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Abstract: This paper proposes a machine vision system for the surface inspection of black rubber
rollers in manufacturing processes. The system aims to enhance the surface quality of the rollers by
detecting and classifying defects. A lighting system is installed to highlight surface defects. Two
algorithms are proposed for defect detection: a traditional-based method and a deep learning-based
method. The former is fast but limited to surface defect detection, while the latter is slower but
capable of detecting and classifying defects. The accuracy of the algorithms is verified through
experiments, with the traditional-based method achieving near-perfect accuracy of approximately
98% for defect detection, and the deep learning-based method achieving an accuracy of approximately
95.2% for defect detection and 96% for defect classification. The proposed machine vision system
can significantly improve the surface inspection of black rubber rollers, thereby ensuring high-
quality production.

Keywords: rubber roller; surface inspection; machine vision; deep learning; classification

1. Introduction

Rubber rollers are vital components of machines that consist of an inner tube or shaft
coated with elastomer compounds. They possess numerous desirable properties, including
impact strength, shock absorption, compression and deflection, abrasion and chemical
resistance, high coefficient of friction, and controllable degree of hardness, making them
highly advantageous. They are an ideal choice for handling manufactured goods, causing
no harm to the item or the roller itself, unlike metal rollers. In addition, rubber rollers’
repair and re-coating are less time-consuming and require less investment than repairing a
metal core, thereby extending their service life. They are commonly used in applications
that require high surface durability with low to medium hardness, and their proper design
and engineering of rubber compounds allow them to withstand mechanical and thermal
stresses that may lead to degradation.

The primary focus of this research paper is on black rubber rollers, which have
extensive use in printers and copiers. These rollers play a vital role in the printing process
as they help to transfer ink to paper, and any surface defect can significantly impact the
output’s quality. As a result, inspection of these rollers is crucial to avoid issues such as
heavy downtime, frequent roller replacement, plate wear, and printed material stage.

Surface defects on rubber rollers include scarring and damage from mechanical colli-
sions, aging-related corrosion, and lack of material, among others. The rollers’ cylindrical
surface, chamfers, and end surfaces frequently contain these flaws. The defects are catego-
rized into ten main categories, which include damage, corrosion, material lacking at the
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chamfer, grind lacking, scratches, porosity, flash defects, reverse rubber, smaller size rubber,
and no rubber rollers, as illustrated in Figure 1.
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Figure 1 provides images of the cylindrical surface of a rubber roller, which highlight 
the importance of detecting surface defects to ensure the roller’s performance, stability, 
productivity, and product quality. Visual inspection is a common method for detecting 
defects using either the raw human eye or inspection equipment or both these methods. 
With the development of computers and highly sensitive cameras, visual inspection uses 
digital images and deep learning to quickly and consistently identify defects in the 
manufacturing line such as in rubber tire, which is a flexible composite structure 
composed of rubber and was inspected by [1–4]. These papers have proposed tire defect 
classification based on different convolutional networks, which prove the robustness and 
effectiveness of the improved networks with reduced tire defect detection time. Although 
visual inspection is a useful tool for detecting defects, it presents several challenges when 
applied to black rubber rollers. In contrast to various inspection scenarios such as circuit 
solder inspection, plastic bottle defect detection, and metal product surface defect 
detection, manual inspection still predominates in the actual production process, leading 
to low inspection efficiency and accuracy. 

The conventional inspection methods using light and magnifying glasses and rely on 
visual analysis, such as edge and line detection, often encounter challenges in accurately 
identifying and categorizing each type of defect on a rubber roller surface. The reason for 
this is difficulty in extracting the features of these defects. Typically, defects are treated as 
arbitrary targets, and in order to highlight them, a difference in reflection of the 
foreground and the background is needed. However, this method fails to utilize the 
unique characteristics of each defect, which can lead to the misclassification of certain 
synthetic marks like oil stains as defects. As a result, this approach can lower accuracy 

Figure 1. Typical defects on black rubber rollers: (a) flash defects; (b) reverse rubber; (c) smaller size
rubber; (d,e) damage; (f) corrosion; (g) lack of grinding; (h) porosity; (i) no rubber rollers; (j) lack of
material at the chamfer; and (k) scratches.

