Nondestructive Evaluation of Thermal Barrier Coatings’ Porosity Based on Terahertz Multi-Feature Fusion and a Machine Learning Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Thermal Barrier Coatings
2.2. Terahertz Time-Domain Spectroscopy
2.3. Terahertz Time-Domain Data Processing and Spectral Analysis
2.4. Feature Extraction and Multi-Feature Fusion Analysis
2.4.1. Extraction of Time-Domain Spectrum Features
2.4.2. Extraction of Frequency-Domain Spectrum Features
2.4.3. Extraction of Phase Spectrum Features
2.4.4. Extraction of Reflectance Spectrum Features
2.4.5. Analysis of Multi-Feature Fusion
2.5. Machine Learning Prediction and Performance Evaluation
2.5.1. Dung Beetle Optimization Algorithm
2.5.2. Random Forest Algorithm
2.5.3. Random Forest Model Optimized by Dung Beetle Optimization Algorithm
- Initialization: The number of dung beetle individuals, maximum iteration count, and relevant parameters (such as perception radius and step size) are set. The positions and directions of each dung beetle individual are randomly initialized. Additionally, the probability of information exchange needs to be determined, which dictates the likelihood of information exchange among dung beetle individuals;
- Fitness calculation: Using the positions of each dung beetle individual as parameter configurations, the random forest model is trained to predict the porosity of thermal barrier coatings. The fitness value of each individual is calculated by assessing the difference between the predicted results and the actual porosity data. The fitness value is a function of the prediction error, typically measured as the root-mean-square error (RMSE);
- Iterative update: In each iteration, each dung beetle individual can perceive the positions and directions of neighboring dung beetle individuals. The dung beetle individual’s position is adjusted based on the specified movement step size and direction. The hyperparameters of the random forest, such as the number of decision trees and the size of feature subsets, are adapted based on the final positions and directions of the dung beetle individuals;
- Updating the optimal solution: The fitness value of the new position is compared with the fitness value of the current optimal solution. If the fitness value of the new position is better than the current optimal solution, the current optimal solution is updated to the new position, and the corresponding parameter configuration is recorded. During the optimization process, the dung beetle optimization algorithm progressively updates and iterates the optimal solution to search for an improved RF model;
- Iterative optimization process: Steps 2 to 4 are repeated until the predefined maximum iteration count is reached or a stopping criterion is met. The stopping criterion can be reaching the maximum iteration count or achieving a small change in fitness value after consecutive iterations, indicating convergence to a stable optimal solution;
- Outputting the optimal solution: Upon completion of the iterative optimization process in the DBO algorithm, the obtained optimal solution corresponds to the optimized parameter configuration of the RF algorithm. The RF model associated with this optimal solution demonstrates enhanced performance and the ability to accurately predict the TBCs’ porosity.
2.5.4. Cross-Validation
3. Results and Discussion
3.1. Nondestructive Evaluation of Porosity
3.2. Machine Learning Prediction of Porosity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Padture, N.P.; Gell, M.; Jordan, E.H. Thermal barrier coatings for gas-turbine engine applications. Science 2002, 296, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y. Review and prospects for 20-year development of thermal sprayed nanocoatings. Surf. Technol. 2016, 45, 1–9. [Google Scholar]
- Wang, R.; Dong, T.; Di, Y.; Wang, H.; Li, G.; Liu, L. High temperature oxidation resistance and thermal growth oxides formation and growth mechanism of double-layer thermal barrier coatings. J. Alloys Compd. 2019, 798, 773–783. [Google Scholar] [CrossRef]
