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Abstract: Medical retrieval systems have become significantly important in clinical settings. How-
ever, commercial retrieval systems that heavily rely on term-based indexing face challenges when
handling continuous medical data, such as electroencephalography data, primarily due to the high
cost associated with utilizing neurologist analyses. With the increasing affordability of data recording
systems, it becomes increasingly crucial to address these challenges. Traditional procedures for anno-
tating, classifying, and interpreting medical data are costly, time consuming, and demand specialized
knowledge. While cross-modal retrieval systems have been proposed to address these challenges,
most concentrate on images and text, sidelining time-series medical data like electroencephalography
data. As the interpretation of electroencephalography signals, which document brain activity, requires
a neurologist’s expertise, this process is often the most expensive component. Therefore, a retrieval
system capable of using text to identify relevant signals, eliminating the need for expert analysis, is
desirable. Our research proposes a solution to facilitate the creation of indexing systems employing
electroencephalography signals for report generation in situations where reports are pending a
neurologist review. We introduce a method incorporating a convolutional-neural-network-based
encoder from DeepSleepNet, which extracts features from electroencephalography signals, coupled
with a transformer which learns the signal’s auto-correlation and the relationship between the signal
and the corresponding report. Experimental evaluation using real-world data revealed our approach
surpasses baseline methods. These findings suggest potential advancements in medical data retrieval
and a decrease in reliance on expert knowledge for electroencephalography signal analysis. As
such, our research represents a significant stride towards making electroencephalography data more
comprehensible and utilizable in clinical environments.

Keywords: electroencephalography; indexing method; text generator; transformer; convolutional
neural network

1. Introduction

Medical retrieval systems have garnered interest among clinicians [1]. However,
commercial retrieval systems like Apache Lucene [2] and Elasticsearch [3], which hinge
on term-based indexing, lack efficacy when dealing with continuous medical data, such
as electroencephalography (EEG) data. Moreover, the processes of annotating, classifying,
and interpreting medical data are resource intensive and demand expert domain knowledge.
Conversely, the cost of data recording systems has become increasingly affordable [4].

In response to these challenges, researchers have suggested cross-modal retrieval
systems. However, these proposals predominantly focus on images and texts [5–9], leaving
time-series medical data like EEG data, which documents brain activity, largely over-
looked [10]. Analyzing and diagnosing EEG signals necessitates the expertise of a neurolo-
gist, which makes it the costliest step. Thus, a proficient retrieval system that can use text
to locate corresponding signals without requiring expert analysis is in high demand.
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The aim of this work is to aid the creation of indexing systems that utilize EEG signals
for report generation. The proposed system in this work is designed for the following
scenario: A medical center collects EEG signals from patients and stores them in a dedicated
database. However, the accompanying reports are yet to be produced by a neurologist.
If a neurologist or researcher requests specific signals using a query, such as “abnormal EEG
due to: Asymmetric EEG background with left arrhythmic delta activity”, as de-
picted in Figure 1, the signals need to be characterized with their respective impressions for
storage in a term-based indexing system.

Figure 1. Flowchart for retrieving EEG signals based on impression queries.

The proposed method in this work incorporates an encoder that employs convolutional
neural networks (CNNs) from DeepSleepNet [11] to extract EEG signal features, along with
a transformer [12] that learns the signal’s auto-correlation and the relationship between
the signal and the target report. Experimental evaluation with real-world data showed the
proposed approach in this work surpasses baseline methods.

The contributions of this work can be summarized as follows.

• Development of a method supporting indexing systems for EEG signals in the medical
domain, specifically tailored for report generation purposes.

• Introduction of a cost-effective system that minimizes the requirement for extensive
neurologist involvement in the EEG indexing process.

• Demonstration of superior performance and effectiveness through rigorous experi-
mentation using real-world data, surpassing baseline approaches.

