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Featured Application: The circular fuzzy Hough transform with gradient-weighted voting can be
used for finding the contours of circle-like shapes, such as colorectal polyps on colonoscopy im-
ages, as well as other cases that require a given relative gradient edge around the
circle-like objects.

Abstract: Classical circular Hough transform was proven to be effective for some types of colorectal
polyps. However, the polyps are very rarely perfectly circular, so some tolerance is needed, that can
be ensured by applying fuzzy Hough transform instead of the classical one. In addition, the edge
detection method, which is used as a preprocessing step of the Hough transforms, was changed from
the generally used Canny method to Prewitt that detects fewer edge points outside of the polyp
contours and also a smaller number of points to be transformed based on statistical data from three
colonoscopy databases. According to the statistical study we performed, in the colonoscopy images
the polyp contours usually belong to gradient domain of neither too large, nor too small gradients,
though they can also have stronger or weaker segments. In order to prioritize the gradient domain
typical for the polyps, a relative gradient-based thresholding as well as a gradient-weighted voting
was introduced in this paper. For evaluating the improvement of the shape deviation tolerance of the
classical and fuzzy Hough transforms, the maximum radial displacement and the average radius
were used to characterize the roundness of the objects to be detected. The gradient thresholding
proved to decrease the calculation time to less than 50% of the full Hough transforms, and the
number of the resulting circles outside the polyp’s environment also decreased, especially for low
resolution images.

Keywords: colorectal polyp; image analysis; Hough transform; fuzzy point; edge detection; gradient
filter; fuzzy Hough transform; roundness; radial displacement

1. Introduction

As some polyps in the colon and rectal tract of the bowel can develop into extremely
dangerous cancers, and they cause symptoms only rather late in their developed phase, it
is recommended that even healthy individuals undergo colorectal screening after a certain
age. There are multiple methods available for colon screening, with colonoscopy being
the most commonly used. A colonoscope, which is an endoscope equipped with a flexible
tube, camera, light source, and other tools, can navigate within the bowel, and perform
various tasks like inflating the bowel, spraying liquids, and removing lesions [1,2].

Even for experienced gastrologists, detecting polyps with the naked eye can be chal-
lenging due to various factors such as inadequate intestinal preparation and visual ex-
haustion. A computer-aided system for localizing colorectal polyps would simplify the
diagnostic process and facilitate the assessment of the examined cases severity. Thus,
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healthcare professionals would be able to prioritize urgent cases, promptly select appro-
priate treatments, and efficiently analyze clinical results. Therefore, developing reliable
computer-aided diagnosis techniques that can automatically and precisely localize polyps
in colonoscopy images is currently one of the most demanding needs in the healthcare
sector [1–3].

To aid the gastroenterologists, various machine learning and deep learning architec-
tures have been currently developed as prominent solutions to automatize polyp detection
and localization tasks and enhance the accuracy of their consequences [4–6]. A method
for real-time detection, classification, and localization of gastrointestinal tract disorders
from colonoscopy images was presented in [7]. Both online available (hyper-Kvasir dataset)
and private locally collected samples were utilized. The method was developed using the
pre-trained transfer learning SSD, YOLOv4, and YOLOv5 object detection models, with
minimal fine-tuning of the hyperparameters, and their final performance was compared,
whereas the utilization of the YOLOv5 object detection algorithm and the artificial bee
colony (ABC) optimization algorithm was proposed in [8]. The YOLOv5 algorithm was
employed for polyp detection, while the ABC algorithm was used to enhance the perfor-
mance of the model by finding the optimal activation functions and hyperparameters for
the YOLOv5 algorithm. The proposed method was executed on the SUN and PICCOLO
datasets and achieved good performance in real-time polyp detection.

Not only the deep learning approaches but also the polyp characterization compu-
tational methods are widespread in the literature. These methods mainly compute some
shape [9,10] and texture-based [11,12] feature descriptors over the full image or a segment
of it to be able to detect and localize and the polyp’s area precisely.

In pattern recognition literature, Hough transform is considered as a great mathemati-
cal tool for object detection since the first appearance of its classical version for machine
analysis of bubble chamber pictures by Paul V C Hough in 1959 [13]. In 1981, it was
extended by D. H. Ballard into the Generalized HT (GHT), which is a two-phase learning-
detection process to detect arbitrary complex non-parametric shapes [14]. Continuously,
different variations of Hough transform have been proposed by many researchers, like prob-
abilistic Hough transform [15], randomized Hough transform [16], and Vector–Gradient
Hough Transform (VGHT) [17].