- Huang, J.; Wang, W.; Li, Y.; Fang, H.; Ye, D.; Zhang, X.; Tu, S. Novel-structured plasma-sprayed thermal barrier coatings with low thermal conductivity, high sintering resistance and high durability. Ceram. Int. 2020, 47, 5156–5167. [Google Scholar] [CrossRef]
- Liu, Q.; Huang, S.; He, A. Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aero-engines. J. Mater. Sci. Technol. 2019, 35, 2814–2823. [Google Scholar] [CrossRef]
- Mehboob, G.; Liu, M.; Xu, T.; Hussain, S.; Mehboob, G.; Tahir, A. A review on failure mechanism of thermal barrier coatings and strategies to extend their lifetime. Ceram. Int. 2020, 46, 8497–8521. [Google Scholar] [CrossRef]
- Amirhossein, P.; Fariborz, S.; Amirhossein, E.; Leila, B.; Mehdi, R.N.; Milad, B.; Kamalan, K. Failure mechanisms and structure tailoring of YSZ and new candidates for thermal barrier coatings: A systematic review. Mater. Des. 2022, 222, 111044. [Google Scholar]
- Xu, G.; Yang, L.; Zhou, Y. Investigating the interface cracking mechanism of CMAS-corroded thermal barrier coatings based on the cohesive zone model. Corros. Sci. 2022, 204, 110337. [Google Scholar] [CrossRef]
- Yang, S. Multiscale modeling of chemo-thermo-mechanical damage of EB-PVD thermal barrier coatings. J. Mech. Phys. Solids. 2022, 158, 104667. [Google Scholar] [CrossRef]
- Feng, Y.; Dong, T.; Li, G.; Wang, R.; Zhao, X.; Liu, Q. High temperature oxidation resistance and TGO growth mechanism of laser remelted thermal barrier coatings. J. Alloys Compd. 2020, 828, 154266. [Google Scholar] [CrossRef]
- Burger, N.; Laachachi, A.; Ferriol, M.; Lutz, M.; Toniazzo, V.; Ruch, D. Review of thermal conductivity in composites: Mechanisms, parameters and theory. Prog. Polym. Sci. 2016, 61, 1–28. [Google Scholar] [CrossRef]
- Qiu, Q. Effect of internal defects on the thermal conductivity of fiber-reinforced polymer (FRP): A numerical study based on micro-CT based computational modeling. Mater. Today Commun. 2023, 36, 106446. [Google Scholar] [CrossRef]
- Ye, D.; Wang, W. Research progress in terahertz non-destructive testing of thermal barrier coatings. Surf. Technol. 2020, 49, 126–137. [Google Scholar]
- Emine, B.; Daniel, E.; Georg, M.; Robert, M.; Robert, V. Porosity–property relationships of plasma-sprayed Gd2Zr2O7/YSZ thermal barrier coatings. J. Am. Ceram. Soc. 2015, 98, 2647–2654. [Google Scholar]
- Lv, B.; Xie, H.; Xu, R.; Fan, X.; Zhang, W.; Wang, T. Effects of sintering and mixed oxide growth on the interface cracking of air-plasma-sprayed thermal barrier coating system at high temperature. Appl. Surf. Sci. 2016, 360, 461–469. [Google Scholar] [CrossRef]
- Zhu, Y.; Yan, B.; Cai, D.; Wu, K.; Zhang, X. Structural parameter study on stress intensity factors of interfacial crack in thermal barrier coatings. Ceram. Int. 2021, 47, 14354–14365. [Google Scholar] [CrossRef]
- Wellington, U.; Mattias, O.; Nicolaie, M.; Mohit, G.; Petra, H.; Zdeněk, V. Influence of spray angle on microstructure and lifetime of suspension plasma-sprayed thermal barrier coatings. J. Therm. Spray Technol. 2022, 31, 2068–2090. [Google Scholar]
- Satyapal, M.; Céline, R.; Nicholas, C.; Jonas, H.; Stefan, B.; Nicolaie, M.; Per, N. Understanding the effect of material composition and microstructural design on the erosion behavior of plasma sprayed thermal barrier coatings. Appl. Surf. Sci. 2019, 488, 170–184. [Google Scholar]
- Liu, Y.; Hu, X.; Zhu, Y.; Wei, H.; Dravid, V.; Zhang, W. Effects of isothermal oxidation on microstructure and mechanical properties of thermal barrier coatings. Ceram. Int. 2019, 45, 8815–8823. [Google Scholar] [CrossRef]
- Khedmatgozar Dolati, S.S.; Caluk, N.; Mehrabi, A.; Khedmatgozar Dolati, S.S. Non-destructive testing applications for steel bridges. Appl. Sci. 2021, 11, 9757. [Google Scholar] [CrossRef]
- Khedmatgozar Dolati, S.S.; Malla, P.; Ortiz, J.D.; Mehrabi, A.; Nanni, A. Identifying NDT methods for damage detection in concrete elements reinforced or strengthened with FRP. Eng. Struct. 2023, 287, 116155. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, W.; Luo, Z.; Sun, X.; Li, Z.; Li, L. Ultrasonic characterization of thermal barrier coatings porosity through BP neural network optimizing Gaussian process regression algorithm. Ultrasonics 2020, 100, 105981. [Google Scholar] [CrossRef] [PubMed]