2. Methods

In this context, the recorded EEG from a patient in a session is represented as S, while
the corresponding impression provided by a neurologist is denoted as T. The EEG signal S
consists of a sequence of data points ei for a specific time i within the duration from 0 to t.
This can be expressed as S = {e0, . . . , et−1}. For instance, if an EEG signal S is recorded at a
frequency of 200 Hz for a span of one hour, then the total number of data points in S would
be 720,000. Hence, the signal can be represented as S = {e0, . . . , e720,000−1}. It is important
to note that EEG signals in practice are recorded by multiple channels. However, for the
sake of simplicity, the multiple channels are abstracted as ei for a specific time i. Therefore,
for each time i, the data point ei can represent a vector which includes three scalar values if
there are three channels, such as FP1, FP2, and F3.
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2.1. Text Generation for EEG Signal Using DeepSleepNet Encoder and a Transformer

In an information retrieval system, indexing a sentence can be easily implemented
using an inverted index [13]. However, because the EEG signal is a continuous value,
it is difficult to directly index it into an existing database and use search engines, such
as Lucene [2] or Elasticsearch [3]. Therefore, this work proposes a text generator for the
signal. Once the signal is described by the generated text, it can be stored using a word-
level inverted index [14]. For example, as depicted in Figure 2, the signals named Doc
1 already have an impression reported by neurologists, stating “Abnormal EEG. Excess
drowsiness. Low voltage pattern”. However, the signals named Doc 2 do not have
any report yet. Thus, the goal of this research is to generate an associated report that
precisely describes the signal using our text generator and to apply an inverted index
using a tokenizer, such as a one-gram or bi-gram tokenizer. To achieve this goal, this work
introduces a text generator for word-level inverted indexes that combines convolutional
neural networks (CNNs) borrowed from DeepSleepNet [11] and a transformer [12].

Figure 2. Flowcharts for inverted indexing of signals with impressions, both provided by a neurologist
(Doc 1) and generated by the proposed method (Doc 2).

DeepSleepNet [11] is a model proposed for detecting sleep stages in time series EEG
data. It is composed of both convolutional neural networks (CNNs) and long short-term
memory networks (LSTMs), which are used to capture patterns of EEG activity in both
local and global areas, respectively. In this work, the CNN portion of the model is only
considered since the proposed method utilizes the transformer to learn patterns in the
global area. The convolutional layers of DeepSleepNet are designed to detect low- and
high-frequency patterns along the time axis using two branches of large and small filters,
making it a popular choice for research aiming to capture features from EEG signals [15–17].
The two-branch CNN structure proposed in [11] is adopted in the suggested method in
this work for mapping the signal into a feature space. However, the network is modified
to be multi-channel CNNs to accommodate EEG signals recorded from diverse channels.
The modified version is named in this work DeepSleepNet Encoder (DE), which is depicted
in Figure 3. Given an EEG signal S = {e0, . . . , et−1}, the signal is divided into fixed-length
segments, such as every 30 s, yielding segments {e0, . . . , e6000−1}, . . . , {et−6000 . . . , et−1}.
Then, each segment is fed into the DeepSleepNet Encoder to extract local features, resulting
in a set of features F = { f0, . . . , fm}.

Transformer [12] is an encoder–decoder model which is based on a self-attention
mechanism for sequence transduction, especially machine translation. The self-attention
mechanism was proposed to learn a sentence representation by using query Q, key K,
and value V. In the encoder, the self-attention mechanism discovers relationships among the
inputs using the scaled dot-product attention proposed in [12], which is defined as follows:

Attention(Q, K, V) = softmax
(QKT
√

dk

)
V (1)
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where Q = FWQ, K = FWK, and V = FWV in our problem for the initial layer and W
is the matrix of the trainable parameters. The encoder of the transformer is utilized to
discover relationships among the divided signal segments. Additionally, the decoder of
the transformer is exploited to capture the correlation among words in the target sentence,
as well as to learn the relationship between the words and the input features given by the
encoder using the cross-attention mechanism. During training, the decoder captures the
relationship between the sentence and the signal using the features of the sentence as query
Q, and the features from the encoder as K and V, as shown in Figure 3.

