Innovative Attention-Based Explainable Feature-Fusion VGG19 Network for Characterising Myocardial Perfusion Imaging SPECT Polar Maps in Patients with Suspected Coronary Artery Disease
Abstract
:1. Introduction
- A novel attention-based modification of the VGG19 network is proposed that improves the identification of essential areas of the Polar Map and performs feature-fusion via concatenation.
- The network is evaluated with reference to the invasive coronary angiography (ICA) test results and shows high classification accuracy, sensitivity, and specificity.
- The network agrees with the medical experts, who visually inspected the Polar Maps and delivered their diagnostic yields.
- The post hoc explainability algorithm reveals the crucial areas of the Polar Map, which the medical experts assessed to verify the correctness of the model.
1.1. Related Work
2. Materials and Methods
2.1. Attention-Based Feature-Fusion VGG19
2.1.1. Baseline VGG Network
2.1.2. Feature-Fusion Modification
2.1.3. Attention Module
2.1.4. Training Parameters
- The dense layer at the top connects each of the neurons from the previous layers and allows the network to extract features from the input data. AF-VGG19 consists of one dense layer of 512 nodes.
- Loss function: The categorical cross-entropy loss function is commonly used in supervised learning tasks with multiple classes. It is used to measure the dissimilarity between the predicted probabilities of a model and the true class labels.
- Optimiser: An optimiser plays a crucial role in training a CNN [9]. It updates the model weights based on the gradients calculated during the forward and backward passes. The present version of our network uses the Adam optimiser.
- Early Stopping: We implemented two early stopping rules. Suppose the validation accuracy reaches 0.91 and does not improve for ten epochs, while the training accuracy remains above 0.91. In that case, the training stops, and the weights of the best epoch are restored.
- Data Augmentation: Data augmentation is an essential training technique, even when a large amount of data are available. Data augmentation aids in overfitting reduction when the model’s performance on the training data is substantially better than on unseen data. Data augmentation creates new data points by transforming existing data points to preserve the original data information. The latter helps improve the model’s generalisation ability and performance on unseen data. As advised by similar studies [27,28,29], slight data augmentations are applied for particular classification tasks. These include slight height and width shifts (by 10 pixels), random rotations (by a maximum of 10 degrees), and Gaussian noise injections.
2.2. Explainability-Enhancing Algorithm
2.3. Dataset
2.4. Image Preprocessing
- Polar map (with attenuation correction) in rest conditions.
- Polar map (with attenuation correction) in stress conditions.
- Polar map (without attenuation correction) in rest conditions.
- Polar map (without attenuation correction) in stress conditions.
2.5. Experiment Design
3. Results
3.1. Assessing the Agreement between the Model and the Human Expert
3.2. Assessing the Model’s Robustness in CAD Diagnosis Based on ICA Findings
3.3. Comparison with Other VGG Approaches
3.4. Comparison with Pretrained State-of-the-Art
3.5. Comparison with the Literature