Figure 1 provides images of the cylindrical surface of a rubber roller, which highlight
the importance of detecting surface defects to ensure the roller’s performance, stability,
productivity, and product quality. Visual inspection is a common method for detecting de-
fects using either the raw human eye or inspection equipment or both these methods. With
the development of computers and highly sensitive cameras, visual inspection uses digital
images and deep learning to quickly and consistently identify defects in the manufacturing
line such as in rubber tire, which is a flexible composite structure composed of rubber
and was inspected by [1–4]. These papers have proposed tire defect classification based
on different convolutional networks, which prove the robustness and effectiveness of the
improved networks with reduced tire defect detection time. Although visual inspection is a
useful tool for detecting defects, it presents several challenges when applied to black rubber
rollers. In contrast to various inspection scenarios such as circuit solder inspection, plastic
bottle defect detection, and metal product surface defect detection, manual inspection
still predominates in the actual production process, leading to low inspection efficiency
and accuracy.

The conventional inspection methods using light and magnifying glasses and rely on
visual analysis, such as edge and line detection, often encounter challenges in accurately
identifying and categorizing each type of defect on a rubber roller surface. The reason for
this is difficulty in extracting the features of these defects. Typically, defects are treated as
arbitrary targets, and in order to highlight them, a difference in reflection of the foreground
and the background is needed. However, this method fails to utilize the unique characteris-
tics of each defect, which can lead to the misclassification of certain synthetic marks like oil
stains as defects. As a result, this approach can lower accuracy and lead to a low recall rate.
Nevertheless, these limitations can be substantially mitigated by utilizing the appropriate
lighting system.
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This research paper presents a machine vision system which has been designed to
inspect the surface of black rubber rollers. The system is capable of identifying and
localizing major categories of faults on the outer parts of black rubber rollers and can
determine whether a black rubber roller meets quality standards, based on the areas and
locations of the detected defects. To meet industrial requirements, we suggest a specialized
lighting system for the inspection and detection of defects. In addition, we introduce two
methods for detecting and classifying defects on the surface of black rubber rollers. The
system is capable of replacing manual inspection and exhibits improved performance. This
entire surface inspection system is valuable for industrial applications in black rubber roller
defect detection and quality evaluation.

Vision-based systems have gained popularity in inspecting rubber roller surfaces due
to their high accuracy and efficiency in defect detection. Numerous approaches have been
proposed for detecting and classifying defects on black rubber roller surfaces. Zhu et al. [5]
focus on defect detection in rubber rings. They have presented an edge detection algorithm
based on digital image processing. The algorithm involves preprocessing the target image
to remove noise, utilizing Sobel operators to detect edges, and employing mathematical
morphological algorithms for image dilation. The results show the algorithm’s effectiveness
in repairing fissures, enhancing image brightness, and achieving improved accuracy.

Bharathi et al. [6] have described their work on texture analysis for surface defect detec-
tion of rubber oil seals. Their approach includes extracting texture features from grayscale
co-occurrence matrices with different spatial correlations. Since computing textural features
for the entire image has proved ineffective due to local defect concentrations, the image is
segmented prior to feature extraction. They also have proposed and implemented a unique
preprocessing method.

Similarly, Meng et al. [7] have presented a special algorithm for detecting surface
defects on rubber hose surfaces using computer vision technology and the HALCON
algorithm. Their method includes defect classification to reduce misjudgment and improve
the accuracy of the visual system, resulting in accurate defect detection.

Ho et al. [8] have developed an automated optical inspection system for silicone rubber
gaskets, utilizing traditional rule-based and deep learning detection techniques. The system
aims to detect characteristic defects in gaskets created during the manufacturing process,
achieving high accuracy using convolutional neural networks (CNNs) and advanced image
capturing and generating approaches.