Figure 3. Diagram of the encoder–decoder architecture of the proposed method, using DeepSleepNet
and a transformer, presented in this work.

To summarize, the objective of this work is to minimize the negative log-likelihood
(NLL), given pairs (S, T) of signals S and texts T = {w0, . . . , wn} in the training set as
shown below.

min NLL = −
n

∑
i=0

log P(wi|wi−1, . . . , w0, S) (2)

3. Experiments

In this section, the experimental setup is described and the results are discussed.
The experiments were conducted on a workstation with an Intel(R) Core(TM) i9-7900X
CPU @ 3.30GHz, 128GB of RAM, and an NVIDIA GeForce GTX 1080Ti GPU running on
Ubuntu 20. Additionally, this work aims to demonstrate the practicality of the proposed
method for use in existing retrieval systems. Therefore, Elasticsearch [3] is utilized to
perform the retrieval and calculate the relevance score.

3.1. Data Description and Preprocessing

The EEG data corpus collected by the Temple University Hospital (TUEG) [10] is
utilized, which is publicly available (https://isip.piconepress.com/projects/tuh_eeg/html/
downloads.shtml, accessed on 28 October 2022). The dataset comprises more than 30k
clinical EEG recordings collected since 2002, organized by patient and corresponding
session. For each session, there is a pair of an EEG recording and a physician report, which
includes the patient description, clinical history, medications, and clinical impression. Since
only the impression in the report is considered, sessions without impressions were removed.

The average length of EEG recordings is around 30 min. Sessions in which the signal
was longer than 30 min were removed. The raw EEG signals were recorded in the range of
250–1000 Hz and across various channels. Therefore, the signals were resampled at 200 Hz

https://isip.piconepress.com/projects/tuh_eeg/html/downloads.shtml
https://isip.piconepress.com/projects/tuh_eeg/html/downloads.shtml
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and utilized 19 channels: FP1, FP2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6,
CZ, A1, and A2. Additionally, bipolar montage was applied to the channels, as physicians
consider it a clearer and more symmetric way to visualize and assess the signals [18].
The power line noise is considered as an artifact that exists in the frequency band around
50 Hz [19]. Therefore, the noise was removed using 4th-order Butterworth filters, cutting
off frequencies between 47.5 and 52.5 Hz and 57.5 and 62.5 Hz, as recommended in [20].

In addition, as mentioned in Section 2.1, the signal is split into 30 s segments. Therefore,
each signal can be divided into at most 60 segments. We divided the data into a training set
(70%), validation set (15%), and test set (15%) based on patient. As a result, the obtained
sets include 7917, 1685, and 1700 sessions from a total of 11,302 sessions for the training,
validation, and test sets, respectively.

3.2. Implemented Models and Details

The proposed model in this work and the baseline models were implemented in
PyTorch version 1.12.1 [21] using the ADAM optimizer [22] with a learning rate of 0.0001
and a batch size of 32, except for the CNN-LSTM model, which had memory issues.
Additionally, each model was trained for 40 epochs and the best epoch was selected based
on the BLEU [23] score measured on the validation set after training. The implemented
models and their details are described as follows.

• Ours: Two branches of convolutional neural networks (CNNs) are utilized to process
EEG signals divided into 30 s segments. The proposed architecture is adapted from
DeepSleepNet, but modified to accommodate multi-channel inputs. Detailed speci-
fications of the CNN encoder, including layer sequences and hyper-parameters, are
presented in Table 1. Alongside this, a transformer is incorporated into the system.
Crucial hyper-parameters for the transformer, including the dimension of the em-
bedding layer, the number of heads, and the quantity of encoder and decoder layers,
are delineated in Table 2. We adhere to the hyper-parameter values specified in the
original DeepSleepNet [11] and transformer model [12]. Implementations using the
DeepSleepNet Encoder also follow these same hyper-parameter values, except for the
number of layers, which are indicated in Table 2. The number of layers is selected
using a grid search from 1 to 6.