3.6. Visual Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Michas, G.; Karvelas, G.; Trikas, A. Cardiovascular disease in Greece; the latest evidence on risk factors. Hell. J. Cardiol. 2019, 60, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Malakar, A.K.; Choudhury, D.; Halder, B.; Paul, P.; Uddin, A.; Chakraborty, S. A Review on Coronary Artery Disease, Its Risk Factors, and Therapeutics. J. Cell. Physiol. 2019, 234, 16812–16823. [Google Scholar] [CrossRef] [PubMed]
- Hajar, R. Risk Factors for Coronary Artery Disease: Historical Perspectives. Heart Views 2017, 18, 109. [Google Scholar] [CrossRef] [PubMed]
- Winzer, E.B.; Woitek, F.; Linke, A. Physical Activity in the Prevention and Treatment of Coronary Artery Disease. J. Am. Heart Assoc. 2018, 7, e007725. [Google Scholar] [CrossRef] [Green Version]
- Takx, R.A.; Blomberg, B.A.; Aidi, H.E.; Habets, J.; de Jong, P.A.; Nagel, E.; Hoffmann, U.; Leiner, T. Diagnostic accuracy of stress myocardial perfusion imaging compared to invasive coronary angiography with fractional flow reserve meta-analysis. Circ. Cardiovasc. Imaging 2015, 8, e002666. [Google Scholar] [CrossRef] [Green Version]
- Canfield, J.; Totary-Jain, H. 40 Years of Percutaneous Coronary Intervention: History and Future Directions. J. Pers. Med. 2018, 8, 33. [Google Scholar] [CrossRef] [Green Version]
- Alexander, J.H.; Smith, P.K. Coronary-Artery Bypass Grafting. N. Engl. J. Med. 2016, 374, 1954–1964. [Google Scholar] [CrossRef] [Green Version]
- Dorbala, S.; Ananthasubramaniam, K.; Armstrong, I.S.; Chareonthaitawee, P.; DePuey, E.G.; Einstein, A.J.; Gropler, R.J.; Holly, T.A.; Mahmarian, J.J.; Park, M.-A.; et al. Single Photon Emission Computed Tomography (SPECT) Myocardial Perfusion Imaging Guidelines: Instrumentation, Acquisition, Processing, and Interpretation. J. Nucl. Cardiol. 2018, 25, 1784–1846. [Google Scholar] [CrossRef] [Green Version]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Apostolopoulos, I.D.; Papathanasiou, N.D. Classification of lung nodule malignancy in computed tomography imaging utilising generative adversarial networks and semi-supervised transfer learning. Biocybern. Biomed. Eng. 2021, 41, 1243–1257. [Google Scholar] [CrossRef]
- Apostolopoulos, I.D.; Papathanasiou, N.D.; Apostolopoulos, D.J. A Deep Learning Methodology for the Detection of Abnormal Parathyroid Glands via Scintigraphy with 99mTc-Sestamibi. Diseases 2022, 10, 56. [Google Scholar] [CrossRef]
- Otaki, Y.; Singh, A.; Kavanagh, P.; Miller, R.J.H.; Parekh, T.; Tamarappoo, B.K.; Sharir, T.; Einstein, A.J.; Fish, M.B.; Ruddy, T.D.; et al. Clinical Deployment of Explainable Artificial Intelligence of SPECT for Diagnosis of Coronary Artery Disease. JACC Cardiovasc. Imaging 2022, 15, 1091–1102. [Google Scholar] [CrossRef]
- Papandrianos, N.; Papageorgiou, E. Automatic Diagnosis of Coronary Artery Disease in SPECT Myocardial Perfusion Imaging Employing Deep Learning. Appl. Sci. 2021, 11, 6362. [Google Scholar] [CrossRef]
- Cheng, J.-Z.; Ni, D.; Chou, Y.-H.; Qin, J.; Tiu, C.-M.; Chang, Y.-C.; Huang, C.-S.; Shen, D.; Chen, C.-M. Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans. Sci. Rep. 2016, 6, 24454. [Google Scholar] [CrossRef] [Green Version]
- Papandrianos, N.; Feleki, A.; Papageorgiou, E. Exploring Classification of SPECT MPI Images Applying Convolutional Neural Networks. In Proceedings of the 25th Pan-Hellenic Conference on Informatics; ACM, Volos, Greece, 26 November 2021; pp. 483–489. [Google Scholar]
- Zahiri, N.; Asgari, R.; Razavi-Ratki, S.-K.; Parach, A.-A. Deep Learning Analysis of Polar Maps from SPECT Myocardial Perfusion Imaging for Prediction of Coronary Artery Disease. In Review, 2021. Available online: https://www.researchsquare.com/article/rs-1153347/v1 (accessed on 1 June 2023).