He et al. [9] have addressed the challenges of identifying surface defects on oil seals
using a visual detection method (VDM). They have proposed an approach of segmenting
an image into regions, using gray level changes in the radial direction on the outer part of
the oil seal. Additionally, they have introduced a circumferential background difference
algorithm considering reflection inequality and low contrast, achieving high recall and
precision rates in defect detection.

Jiamin Tao et al. [10] have proposed a novel approach that combines the fringe pro-
jection technique with traditional visual inspection devices to overcome their limitations.
Their method employs deep learning techniques and introduces the Padua Incremental
Mask Labeling Method to accelerate the calibration process. They have designed a one-
stage architecture deep learning network called YOLO-OurNet specifically for detecting
defects on drum-shaped roller surfaces. Experimental tests have demonstrated impressive
results, including reduced defect detection time, high accuracy rates, and improved object
detection evaluation indices.

Shengping Wen et al. [11] have introduced a multi-task convolutional neural network
that was created to find flaws in order to control the surface quality of bearing rollers. By
using a shared convolutional neural network, the defects’ characteristics were extracted,
and the classification and positioning of the faults were determined simultaneously. Ruoxu
Ren et al. [12] have presented a general method for automated surface inspection that
only requires a small amount of training data. This method creates a classifier based on
the attributes of picture patches that have been taken from a deep learning network that
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has already been trained. Tian Wang et al. [13] have proposed an intricately crafted deep
convolutional neural network (CNN) that can automatically extract potent features for
defect detection with less prior knowledge about the images, while at the same time being
noise-resistant. Chil-Chyuan Kuo et al. [14] have presented an optical inspection system
for inspecting the bubbles in silicone rubber with high accuracy in the millimeter range.
Rafia Nishat Toma et al. [15] have proposed a method to recognize and classify multiple
rolling bearing faults. In this work, ensemble empirical mode decomposition (EEMD) is
used to split the signal into various intrinsic mode functions (IMFs) in order to evaluate
the fault characteristics. A continuous wavelet transform is then applied, transforming
the 1D reconstructed vibration signal into a 2D image. The signal is moved into the time-
frequency domain, which lessens the vibration signal’s nonstationary effects. Additionally,
Sier Deng et al. [16] have suggested an automatic detection system based on a machine
vision technique in response to the high demand for productivity and bearing quality as
well as the dearth of conventional detection methods.

In summary, these studies highlight the potential of vision-based systems in detecting
and evaluating defects on rubber roller surfaces. Various approaches have been explored,
ranging from traditional image processing techniques to deep learning-based methods.
Each approach offers unique advantages and contributes to the advancement of defect
detection in the field of rubber roller surfaces.

The paper is organized as follows: Section 2 details the design of the visual inspection
system, encompassing both hardware and software systems. Sections 3 and 4 present the
experimental results and discuss the developed machine vision system. Lastly, Section 5
summarizes the entire paper.

2. Visual Inspection System
2.1. Overview

Both the hardware system and software system are built to form the visual inspec-
tion system.

System hardware includes the desktop computer, shaft with black rubber rollers,
V-mount, lighting system, mounting bracket, camera, and lens. The hardware system
includes Intel®Core™ i7-7700HQ CPU @ 2.80 GHz (8 CPUs, ~2.8 GHz) with 8.00 GB RAM,
NVIDIA GeForce GTX 1050, and Windows 10 is the operating system. The mechanical
structure is shown in Figure 2 below. It mainly consists of the aforementioned hardware
devices with the lighting system being ring lights or backlights.
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The rubber roller has two heads and one cylinder; we only work on the cylinder, so
we need a workplace and an industrial camera for image acquisition. When the axis is
placed in the required position and fixed on the V-mount, the video acquisition function is
activated. At work, a shaft containing four rollers rotates in place under the action of the
mechanism. We use a Basler acA2040-90uc area scanning camera, manufactured by Basler,
Germany, with a high resolution of 2040 × 2046, to record the cylindrical surface of the
roller. The choice of camera is considered according to the requirements of the distance to
target and sharpness of the image.