• CNN-LSTM: In [24,25], text generators are introduced that exploit domain knowledge
given by doctors or retrieved sentences from a database. Their models are based on
CNNs and LSTMs for embedding input signals and sequence-to-sequence modeling,
respectively. Since a text generator is considered given an EEG signal without ad-
ditional domain knowledge written in sentences, a sequence-to-sequence model is
implemented similar to [25]. The batch size for this implementation is 4, as it does not
compress input signals enough and it causes memory issues. Note that the best epoch
is selected based on the BLEU score using a validation set to ensure a fair comparison.

• DE-LSTM: Given that the CNN-LSTM model previously mentioned does not com-
press input signals into the feature space adequately, leading to memory issues,
the DeepSleepNet Encoder (DE) is employed as the signal encoder in the model
proposed in by this research, effectively supplanting the CNN component.

• DE-LSTM-ATTENTION: The attention mechanism, as proposed by Bahdanau et al. [26],
is a powerful tool for capturing the relationship between input and output in a neu-
ral network. In this research, Bahdanau attention is employed to understand the
correlation between segmented EEG signals and the tokens generated from them.
This attention mechanism is integrated into the DE-LSTM model, which is named
DE-LSTM-Attention in this section.
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Table 1. Detailed structure and hyper-parameters of DeepSleepNet Encoder.

Input: a segment of the signal

Conv1d (C, 64, sfreq//2, sfreq//16) Conv1d (C, 64, sfreq*4, sfreq//2)
BatchNorm1d (64) BatchNorm1d (64)

ReLU ReLU

MaxPool1d (8, 8) MaxPool1d (4, 4)
Dropout Dropout

Conv1d (64, 128, 8, 1) Conv1d (64, 128, 6, 1)
BatchNorm1d (128) BatchNorm1d (128)

ReLU ReLU

Conv1d (128, 128, 8, 1) Conv1d (128, 128, 6, 1)
BatchNorm1d (128) BatchNorm1d (128)

ReLU ReLU

Conv1d (128, 128, 8, 1) Conv1d (128, 128, 6, 1)
BatchNorm1d (128) BatchNorm1d (128)

ReLU ReLU

MaxPool1d (4, 4) MaxPool1d (2, 2)

Output: concatenation along the last axis

Table 2. Hyper-parameters of the transformer.

Parameter Name Value

Embedding dimension 512
The number of heads 8

The number of encoder layers 1
The number of decoder layers 6

3.3. Evaluation Metric

To evaluate the proposed method, normalized discounted cumulative gain (NDCG)
was utilized, which measures the performance of an information retrieval system [27].
NDCG is a commonly used evaluation metric in ranking-based recommendation systems.
Specifically, it is exploited to measure the quality of an information retrieval system. NDCG
is based on cumulative gain (CG). CG represents the summation of the relevance scores
of retrieved items. In a retrieval system, the CG of items is discounted (DCG) in order to
penalize items which are less relevant using logarithmic reduction factors. Finally, NDCG
is obtained by the DCG of predicted items out of the DCG of true items as follows:

NDCG@k =
1
Z

k

∑
i=1

2reli − 1
log2(i + 1)

(3)

where Z is the ideal DCG of the items, which is computed by sorting the items by true
relevance scores, and k is the number of retrieved items from the retrieval system.

3.4. Retrieval Performance

The retrieval performance of the methods described in Section 3.2 was compared.
The impression given by every signal using each implemented method was generated.
After that, they were indexed and stored into Elasticsearch using a standard tokenizer [28]
and n-gram from 1 to 4. A total of 1700 queries were searched in the test set. The relevance
score was calculated by measuring the similarity between query and the documents stored
in Elasticsearch using default settings such as BM25 [13]. Although commercial search
engines typically display 10 documents per page (e.g., Google and Bing), the comparisons
in this study provide NDCG scores for 5 to 30 documents for more detailed comparisons,
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in increments of five, as depicted in Figure 4. Since NDCG is calculated based on the
number of search results, a higher score is achieved with more search results.