- Papandrianos, N.I.; Apostolopoulos, I.D.; Feleki, A.; Apostolopoulos, D.J.; Papageorgiou, E.I. Deep Learning Exploration for SPECT MPI Polar Map Images Classification in Coronary Artery Disease. Ann. Nucl. Med. 2022, 36, 823–833. [Google Scholar] [CrossRef]
- Betancur, J.; Hu, L.-H.; Commandeur, F.; Sharir, T.; Einstein, A.J.; Fish, M.B.; Ruddy, T.D.; Kaufmann, P.A.; Sinusas, A.J.; Miller, E.J.; et al. Deep Learning Analysis of Upright-Supine High-Efficiency SPECT Myocardial Perfusion Imaging for Prediction of Obstructive Coronary Artery Disease: A Multicenter Study. J. Nucl. Med. 2019, 60, 664–670. [Google Scholar] [CrossRef]
- Betancur, J.; Commandeur, F.; Motlagh, M.; Sharir, T.; Einstein, A.J.; Bokhari, S.; Fish, M.B.; Ruddy, T.D.; Kaufmann, P.; Sinusas, A.J.; et al. Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: A multicenter study. JACC Cardiovasc. Imaging 2018, 11, 1654–1663. [Google Scholar] [CrossRef]
- Arvidsson, I.; Overgaard, N.C.; Astrom, K.; Heyden, A.; Figueroa, M.O.; Rose, J.F.; Davidsson, A. Prediction of Obstructive Coronary Artery Disease from Myocardial Perfusion Scintigraphy Using Deep Neural Networks. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10 January 2021; IEEE: London, UK, 2021; pp. 4442–4449. [Google Scholar]
- Miller, R.J.H.; Kuronuma, K.; Singh, A.; Otaki, Y.; Hayes, S.; Chareonthaitawee, P.; Kavanagh, P.; Parekh, T.; Tamarappoo, B.K.; Sharir, T.; et al. Explainable Deep Learning Improves Physician Interpretation of Myocardial Perfusion Imaging. J. Nucl. Med. 2022, 63, 1768–1774. [Google Scholar] [CrossRef] [PubMed]
- Otaki, Y.; Tamarappoo, B.; Singh, A.; Sharir, T.; Hu, L.-H.; Gransar, H.; Einstein, A.; Fish, M.; Ruddy, T.; Kaufmann, P.; et al. Diagnostic Accuracy of Deep Learning for Myocardial Perfusion Imaging in Men and Women with a High-Efficiency Parallel-Hole-Collimated Cadmium-Zinc-Telluride Camera: Multicenter Study. J. Nucl. Med. 2020, 61, 92. [Google Scholar]
- Miller, R.J.H.; Singh, A.; Otaki, Y.; Tamarappoo, B.K.; Kavanagh, P.; Parekh, T.; Hu, L.-H.; Gransar, H.; Sharir, T.; Einstein, A.J.; et al. Mitigating Bias in Deep Learning for Diagnosis of Coronary Artery Disease from Myocardial Perfusion SPECT Images. Eur. J. Nucl. Med. Mol. Imaging 2022, 50, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Miller, R.J.H.; Otaki, Y.; Kavanagh, P.; Hauser, M.T.; Tzolos, E.; Kwiecinski, J.; Van Kriekinge, S.; Wei, C.-C.; Sharir, T.; et al. Direct Risk Assessment From Myocardial Perfusion Imaging Using Explainable Deep Learning. JACC Cardiovasc. Imaging 2022, 16, 209–220. [Google Scholar] [CrossRef]
- Chen, J.-J.; Su, T.-Y.; Chen, W.-S.; Chang, Y.-H.; Lu, H.H.-S. Convolutional Neural Network in the Evaluation of Myocardial Ischemia from CZT SPECT Myocardial Perfusion Imaging: Comparison to Automated Quantification. Appl. Sci. 2021, 11, 514. [Google Scholar] [CrossRef]