In 1994, Han, Kóczy, and Poston introduced the fuzzy Hough transform [18] to detect
fuzzy lines and circles in the noisy environments by roughly fitting the data points to given
parametric forms.

Hough transform and all its successive versions have proven to be typical powerful
techniques with promising outcomes in numerous fields of applications, for example
but not limited to, object detection [19,20], lanes and roads detection [21,22], industrial
automation [23], mechanical engineering [24], medical image processing [25–29], and robot
navigation [30] fields.

Drawing from our experience and a comprehensive analysis of previous studies
employing the Hough transform, we briefly outline the practical strengths and weaknesses
of this method in Table 1.

The research community has investigated the limitations of Hough transform and
suggested different approaches to make it a more plausible tool. To solve large calculation
demand and to ensure integration with the Wireless Capsule Endoscopy (WCE) system,
authors in [31] improved the real-time computation of the Hough transform. The design of
the new approach took into consideration specific constraints of WCE such as limited space
and limited energy resources. Within the same limitation direction (i.e., minimizing the
Hough tansform’s computational cost), an Edge Orientation-based Fuzzy Hough Transform
(EOFHT) was proposed in [32]. Instead of using all the edge-detected image points in
the voting process, just those specific points whose representation is consistent with the
selected gradient orientation range were eligible to vote.

Moreover, since shorter curves give fewer votes, thus, circles with smaller radii give
weaker peaks in the accumulator space, a weighted vote which is inversely proportional to
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the radius in the parameter space was given to each entitled point in the image space by
the modified voting method in [33].

Table 1. The practical strengths and weaknesses of Hough transform.

Strengths Weaknesses

X Not limited to specific shapes
X Any parametric curve can be used

as basis

� With more parameters the dimension of
the accumulator space increases

� The calculation demand grows
exponentially with the number
of parameters

X Easy to parallelize (the transformation
itself is independently executed for each
edge point)

� Can be computationally expensive

- for high-resolution images
- for complex shapes
- for dense line images

X Can identify partial and
obstructed curves

� Shorter curve segments with fewer points
result in weaker peaks in the
accumulator space

� Sensitive to noise. Noise may lead to
additional peaks in the
accumulator space

X It can detect multiple objects

� Overlapping objects may lead to
unphysical, ghost peaks

� Partially covered, or smaller objects can
be suppressed by the larger objects with
more points

Currently, automatic colorectal polyp detection and localization in colonoscopy images
is a promising research area and a challenging problem because of the high variability
of the colorectal polyps’ characteristics in both shape and texture. Thus, the efficiency of
applying Hough transform was also studied in this field.

Classical Hough transform was applied in [34] to identify potential regions of interest
(ROIs) in 300 video endoscopy pictures. A good detection of the ROIs containing a polyp
was possible using classical Hough transform based on Canny edge detection approach.
However, in several samples the method generated many alternative weaker circles, and
raised the classification system’s False Positive Rate (FPR). To enhance the effectiveness
of the proposed method, after Hough transform step, the textural characteristics from
co-occurrence matrices were computed, and then used within a boosting-based technique
for the final classification purpose. Hough transform was also used in other colorectal polyp
localizing methods [35,36] as a ready-made preprocessing step to find ROIs. However, they
concentrated on the steps determining whether a ROI contains polyp or not, and not on the
Hough transform step itself. (Linear Hough transform was also used in colonoscopy for
detecting folds within the bowel [37].)

In our research, instead of improving the steps after selecting the ROIs with Hough
transform (like in [34–36]), we would like to overcome some weaknesses of the Hough
transform itself. The circles arising from the fuzzy Hough transform can also serve as initial
masks for active contour methods [38,39].
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As a first step we introduced fuzzy Hough transform, as it provides more tolerance
to the deviations from the ideal curve’s points, and colorectal polyps in real colonoscopy
images are not precisely circular [40].

As a second step, we targeted the large computational demand of the Hough transform,
as the low computational load is one of the most essential requirements for algorithms
used in computer-aided diagnosis (CAD) systems.