There are strict lighting requirements for visual inspection, and the image’s condition
can be enhanced using the stable light. Selecting and setting up a constant light source is
vital to highlighting the features of the defects. We set up two high-angle light sources. The
two light sources are placed parallel to the axis of the roller. The method for choosing a
lighting system is described in Section 2.2.

The software system is programmed in C++. The distance function is used as the
ground for building the defect detection algorithm. Commonly used image processing
algorithms, such as segmenting by level and morphological processing, were written with
the help of OpenCV library. In addition, we also use a deep learning algorithm that uses
the YOLO algorithm to automatically detect and classify errors and compare them with the
traditional method used.

2.2. Illumination Design

In this lighting system, we use two backlights, one camera, one lens, and two V-mounts;
the designed mounting system is shown in Figure 3 below.
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Figure 3. Lighting system.

Two backlights placed symmetrically about the axis are tested with illumination angles
from 0 to 90 degrees from the horizon. After a series of tests, it was discovered that the
60-degree angle gives the best image quality, and the defects are most visible. The distances
from the center of the shaft to the lens and from the lamp to the shaft are shown in Figure 4
below. These distances are a function of the size of the rubber roller as well as the size of
the backlights.
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2.3. Defect Detection Based on Proposed Traditional Method

Rubber roller defect images only provide useful information about the defect area,
typically tiny in comparison with the overall rubber region, especially if the rubber surface
condition is fine. Therefore, a large portion of the image is considered background and
needs to be removed for efficiency. However, in most cases interference from the imaging
environment introduces a large amount of noise, making it difficult to distinguish important
image regions from unwanted regions. As a result, it is necessary to develop image
preprocessing operations to minimize environmental disturbances. OpenCV is utilized
to make the process as fast and efficient as could be expected. OpenCV implements
many computer vision algorithms and is written in the C programming language. Image
preprocessing is done in several steps, which are described below.

Since the visible area of the camera is wider than the working area, we first extract
the working area from the video obtained during image acquisition. The extracted area
will be further processed in the image preprocessing stage. The traditional defect detection
process is depicted in Figure 5 below.
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After extracting the ROI region from the input video, images extracted from the ROI
region are put into preprocessing. We use the same input data set for both methods,
and an image can include more than one defect, as shown in the table below. Then, the
thresholding stage highlights the error on the video background using black and white
values. Morphology and edge detection make defects clearer and easier to see. If edge
detection returns a value other than zero, the defect area will be colored, and the rubber
roller with defects can be detected, and vice versa, if the rubber roller is in good condition.

2.3.1. Power-Law Transformation

The power law (gamma) transformation function is generally described as [13]:

s = c*rγ (1)

The output and input pixel values are denoted using s and r, respectively, and the
positive constants are denoted using c and γ. Power-law curves with γ < 1 map a narrow
range of dark input values into a wider range of output values, whereas higher input values
map the opposite. This is similar to the log transformation. In a similar vein, the opposite
occurs when γ > 1.

Gamma correction, gamma encoding, and gamma compression are all other names
for this. The following curves are produced by normalizing the r values from 0 to 1. The
scaling constant c that corresponds to the bit size used then multiplies them. With this
transformation, the contrast of the picture will be enhanced, and the defects will be shown
more clearly.

Then, the image is converted to a new negative gray scale (shown in Figure 6). This
facilitates the processing and viewing of processed images. All preprocessing steps are
explained below.
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image.

2.3.2. Laplacian Filters

A Laplacian filter or a Laplacian edge detector is used to compute the second deriva-
tives of an image, measuring the rate of change of the first derivatives. This determines
whether changing adjacent pixel values are from an edge or a continuous progression.