- Spier, N.; Nekolla, S.; Rupprecht, C.; Mustafa, M.; Navab, N.; Baust, M. Classification of Polar Maps from Cardiac Perfusion Imaging with Graph-Convolutional Neural Networks. Sci. Rep. 2019, 9, 7569. [Google Scholar] [CrossRef] [Green Version]
- Kaplan Berkaya, S.; Ak Sivrikoz, I.; Gunal, S. Classification Models for SPECT Myocardial Perfusion Imaging. Comput. Biol. Med. 2020, 123, 103893. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wu, J.; Miller, E.J.; Liu, C.; Yaqiang, L.; Liu, Y.-H. Diagnostic Accuracy of Stress-Only Myocardial Perfusion SPECT Improved by Deep Learning. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2793–2800. [Google Scholar] [CrossRef] [PubMed]
- Apostolopoulos, I.D.; Papathanasiou, N.D.; Spyridonidis, T.; Apostolopoulos, D.J. Automatic characterisation of myocardial perfusion imaging polar maps employing deep learning and data augmentation. Hell. J. Nucl. Med. 2020, 23, 125–132. [Google Scholar]
- Apostolopoulos, I.D.; Apostolopoulos, D.I.; Spyridonidis, T.I.; Papathanasiou, N.D.; Panayiotakis, G.S. Multi-input deep learning approach for Cardiovascular Disease diagnosis using Myocardial Perfusion Imaging and clinical data. Phys. Med. 2021, 84, 168–177. [Google Scholar] [CrossRef]
- Trung, N.T.; Ha, N.T.; Thuan, N.D.; Minh, D.H. A Deeplearning Method for Diagnosing Coronary Artery Disease Using SPECT Images of Heart. J. Sci. Technol. 2020, 144, 022–027. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- Haq, I.U.; Ali, H.; Wang, H.Y.; Lei, C.; Ali, H. Feature Fusion and Ensemble Learning-Based CNN Model for Mammographic Image Classification. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 3310–3318. [Google Scholar] [CrossRef]
- Amin, S.U.; Muhammad, G.; Abdul, W.; Bencherif, M.; Alsulaiman, M. Multi-CNN Feature Fusion for Efficient EEG Classification. In Proceedings of the 2020 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), London, UK, 6–10 July 2020; IEEE: London, UK, 2020; pp. 1–6. [Google Scholar]
- Tian, C.; Xu, Y.; Li, Z.; Zuo, W.; Fei, L.; Liu, H. Attention-Guided CNN for Image Denoising. Neural Netw. 2020, 124, 117–129. [Google Scholar] [CrossRef]
- Mou, L.; Zhu, X.X. Learning to Pay Attention on Spectral Domain: A Spectral Attention Module-Based Convolutional Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 110–122. [Google Scholar] [CrossRef]
- Jetley, S.; Lord, N.A.; Lee, N.; Torr, P.H.S. Learn To Pay Attention. arXiv 2018, arXiv:1804.02391. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; IEEE: London, UK, 2009; pp. 248–255. [Google Scholar]
- Krizhevsky, A.; Nair, V.; Hinton, G. The CIFAR-10 Dataset. 2014, 55. Available online: http://www.cs.toronto.edu/kriz/cifar.Html (accessed on 1 June 2023).
- Krizhevsky, A.; Nair, V.; Hinton, G. CIFAR-100 (Canadian Institute for Advanced Research). Available online: http://www.cs.toronto.edu/kriz/cifar.html (accessed on 1 June 2023).