- Cernuschi, F. Can TBC porosity be estimated by non-destructive infrared techniques? A theoretical and experimental analysis. Surf. Coat. Technol. 2015, 272, 387–394. [Google Scholar] [CrossRef]
- Tian, H.; Wang, C.; Guo, M.; Gao, J.; Cui, Y.; Jin, G.; Liu, E.; Wang, F. Corrigendum to “Preparation and performance of thermal barrier coatings made of BNw-containing modified Nd2O3-doped yttria-stabilized zirconia”. Ceram. Int. 2020, 46, 6999. [Google Scholar]
- Taheri, H.; Gonzalez Bocanegra, M.; Taheri, M. Artificial intelligence, machine learning and smart technologies for nondestructive evaluation. Sensors 2022, 22, 4055. [Google Scholar] [CrossRef]
- Mishra, M.; Bhatia, A.S.; Maity, D. Predicting the compressive strength of unreinforced brick masonry using machine learning techniques validated on a case study of a museum through nondestructive testing. J. Civ. Struct. Health 2020, 10, 389–403. [Google Scholar] [CrossRef]
- Yee, T.S.; Shrifan, N.H.M.M.; Al-Gburi, A.J.A.; Isa, N.A.M.; Akbar, M.F. Prospect of using machine learning-based microwave nondestructive testing technique for corrosion under insulation: A Review. IEEE Access. 2022, 10, 88191–88210. [Google Scholar] [CrossRef]
- Ye, D.; Wang, W.; Huang, J.; Lu, X.; Zhou, H. Nondestructive interface morphology characterization of thermal barrier coatings using terahertz time-domain spectroscopy. Coatings 2019, 9, 89. [Google Scholar] [CrossRef] [Green Version]
- Ye, D.; Wang, W.; Zhou, H.; Fang, H.; Huang, J.; Li, Y.; Gong, H.; Li, Z. Characterization of thermal barrier coatings microstructural features using terahertz spectroscopy. Surf. Coat. Technol. 2020, 394, 125836. [Google Scholar] [CrossRef]
- Davit, H.; Maher, H.; Olivier, R.; Anthony, B.; Alexis, M.; Laurence, B.; Olivier, D.; Emmanuel, A. Non-destructive evaluation of ceramic porosity using terahertz time-domain spectroscopy. J. Eur. Ceram. Soc. 2022, 42, 525–533. [Google Scholar]
- Sun, F.; Cao, B.; Fan, M.; Liu, L. Physics-based deep learning framework for terahertz thickness measurement of thermal barrier coatings. SSRN Electron. J. 2023, 4373227. [Google Scholar] [CrossRef]
- Luo, M.; Zhong, S.; Yao, L.; Tu, W.; Nsengiyumva, W.; Chen, W. Thin thermally grown oxide thickness detection in thermal barrier coatings based on SWT-BP neural network algorithm and terahertz technology. Appl. Opt. 2020, 59, 4097–4104. [Google Scholar] [CrossRef] [PubMed]
- Ye, D.; Wang, W.; Zhou, H.; Li, Y.; Fang, H.; Huang, J.; Gong, H.; Li, Z. Quantitative determination of porosity in thermal barrier coatings using terahertz reflectance spectrum: Case study of atmospheric-plasma-sprayed YSZ coatings. IEEE Trans. Terahertz Sci. Technol. 2020, 10, 383–390. [Google Scholar] [CrossRef]
- Ye, D.; Wang, W.; Zhou, H.; Huang, J.; Wu, W.; Gong, H.; Li, Z. In-situ evaluation of porosity in thermal barrier coatings based on the broadening of terahertz time-domain pulses: Simulation and experimental investigations. Opt. Express. 2019, 27, 28150–28165. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Ye, D.; Xu, Z.; Yin, C.; Xu, H.; Zhou, H.; Yi, J.; Chen, Y.; Pan, J. Nondestructive evaluation of thermal barrier coatings thickness using terahertz time-domain spectroscopy combined with hybrid machine learning approaches. Coatings 2022, 12, 1875. [Google Scholar] [CrossRef]
- Li, R.; Ye, D.; Xu, J.; Pan, J. Multi-scale analysis of terahertz time-domain spectroscopy for inversion of thermal growth oxide thickness in thermal barrier coatings. Coatings 2023, 13, 1294. [Google Scholar] [CrossRef]
- Zhao, Y.; Ge, Y.; Jin, X.; Koch, D.; Vaßen, R.; Chen, Y.; Fan, X. Oxidation behavior of double-ceramic-layer thermal barrier coatings deposited by atmospheric plasma spraying and suspension plasma spraying. Ceram. Int. 2022, 48, 23938–23945. [Google Scholar] [CrossRef]
- Chen, L.; Meng, G.; Li, C.; Yang, G. Critical scale grain size for optimal lifetime of TBCs. J. Mater. Sci. Technol. 2022, 115, 241–250. [Google Scholar] [CrossRef]
- Park, H.; Son, J. Machine learning techniques for THz imaging and time-domain spectroscopy. Sensors 2021, 21, 1186. [Google Scholar] [CrossRef]