The Laplacian is often applied to an image that has first been smoothed with something
approximating a Gaussian smoothing filter in order to reduce its sensitivity to noise. One



Appl. Sci. 2023, 13, 8999 8 of 20

of the main issues that could affect the results is random noise. All of the images may be
affected by random and uniform noise due to the physical characteristics of rubber rollers,
which must be removed. By using the Laplacian filter, the photos are smoother, and the
sensitivity to noise is also significantly reduced.

The Laplacian L(x,y) of an image with pixel intensity values I(x,y) is given by [13]:

L(x, y) =
∂2 I
∂x2 +

∂2 I
∂y2 (2)

This can be calculated using a convolution filter. Since the input image is represented
as a set of discrete pixels, we have to find a discrete convolution kernel that can approximate
the second derivatives in the definition of the Laplacian. Two commonly used small kernels
are shown in Figure 7.
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Using one of these kernels, the Laplacian can be calculated using standard convolution
methods. The result of applying the Laplacian is shown in Figure 8 below.
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2.3.3. Image Segmentation: Thresholding

Image segmentation is an image processing method that creates a binary image based
on thresholding the pixel intensity of the original image. It is usually used on grayscale
images but can be used on color images as well. The image intensity threshold (the relative
brightness of the image) is either manually set to a specific value or set automatically by
the application. Pixels below the threshold will be black (bit value 0), and pixels above the
threshold will be white (bit value 1). The thresholding process is sometimes described as
dividing an image into foreground (black) values and background (white) values.

Contrast-based simple thresholding operations set a single global threshold value
for all pixels in an image, regardless of any differences in local contrast. Adaptive thresh-
olding, a type of more advanced thresholding, generates a threshold value by sampling
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progressively larger numbers of image regions. When performing OCR on images, thresh-
old quality is especially important. Materials that are foxed, mottled, stained, or faded
irregularly can make it hard to distinguish the foreground (text) from the background. The
defects will be identified via thresholding as background values (white) and foreground
values (black). The result of applying thresholding is shown in Figure 9 below.
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2.3.4. Morphological Image Processing

Mathematical morphology and set theory are the foundations of morphological filters.
There are many different kinds of morphological filtering, but after analyzing the results,
erosion and dilation filters are the best ones in the experiments. First, we use an erosion
filter to remove small noises or insignificant defects. Then, the dilation filter assists with
filling minor holes in the picture, making the main defect seamless and more detailed.
Along with that, the object also returns to its original size after being scaled down by the
erosion filter.

Figure 10 points the outcome of using an erosion and dilation morphological filter to
the defect image with previously applied thresholding.
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2.3.5. Edge detection

The first derivative of the image intensity is one of the most widely used methods for
detecting edges because it has a constant value throughout the transition and is zero in all
regions with low variance. Therefore, the change in intensity (potential edge) is revealed
as an abrupt first derivative change. This feature is usually used for edge detection. The
Canny algorithm is based on this technique.

The Canny algorithm includes three main steps:

• Find the intensity gradient of the image: in this step, the scale of the gradient vector is
calculated for each pixel.

• Non-maximum suppression: the aim of this step is to ‘thin’ the edge to obtain a
one-pixel width edge.

• Threshold hysteresis: finally, a two-step threshold hysteresis is applied in order to
decrease the fake edges.

After applying the Canny algorithm, the contours of defects are detected in order to
proceed to coloring the error area in the following step. A contour search function is set
up to merge small contours that are closely spaced (according to a predetermined weight)
into one large contour; then, coloring the error area is easy, and the error is visible and
displayed most clearly. After this step, the errors are identified completely correctly as
shown in Figure 11.
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identified. (b) The defects are now clearly identified by coloring blue color.

2.4. Defect Detection Based on the Deep Learning Method

In addition to using the traditional method, we propose using an artificial intelligence
network to identify errors on the rubber roller.