- Chattopadhyay, A.; Sarkar, A.; Howlader, P.; Balasubramanian, V.N. Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks. In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018; pp. 839–847. [Google Scholar]
- Betancur, J.; Otaki, Y.; Motwani, M.; Fish, M.B.; Lemley, M.; Dey, D.; Gransar, H.; Tamarappoo, B.; Germano, G.; Sharir, T.; et al. Prognostic Value of Combined Clinical and Myocardial Perfusion Imaging Data Using Machine Learning. JACC Cardiovasc. Imaging 2018, 11, 1000–1009. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, R.; Niazi, P.; Naseri, M.; Neishabouri, M.; Farzanefar, S.; Eftekhari, M.; Derakhshan, F.; Mollazadeh, R.; Meysami, A.; Abbasi, M. Precisión diagnóstica mejorada para la imagen de perfusión miocárdica usando redes neuronales artificiales en diferentes variables de entrada incluyendo datos clínicos y de cuantificación. Rev. Esp. Med. Nucl. E Imagen Mol. 2019, 38, 275–279. [Google Scholar] [CrossRef] [PubMed]
Metric | With Reference to ICA Findings | With Reference to Human Reader | |
---|---|---|---|
AFF-VGG19 (Model) | Nuclear Medicine Expert | AFF-VGG19 (Model) | |
True Positives | 186 | 204 | 198 |
True Negatives | 197 | 177 | 239 |
False Positives | 76 | 96 | 34 |
False Negatives | 27 | 9 | 15 |
Accuracy | 0.78881 | 0.7840 | 0.8992 |
Sensitivity | 0.8732 | 0.9577 | 0.9296 |
Specificity | 0.7216 | 0.6484 | 0.8755 |
PPV | 0.7099 | 0.68 | 0.8534 |
NPV | 0.8795 | 0.9516 | 0.9409 |
FPR | 0.2784 | 0.3516 | 0.1245 |
F-1 score | 0.7832 | 0.7953 | 0.8899 |
Network | Accuracy | Sensitivity | Specificity | F-1 Score |
---|---|---|---|---|
Baseline VGG16 | 0.6770 | 0.7606 | 0.6117 | 0.6736 |
Baseline VGG19 | 0.6955 | 0.7700 | 0.6374 | 0.6891 |
FF-VGG19 [10] | 0.7119 | 0.7840 | 0.6557 | 0.7046 |
Attention VGG19 | 0.7469 | 0.8498 | 0.6667 | 0.7464 |
Attention FF-VGG19 | 0.7881 | 0.8732 | 0.7216 | 0.7832 |
Network | Accuracy | Sensitivity | Specificity | F-1 Score |
---|---|---|---|---|
VGG16 | 0.6770 | 0.7606 | 0.6117 | 0.6736 |
VGG19 | 0.6955 | 0.7700 | 0.6374 | 0.6891 |
ResNet152 | 0.6605 | 0.7465 | 0.5934 | 0.6584 |
ResNet152V2 | 0.6605 | 0.7512 | 0.5897 | 0.6598 |
InceptionV3 | 0.6543 | 0.7793 | 0.5568 | 0.6640 |
InceptionResNetV2 | 0.6646 | 0.7793 | 0.5751 | 0.6707 |
MobileNet | 0.6564 | 0.7653 | 0.5714 | 0.6613 |
MobileNetV2 | 0.6584 | 0.7606 | 0.5788 | 0.6612 |
DenseNet169 | 0.6091 | 0.7277 | 0.5165 | 0.6200 |
DenseNet201 | 0.6296 | 0.7418 | 0.5421 | 0.6371 |
NASNetMobile | 0.6379 | 0.7465 | 0.5531 | 0.6437 |
EfficientNetB6 | 0.6667 | 0.7559 | 0.5971 | 0.6653 |
EfficientNetB7 | 0.6564 | 0.7465 | 0.5861 | 0.6557 |
EfficientNetV2B3 | 0.6111 | 0.6714 | 0.5641 | 0.6021 |
ConvNeXtLarge | 0.6276 | 0.6526 | 0.6081 | 0.6057 |
ConvNeXtXLarge | 0.6214 | 0.6479 | 0.6007 | 0.6000 |
Xception | 0.6605 | 0.7465 | 0.5934 | 0.6584 |
Study | Input | Reference | Explainability | Results |
---|---|---|---|---|
[26] | Polar Maps | Human reader | 🗸 | Agreement: 0.83 Sensitivity: 0.47 Specificity: 0.70 |
[43] | Polar maps + cardiac risk factors | ICA | Accuracy: 0.857 | |