- Stoik, C.; Bohn, M.; Blackshire, J. Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy. Opt. Express. 2008, 16, 17039–17051. [Google Scholar] [CrossRef]
- Yuan, B.; Wang, W.; Ye, D.; Zhang, Z.; Fang, H.; Yang, T.; Wang, Y.; Zhong, S. Nondestructive evaluation of thermal barrier coatings thickness using terahertz technique combined with PCA–GA–ELM algorithm. Coatings 2022, 12, 390. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, C.; Zhu, D.; Zhu, Y.; Guo, H.; You, G.; Tang, S. Engineered nonlinear photonic quasicrystals for multi-frequency terahertz manipulation. Opt. Express. 2009, 17, 11558–11564. [Google Scholar] [CrossRef] [PubMed]
- Kehrt, M.; Monte, C.; Beyer, J.; Hollandt, J. A highly linear superconducting bolometer for quantitative THz Fourier transform spectroscopy. Opt. Express. 2015, 23, 11170–11182. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Zhang, Y.; Cao, J.; Wu, J.; Hadjiloucas, S. Exploring the complementarity of THz pulse imaging and DCE-MRIs: Toward a unified multi-channel classification and a deep learning framework. Comput. Meth. Prog. Biomed. 2016, 137, 87–114. [Google Scholar] [CrossRef]
- Liu, P.; Shi, W.; Xu, D.; Zhang, X.; Yao, J.; Norwood, R.; Peyghambarian, N. High-power high-brightness terahertz source based on nonlinear optical crystal fiber. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 360–364. [Google Scholar] [CrossRef]
- Lei, T.; Yang, S.; Tobin, B.; O’Reilly, C.; Sun, D. A measurement framework using THz Time-Domain sensing for wood quality assessment across tree ring samples. Comput. Electron. Agric. 2022, 202, 107437. [Google Scholar] [CrossRef]
- Liu, H.; Chen, Y.; Bastiaans, G.; Zhang, X. Detection and identification of explosive RDX by THz diffuse reflection spectroscopy. Opt. Express 2006, 14, 415–423. [Google Scholar] [CrossRef]
- Pradipta, M.; Ankita, M. Multimodal omics data integration using max relevance-max significance criterion. IEEE Trans. Biomed. Eng. 2017, 64, 1841–1851. [Google Scholar]
- Xue, J.; Shen, B. Dung beetle optimizer: A new meta-heuristic algorithm for global optimization. J. Supercomput. 2022, 79, 7305–7336. [Google Scholar] [CrossRef]
- Schonlau, M.; Zou, R. The random forest algorithm for statistical learning. Stata. J. 2020, 20, 3–29. [Google Scholar] [CrossRef]
- Little, M.; Varoquaux, G.; Saeb, S.; Lonini, L.; Jayaraman, A.; Mohr, D.; Kording, K. Using and understanding cross-validation strategies. Perspectives on Saeb et al. GigaScience 2017, 6, gix020. [Google Scholar] [CrossRef] [PubMed]
- Tušar, T.; Gantar, K.; Koblar, V.; Ženko, B.; Filipič, B. A study of overfitting in optimization of a manufacturing quality control procedure. Appl. Soft Comput. 2017, 59, 77–87. [Google Scholar] [CrossRef]
K-Fold | RMSE | MAE | MAPE | R2 |
---|---|---|---|---|
K1 | 1.077 | 0.962 | 6.108 | 0.942 |
K2 | 3.329 | 3.219 | 10.261 | 0.872 |
K3 | 1.211 | 0.982 | 7.052 | 0.928 |
K4 | 1.764 | 1.375 | 9.725 | 0.906 |
K5 | 1.629 | 1.205 | 8.665 | 0.911 |
Average | 1.802 | 1.549 | 8.362 | 0.912 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Ye, D.; Zhang, Q.; Xu, J.; Pan, J. Nondestructive Evaluation of Thermal Barrier Coatings’ Porosity Based on Terahertz Multi-Feature Fusion and a Machine Learning Approach. Appl. Sci. 2023, 13, 8988. https://doi.org/10.3390/app13158988
Li R, Ye D, Zhang Q, Xu J, Pan J. Nondestructive Evaluation of Thermal Barrier Coatings’ Porosity Based on Terahertz Multi-Feature Fusion and a Machine Learning Approach. Applied Sciences. 2023; 13(15):8988. https://doi.org/10.3390/app13158988
Chicago/Turabian StyleLi, Rui, Dongdong Ye, Qiukun Zhang, Jianfei Xu, and Jiabao Pan. 2023. "Nondestructive Evaluation of Thermal Barrier Coatings’ Porosity Based on Terahertz Multi-Feature Fusion and a Machine Learning Approach" Applied Sciences 13, no. 15: 8988. https://doi.org/10.3390/app13158988
APA StyleLi, R., Ye, D., Zhang, Q., Xu, J., & Pan, J. (2023). Nondestructive Evaluation of Thermal Barrier Coatings’ Porosity Based on Terahertz Multi-Feature Fusion and a Machine Learning Approach. Applied Sciences, 13(15), 8988. https://doi.org/10.3390/app13158988