In order to be able to accurately and quickly detect errors with a short delay, and with
the requirement to quickly process photos and videos at hundreds of frames per second, we
use the YOLOv7 network with advanced techniques. Such as with CNNs, skip connection
and multi-scale training are used to improve error detection accuracy and speed. Figure 12
below shows an overview block diagram of the implementation of defect detection using
deep learning.
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After collecting data (videos) from the machine vision system presented in Section 2,
we proceed to separate images from video; then, the input data set has been established.
Because the image quality is not good enough to meet the accuracy and performance re-
quirements of the defect detection process, data preprocessing is applied. The preprocessed
images are labeled in the next stage. Four typical defect types are selected for labeling.
After that, the data training process is conducted on Google collapse. At the end of the
process is the experimental result, and the rubber rollers are classified according to each
type of defect.

Before going to the network, the input image (resolution) is resized to 640 × 640, which
then is used as the input to the model. The entire network architecture after the fusion is
shown in Figure 13. The backbone network is first used to extract features from the input
images. In order to maintain multi-scale information, the neck network receives multi-scale
feature maps from the backbone network, which provides a variety of scales and serves
as the neck network’s input. After the neck network, shallow fine-grained information
and deep semantic information from feature maps are fused, increasing the expressive
capacity of the network and assigning the multi-scale learning task to numerous detection
networks of various sizes. The output of the detection prediction is created after the feature
information has been combined and modified.

Images’ textures, colors, and shapes are extracted as features using a backbone network.
It may offer a variety of scales, sensing field sizes, and center steps, accommodating the
needs of different scales and categories. Figure 13A illustrates the backbone network’s
feature extraction process. First, the backbone network passes through four CBS modules
for convolution, normalization, and activation. Next, the E-ELAN block and MP block
are used to extract features in an alternating fashion. Finally, the result of the final three
E-ELAN blocks is used as the income data for the neck. As illustrated in Figure 14a,e, the
MP block is made up of MaxPool and CBS modules, and the E-ELAN block is made up of
several convolutional layers.

The neck network’s job is to fuse the learned multi-scale information together and
distribute the backbone network’s multi-scale output learning to multiple feature maps.
This improves the model’s perceptual wildness, successfully separates the most important
contextual features, and partially avoids the image distortion problem. As shown in
Figure 13C, the model’s prediction results are obtained by combining the feature data with
the 1 × 1 convolution to produce the final prediction data. This is done after the backbone
and neck networks have extracted two features from the input image.
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MP module.

2.4.1. Preprocessing

A total of 1063 defective pictures of the rubber roller are used for detection. Images are
taken from video obtained through the lighting system. Detected faults include no defects,
torn areas, porosity, and damage. To improve the accuracy during training, we perform
preprocessing of these images.

First, gamma correction is used to increase the contrast of the input image. The gamma
factor is adjusted to achieve the most suitable image quality, the higher the gamma factor,
the higher the contrast of the image. After some experimentation, the gamma factor value
is chosen to be 6.

img_contrast = ((image/255.0) ˆgamma) * 255. (3)

Then, image quality is improved using the GaussianBlur filter. The resulting image
will then be less noisy and smoother. Filter parameters are adjusted to obtain the best image
quality and are written using OpenCV command blur = cv2.GaussianBlur(img_contrast,
(3, 3), 0).

2.4.2. Dataset and Labeling

Our dataset is collected from images after preprocessing. After training the model, we
test it on a test dataset including 230 images. The training set includes 850 images for the
training process. The validation set includes 213 images to evaluate the performance of the
model during training. The validation set helps prevent over-fitting to help achieve the
best results.

We perform labeling and identify three defects on the rubber roller surface: dam-
age, torn areas, and porosity. For images having no defects on the surface, nothing will
be displayed.

Figure 15 shows the results of the defect detection. The purple box is associated with
damage, the green box is associated with tears, and the blue box is associated with porosity.
The defect’s probability and category are shown either above or below the box.
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associated with damage, the green box is associated with tears, and the blue box is associated
with porosity.