5 10 15 20 25 30
k

0.18

0.20

0.22

0.24

0.26

0.28

0.30

ND
CG

@
k

CNN-LSTM
DE-LSTM
DE-LSTM-ATTENTION
OURS

Figure 4. Comparison of average NDCG scores between the proposed model and baselines for each
set of five relevant documents. k denotes the number of relevant documents.

The figure shows that the proposed method in this work achieves the best performance
compared to the others. It is speculated that the DeepSleepNet Encoders (DE) capture the
signal features effectively. As shown in the graph, the proposed method and the DE-LSTM
and DE-LSTM-ATTENTION methods, which include the DE, outperform the CNN-LSTM
method without DE, while the attention mechanism in DE-LSTM-ATTENTION performs
better than DE-LSTM. The self-attention and cross-attention in the transformer used in the
proposed method have a greater impact on indexing the signal.

Additionally, in order to ensure the validity of the retrieval performance, the proposed
method in this work was compared with each baseline using a t-test. The p-values ob-
tained from the t-test for CNN-LSTM, DE-LSTM, and DE-LSTM-ATTENTION are 0.0174,
0.0377, and 0.0116, respectively. Therefore, the proposed method in this paper significantly
outperforms the retrieval performance of the baselines.

3.5. Retrieval Results and Generated Sentences

While demonstrating the performance of proposed approach in this work across
a range of examples is crucial, the limitations of the BLEU score as a measure of text
generation quality must be acknowledged. This score may not fully capture the superiority
of our method in EEG signal retrieval over baseline approaches. Therefore, examples
chosen at random may not present an accurate portrayal of the comparative performance
of our method. As a remedy to this, specific queries were selected representing both normal
and abnormal EEGs, shown in Figures 5 and 6, respectively. The results are organized based
on relevance score. Since the signals span about 30 min and are too lengthy for visualization
in a single figure, a 5 s subset of each signal is presented. The associated original impression
is displayed below the signal. It is important to note that every signal is indexed using the
impression generated by each method, rather than the original impression.

For the query “normal eeg in wakefulness and brief stage 2 sleep” showcased
in Figure 5, the proposed method in this work accurately indexes normal signals exhibit-
ing both wakefulness and stage 2 sleep. These results are presented in each column.
Contrarily, the baseline methods misinterpret some abnormal signals as normal. In the
case of an abnormal EEG, as represented in Figure 6, the query “abnormal eeg due to:
low voltage suppressed background. absence of reactivity or variability” is
utilized. The proposed method accurately retrieves the precise signal displayed in the
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rightmost column, whereas the baseline methods return signals which only partially match
the query sentence.

Figure 5. Retrieval results for the query ‘normal EEG in wakefulness and brief stage 2 sleep’. Yellow
highlights indicate matching descriptions between the query and the impressions.

3.6. The BLEU Scores for Each Methods

In addition, BLEU scores [23] were measured using five-fold Monte Carlo cross-
validation [29] to compare the performance of text generation. Table 3 shows the BLEU
scores for 1 to 4 g. Note that BLEU-n is the average BLEU score for 1 to n. The proposed
method from this paper outperforms the BLEU scores of other methods, as indicated in
the table.

Table 3. The average BLEU scores for each method.

Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4

CNN-LSTM 0.2802 0.2079 0.1684 0.1397
DE-LSTM 0.3615 0.2699 0.2176 0.1796
DE-ATTENTION-LSTM 0.3098 0.2358 0.1936 0.1623
OURS 0.3929 0.2890 0.2304 0.1884

To ensure the validity of the performance, every baseline and the proposed method
in this work were compared using a t-test. Therefore, the t-test was conducted three
times for the three baselines, namely CNN-LSTM, DE-LSTM, and DE-LSTM-ATTENTION,
against OURS. The hypothesis for each test is as follows:

• Null hypothesis: The BLEU-4 score of OURS is the same as that of the baseline.
• Alternative hypothesis: The BLEU-4 of OURS significantly outperforms the baseline.
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For each t-test, the significance level (alpha) is set to 10%. Subsequently, the p-values of
CNN-LSTM, DE-LSTM, and DE-LSTM-ATTENTION are 1.0031−06, 0.0967, and 0.0037,
respectively. Therefore, the null hypothesis is rejected for the baselines.

