-
sive strength and the energy demands for the manufacturing of the corresponding parts.
Through the analysis of the results and the modeling process followed it was found that spe-
cific 3D printing settings highly affect the performance of the produced parts, and overall,
all the 3D printing settings studied contribute to the performance of the parts. For the first
time, the compressive strength of PA6 3D printing is studied in such depth (as a function of
seven 3D printing settings), revealing once again the importance of selecting proper 3D
printing in the MEX process. Additionally, for the first time, according to the authors’ best
knowledge, insight into the required energy to 3D print PA6 parts with the MEX method is
provided, along with a roadmap on the effect of the 3D printing settings, suggesting the
values that achieved more sustainable and eco-friendly results. Sustainability, as mentioned,
is a critical parameter nowadays for the AM process. No set of parameters was possible to
optimize both the compressive strength and the energy consumption, suggesting that a
compromise needed to be made in one or the other direction (mechanical performance or
eco-friendliness). Still, specific parameters could achieve more or less good results for both
contradictory measures. For example, a 0 deg ORA achieves high compressive strength
with reduced energy demands. RDA does not highly affect both measures; the PS and the
BT do not significantly affect the compression strength, while their high values significantly
reduce the energy demands for the manufacturing of the parts. The NT parameter is
not highly affecting the energy demands, while its increase results in higher compressive
strength values. The two control parameters that contradict each other are the LT and the
ID. High LT values reduce the energy demands but also the compressive strength, while
high ID values increase the compressive strength but also the demands.

The ID can affect the compressive strength by almost 300%. This is approximately the
difference between the lowest and the highest value recorded by altering only the specific
control setting. It should be noted that the literature on the compressive strength of PA6
parts in MEX 3D printing is very limited. Still, the results are in good agreement with
the existing literature [88]. The PS, on the other hand, can double the energy demands,
with lower PS values requiring twice the energy of the higher values to build the parts
(without significantly affecting the compression strength, as mentioned). Such differences
justify the need for the analysis carried out in the current work. It should be noted that
the EPC values follow the same pattern as the Printing Time values, showing a strong
relationship between these two measures. The energy consumption results cannot be
directly correlated to the literature since, to the authors’ best knowledge, no study so
far has presented corresponding results. Comparing the results presented herein with
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corresponding results for the ABS polymer [18], the PA6 polymer requires higher energy
amounts to be 3D printed. LT and PS were also dominant parameters in the ABS study
regarding energy demands. Similar findings are reported for the PLA [19], the PMMA [21],
and the PC [22] polymers, as well. The PMMA required lower energy amounts to be 3D
printed, while the PC polymer required significantly higher energy amounts to be 3D
printed than the PA6 polymer studied herein.

5. Conclusions

The impact of seven generic, device-independent 3D printing variables on the power
usage and mechanical behavior of PA6 items created using the MEX 3D printing technique
was thoroughly investigated in this work. Additionally, this is the first time in the literature
that, for the specific thermoplastic material (PA6), an optimization of its mechanical proper-
ties under compressive loading has been covered in such detail. Finally, it is discussed how
the seven 3D printing factors investigated in the study affect two parameters relevant to the
overall behavior of the 3D printed samples. The impact of each 3D printing configuration
on the parameters that were examined for the energy and mechanical factors was identified
as the factors were rated for each response factor analyzed. For each of the response pa-
rameters, prediction models were created as functions of the seven control parameters (3D
printing settings), and their precision was tested with two validation runs. The precision of
the prediction models was confirmed for each of the response characteristics, making them
suitable for usage in industrial settings.

In conclusion, it was shown that a single set of 3D printing settings was unable to be
utilized to optimize both power consumption and compression strength. Certain response
factors can be optimized to meet the requirements of each application, and the predicted
models can reveal information about the anticipated outcomes for the remaining response
factors. The three main variables were the LT for energy consumption (EPC), the LT for
printing time (PT), and the ID for compressive strength (sB). Future research could expand
the current study by analyzing control factor values in a new value range, thus extending
the range of applications for the findings.
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randomly selected specimen from each run; Figure S2. Optical stereoscope image of one randomly
selected specimen from each run; Figure S3. MEP: SPE (MJ/g) and SPP (kW/g); Figure S4. MEP:
Compression modulus of elasticity (Mpa) and Toughness (MJ/m3); Figure S5. Interaction plots: print-
ing time (s), part weight (g); Table S3. Polynomial ANOVA, Weight vs. ORA, RDA, LT, ID, PS, NT, BT;
Figure S6. Pareto charts and experimental vs. calculated values graph: (a) printing time (s); (b) part
weight (g); Figure S7. Pareto charts and experimental vs. calculated values graph: (a) compressive
strength (MPa); (b) EPC (MJ); Figure S8. Pareto charts and experimental vs. calculated values graph:
(a) SPE (MJ/g), (b) SPP (kW/g); Figure S9. Pareto charts and experimental vs. calculated values
graph: (a) compressive modulus of elasticity (MPa); (b) compressive toughness (MJ/m3); Table S1.
Measured Weight, Compressive Strength, Compressive Modulus of Elasticity, and Compressive
Toughness for each experimental run and five replicas per run; Table S2. Measured for Printing Time,
EPC, SPE, and SPP for each experimental run and five replicas per run; Table S3. Polynomial ANOVA,
Weight vs. ORA, RDA, LT, ID, PS, NT, BT; Table S4. Polynomial ANOVA, Printing Time vs. ORA,
RDA, LT, ID, PS, NT, BT; Table S5. Polynomial ANOVA, sB vs. ORA, RDA, LT, ID, PS, NT, BT; Table S6.
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