2.4.3. Training and Accuracy

The training parameters of the training process used in the experiment are shown in
Table 1.

Table 1. Training parameters.

Parameter Value Parameter Value

Learning rate 0.01 Weight decay 0.005

Batch size 12 Momentum 0.937

Image size 640 × 640 × 3 Epochs 150

2.4.4. Evaluation Metrics

The evaluation indices used to evaluate the performance of the algorithm in this paper
are precision (P), recall (R), mean precision (mAP), and F1 score.

Precision expresses the proportion of positive samples in the samples with positive
prediction results. It is calculated as follows [13]:

Precision =
TP

TP + FP
(4)
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Recall expresses the prediction result as the proportion of the actual positive samples in
the positive samples to the positive samples in the whole sample, calculated as follows [13]:

Recall =
TP

TP + FN
(5)

The F1 score is the weighted average of precision and recall, calculated as follows [13]:

F1 =

(
2

Recall−1 + Precision−1

)
= 2· Precision·Recall

Precision + Recall
(6)

The model’s ability to distinguish between positive and negative samples is shown
by its accuracy. The model’s ability to distinguish between negative samples increases
with accuracy. The model’s capacity to identify positive samples is reflected in recall. The
model’s capacity to identify positive samples increases with recall. The two are combined
in the F1 score. A stronger model is indicated by a higher F1 score.

Average accuracy (AP) is the average value of the highest precision under different
recall conditions. (Usually, AP is calculated for each category separately.)

The mean average precision (mAP) is the mean value of the average precision and the
mean AP value of each category. The calculation formula is as follows [13]:

mAP = ∑s
j=1

AP(j)
S

(7)

where S is the number of all categories, and the denominator is the sum of the APs of all
categories. The object detection object in this study comprises three defects of the rubber
roller; therefore, S = 3.

3. Results
3.1. Defect Detection Results
3.1.1. Traditional Method

We use 230 images of rubber roller defects using the lighting system described in
Section 2, in which there are 197 images with defects, including damage, torn areas, and
porosity, and 33 images without defects as shown in Table 2. After applying the traditional
method, the defect areas are shown quite clearly, and the accuracy is approximately 98%.
However, this method only gives results in defect and non-defect, unclassified defect types.
The results are shown in Table 3 below.

Table 2. Input data set.

Defect Categories (Images) Damage Torn Porosity Non-Defect Total

Test set 173 56 16 33 230

Table 3. Results of traditional method.

Type TP (Images) FP (Images) Precision (%)

Defect 195 2 98.98

Non-defect 32 1 96.97

Image size 227 3 98.70

3.1.2. Deep Learning Method

The training parameters and graphs of the training process used in the experiment are
shown in Figure 16 below.
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Figure 16. Training parameters and graphs. The lower the Box, Objectness, Classification, Val Box,
Val Objectness, and Val Classification parameters and the higher the parameters P, R, mAP@.5, and
mAP@.5:.95, the better performance the model will achieve, with good object recognition ability.

The performance index values of the model are shown in Table 4.

Table 4. Performance index values.

P R F1 mAP@0.5 mAP@0.5:0.95 PR

Val 0.95 0.95 0.83 0.85 0.46 0.85

The test set consists of 230 images, each of which may contain multiple defects. The
detail is shown in Table 2. After applying the deep learning method to identify defects,
the model correctly recognized 278 defects, and the remaining 14 defects were incorrectly
identified; the accuracy reached 95.21%.

3.2. Defect Classification Results

In addition to being able to distinguish whether the quality of the rubber roller is up
to standard due to a general fault or not, the deep learning method can also classify each
type of defect present on the rubber roller, which the traditional method is not capable of.

The outcome of the system evaluation is shown in Table 5. Successfully classified im-
ages are displayed in the Success column, while incorrectly classified images are displayed
in the Error column. In this table, an image that has a type of defect but has been classified
as another type of defect or as a non-defect image will be considered a wrongly classified
image. The success rate is greater than 93% for each type of defect in this category, and in
most cases, it reaches 100%. The success rate is greater than 95% on average.
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Table 5. Results of deep learning method.