[22] | Polar Maps | ICA | 🗸 | Sensitivity: DL (0.82), SSS (0.75), U-TPD (0.77), and S-TPD (0.73) in men DL (0.71), SSS (0.71), U-TPD (0.7), and S-TPD (0.65) in women |
[29] | Polar Maps | ICA | - | DL Accuracy: 0.74 Sensitivity: 0.75. Specificity: 0.73. Similar results with the experts Semi-Quantitative Analysis Accuracy: 0.66. |
[30] | Polar Maps + Clinical | ICA | - | Expert Accuracy: 0.7 Sensitivity: 0.89 Specificity: 0.71 Model Accuracy: 0.78 Sensitivity: 0.77 Specificity: 0.79 |
[20] | Polar maps + angina symptoms and age | I.C.A. | Per vessel AUC: 0.89 Per patient AUC: 0.95 | |
[16] | Polar maps | Human reader | Accuracy: 0.7562 Sensitivity: 0.7856 Specificity: 0.7434 F1 score: 0.6646 AUC: 0.8450 | |
[43] | Polar maps | Human reader | Accuracy: 0.92 | |
[24] | Stress rest polar maps combined with age, sex, and cardiac volumes | ICA | 🗸 | AUC: 0.76 AUC: 0.73 (external dataset) |
This study | Stress and rest Polar Maps (AC and NAC.) | Human reader | 🗸 | Accuracy: 0.8992 Sensitivity: 0.8992 Specificity: 0.8755 |
This study | Stress and rest Polar Maps (AC and NAC.) | I.C.A. | 🗸 | Accuracy: 0.78881 Sensitivity: 0.8732 Specificity: 0.7216 |
Polar Maps | Number of Examined | Number of Adequate Explanations | Number of Ambiguous Explanations | Number of Irrelevant Explanations |
---|---|---|---|---|
TP cases | 45 | 43 | 1 | 1 |
TN cases | 35 | 34 | 1 | 0 |
FP cases | 12 | 0 (4 *) | 0 | 12 (8 *) |
FN cases | 8 | 0 | 0 | 8 |
Total | 100 | 77 | 2 | 21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apostolopoulos, I.D.; Papathanasiou, N.D.; Papandrianos, N.; Papageorgiou, E.; Apostolopoulos, D.J. Innovative Attention-Based Explainable Feature-Fusion VGG19 Network for Characterising Myocardial Perfusion Imaging SPECT Polar Maps in Patients with Suspected Coronary Artery Disease. Appl. Sci. 2023, 13, 8839. https://doi.org/10.3390/app13158839
Apostolopoulos ID, Papathanasiou ND, Papandrianos N, Papageorgiou E, Apostolopoulos DJ. Innovative Attention-Based Explainable Feature-Fusion VGG19 Network for Characterising Myocardial Perfusion Imaging SPECT Polar Maps in Patients with Suspected Coronary Artery Disease. Applied Sciences. 2023; 13(15):8839. https://doi.org/10.3390/app13158839
Chicago/Turabian StyleApostolopoulos, Ioannis D., Nikolaοs D. Papathanasiou, Nikolaos Papandrianos, Elpiniki Papageorgiou, and Dimitris J. Apostolopoulos. 2023. "Innovative Attention-Based Explainable Feature-Fusion VGG19 Network for Characterising Myocardial Perfusion Imaging SPECT Polar Maps in Patients with Suspected Coronary Artery Disease" Applied Sciences 13, no. 15: 8839. https://doi.org/10.3390/app13158839
APA StyleApostolopoulos, I. D., Papathanasiou, N. D., Papandrianos, N., Papageorgiou, E., & Apostolopoulos, D. J. (2023). Innovative Attention-Based Explainable Feature-Fusion VGG19 Network for Characterising Myocardial Perfusion Imaging SPECT Polar Maps in Patients with Suspected Coronary Artery Disease. Applied Sciences, 13(15), 8839. https://doi.org/10.3390/app13158839