Figure 6. Results for the query ‘abnormal EEG due to: low voltage suppressed background’. Yellow
highlights denote matching descriptions between the query and the impressions.

4. Discussion

In this section, the experimental results are analyzed and discussed. Additionally,
the potential applications of the proposed method in this work, as well as its limitations
and future directions, are provided.

4.1. Analysis of Results

In the experiments, retrieval results were compared using NDCG, a commonly used
metric for evaluating search engines, as described in Section 3.4. The proposed method
in this work outperforms the baselines in terms of indexing EEG signals. Moreover,
the t-test shows that the proposed method in this work significantly exceeds the retrieval
performance of the baselines. Furthermore, retrieval samples for queries searching for
normal eeg and abnormal eeg are provided in Section 3.5. As shown in this section,
the proposed method generates more plausible sentences compared to the baselines. Finally,
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the ability of text generation is compared in Section 3.6. The BLEU scores demonstrate that
the proposed method significantly outperforms the baselines in terms of text generation.

4.2. Available Applications of Proposed Method

The proposed method in this research, which aids the creation of indexing systems
utilizing EEG signals for report generation, has various potential applications in the medical
domain. Some of the available applications are as follows.

1. Indexing and organization: The proposed method allows for the efficient indexing
and organization of EEG signals in a dedicated database. Signals can be characterized
with their respective impressions and stored in a term-based indexing system, making
it easier to manage and access the data.

2. Efficient signal retrieval: Neurologists and researchers can use the system to retrieve
specific EEG signals based on queries. For instance, using a query like “eeg within
normal limits in wakefulness and brief sleep for an adult of this age”,
the system can locate relevant signals and their corresponding impressions, streamlin-
ing the retrieval process.

3. Report generation support: The system can be implemented in medical centers where
EEG signals are collected from patients, but accompanying reports are pending neu-
rologist review. By using the proposed method, the system can automatically generate
impressions for the signals, facilitating the report generation process.

Overall, the proposed method offers a promising solution to enhance EEG data uti-
lization in clinical settings, making it more accessible and valuable for neurologists and
researchers alike.

4.3. Limitations and Future Directions

This work addresses the novel problem of indexing commercial term-based databases
using EEG signals and proposes a promising method based on a CNN and a transformer-
based deep learning architecture. However, a major challenge arises from the limited
availability of large-scale EEG datasets due to the sensitivity and privacy concerns asso-
ciated with medical signals. To overcome this limitation, the authors intend to explore
the development of a continually learning system that can adapt and improve over time
without relying heavily on sharing private and sensitive medical data.

5. Conclusions

Given a multi-channel signal such as EEG signals, we propose using a report generator
to index the signal into a retrieval system. This work adopts DeepSleepNet to extract
features from the signal. Additionally, this research utilizes a transformer to incorporate
self-attention for learning correlations between features extracted from the signal and
cross-attention for grasping the connection between the signal and the target description.
In experiments with real-world data, the retrieval results using the proposed method
outperformed the baselines, which were based on CNNs, LSTMs, and attention networks.
The proposed system is expected to facilitate the implementation of various applications,
including indexing and organization of EEG signals in a dedicated database, efficient
signal retrieval for neurologists and researchers to locate specific EEG signals using natural
language queries, and report generation support. Additionally, the future scope of the
research includes expanding the proposed method to incorporate multi-modal medical
data, such as EEG and functional magnetic resonance imaging (fMRI) data, to enhance the
understanding of human brain functions.
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