Type TP (Images) FP (Image) Precision (%)

Damage 163 10 94.22

Torn areas 54 2 96.43

Porosity 15 1 93.75

Non-defect 33 0 100

265 13 95.32

4. Discussion
4.1. Comparing the Two Methods

Edge detection, segmentation, and line detection, which are common manufacturing
techniques, are unable to accurately extract the internal structure of any defect. Normally,
the damage is treated as a random target, and the difference in reflectivity between the
target and the background is used for detection. The rubber roller’s qualification is then
evaluated based on the position and area of the target. However, this approach often
leads to misidentification of textures, stains, oil stains, etc., as defects. This results in low
accuracy and a reduced recall rate during the detection process. In some cases, we need
to know how many different kinds of defects there are and how often they happen, so
we can adjust the production process accordingly. Conventional manufacturing surface
inspection techniques cannot accomplish this. Deep learning has emerged to make up for
the drawbacks of traditional algorithms. Since deep learning algorithms have shown better
performance in object recognition and classification tasks, deep neural networks can be
used to detect different types of defects and identify similarities between them. Accurate
fault classification can be obtained from large amounts of data.

After applying two methods, we find that each method has its own advantages and
disadvantages, and both methods give quite good defect identification results and can be
applied in industry.

• Traditional method

This method does not require multiple input images to train the model and can be
widely applied in manufacturing industries to detect defects, with low cost and good
defect detection ability. However, its accuracy is highly dependent on the lighting system.
Therefore, if the lighting system changes, the accuracy of the detection may also change.
This makes it difficult to identify specific errors using this method.

• YOLOv7

The deep learning method is able to classify specific types of defects on the rubber
surface such as damage, erosion, etc.; multiple input images can be used to increase
accuracy, and it can be applied in rubber product visual inspection systems to classify
defects and improve reliability during inspection.

However, it is necessary to use many input images to train the model, and a certain
level of deep learning knowledge is required.

4.2. Other Illumination Designs

In order to establish the best lighting system, we have conducted experiments on many
different lighting systems. Through our research, we have found that lighting systems such
as the dome lighting system and backlight lighting system are not suitable for identifying
defects on a black surface. Therefore, we conduct experiments on lighting systems with
more potential such as the darkfield lighting system, a lighting system using ring light, and
a spotlight lighting system using two lights on both sides. The lighting systems are set up
as shown in Figure 17.
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After setting up the lighting systems, we proceeded to collect images for comparison,
and the results are shown in Figure 18 below. Looking at the results, it can be seen that the
spotlight lighting system using two lights on both sides gives the best display results, the
widest working area (white area), and the sharpest display defects.
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Figure 18. Image collecting: (a) darkfield lighting system: defects are not displayed, small working
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5. Conclusions

A machine vision system for surface inspection of rubber rollers is proposed in this
paper. Traditional and a deep learning approaches are designed to identify flaws and
compare them in order to control the product’s quality. The defects are classified, and their
positions are computed simultaneously using the deep learning technique with YOLOv7.
Finally, we look at the position, category, and area of the defects to see if the rubber roller is
qualified. Importantly, experiments are conducted to find the best lighting system. Both
methods meet the requirements of industrial manufacturing, but the quantitative results
demonstrate that our method is superior in terms of accuracy and robustness.
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The traditional method cannot classify defects, and deep learning needs a lot of
labeled data and depends on how well the hardware works. This is a limitation of our
proposed method.

Traditional methods give better results to classify defects versus no defects than deep
learning methods do. However, the deep learning method is capable of classifying defects
with outstanding accuracy. A reasonable combination of both methods will help improve
accuracy and classification ability as well as optimize processing time.

We will continue to improve the algorithm and network structure in order to
lower their computational costs and enable their truly widespread application in
industrial manufacturing.
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