Hough transform starts with an edge detection (mostly Canny edge detection), and
all the edge pixels have to be transformed. However, the edge pixels can be decimated, as
the Canny edge detection tends to have a dense edge map because of the necessarily high
connectivity of the edge points. Colonoscopy images contain edges other than colorectal
polyps’ borderlines, however, these edges often either have smaller or larger intensity steps
compared to the edges of colorectal polyp contours. Based on these considerations, the
possibility of removing Canny edge detected points with too small or too high gradient
magnitude values was investigated in [41]. The research was performed on all the images
of three colonoscopy image datasets CVC-Clinic [9], CVC-Colon [42], and ETIS-Larib [34].
The study’s goal was to eliminate edge points that do not belong to polyp contours, and
at the same time, to keep as many polyp contour edge points, as it is necessary for the
colorectal polyp contour to be detectable.

Setting a global gradient magnitude threshold domain that could achieve both a low
total number of Canny edge pixels and at the same time a sufficiently accurate matching
with the colorectal polyp contour was not possible. However, if the continuity of the Canny
edges is given up, other edge detecting methods could provide a better basis for Hough
transform, as there the continuity of the lines is not needed, only that the edge points are
on the contours of the polyp. This is one of the ideas that were studied in this paper.

The main contributions of this article are as follows. First, the performance of four
edge detection algorithms (Canny, Prewitt, Roberts, and Sobel) was compared, and the
most ideal one that gave the most polyp-contour-related and least unnecessary edge points
was selected. Two metrics, based on the normalized gradients of contour and non-contour
edges were used to determine which algorithm is the most appropriate. Second, to further
reduce the number of edges that do not belong to the polyp contours, a gradient magnitude
thresholding process was applied for the results of the selected edge detection method.
Finally, to make the circle detection more tolerant to shape uncertainty, the fuzzy version
of the Hough transform was also tested together with the classical one using a gradient-
weighted voting approach. To evaluate the results, the radial displacement and the average
radius were introduced to characterize the roundness of the objects to be detected. These
contributions are summarized in the following points,

• selecting the edge detection method that is the most suitable for colorectal polyp
localization purposes. Developing a metric to base this selection,

• determining gradient limits for removing the unnecessary edges,
• applying fuzzy Hough transform on colonoscopy images and comparing its results

with the classical Hough transform,
• introducing a gradient-weighted voting to both classical and fuzzy Hough transforms

and study its effects,
• characterizing the roundness of the objects to be detected.

The paper is organized the following way. In the next section, in Section 2, the
summary of the mathematical methods used in the article are given, the classical and fuzzy
Hough transforms, the gradient filtering and edge detection algorithms. Section 3 contains
the proposed method in detail. In Section 4 the results are given and discussed, while in
the last section the conclusion is drawn.

2. Theoretical Background
2.1. Classical and Fuzzy Hough Transforms

Hough transform has been in use for detecting straight lines and circles since a rather
long time. The Hough transform is meant to find a parametric curve fitting to some
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measured points of the curve [13], if the shape, i.e., the general parametric formula of the
curve is known. One of the simplest Hough transforms uses the two-parameter equation of
a straight line, i.e.,

y = a0·x + b0 (1)

with x and y being the coordinates of points in the Cartesian space, and a0 and b0 being
the parameters from the parameter space (a, b). Hough transform basically generates the
curves belonging to each line point (x0, y0) in the space of the parameters; in the case of
straight lines, each point (x0, y0) will form a straight line

b = (−x0)·a + y0 (2)

in the parameter space, too. If another point is on line (1) in the real space, it will have
another line in the transformed space, similar to (2), but with different slope and offset.
However, these lines, formed by the points on line (1) will have an intersection at (a0, b0),
i.e., at the parameter pair belonging to (1). This means, that the point (a0, b0) will be arising
from all the points (x, y) of (1), thus, if we add one vote to each point of (1), then (a0, b0)
will have a high number of votes, whereas other points, that belong only to one of the lines
of type (2) will have only one. This consideration was used by Hough and later by many
others to develop the following method.

1. Divide the space (x, y) by a finite grid (if not already executed).
2. Divide the transformed space (a, b) by a finite grid, it gives the resolution of the result.
3. For each point (a, b) in the transformed space add a vote for each point (x, y) in the

original space, that is contained by the line.
4. Search for the maximum of votes

a. If there is just one line, the global maximum (amax,0, bmax,0) will be the approxi-
mation of parameter (a0, b0) of the line we were looking for.

b. If there are multiple lines, longer and shorter segments, the local maxima
(amax,k, bmax,k) will also approximate parameter pairs of lines. The longer the
line in the original space, the more votes it obtains. By setting up a threshold,
the length of the detected line segment can be controlled.

5. The lines y = amax,k·x + bmax,k with the detected approximate parameters
(amax,k, bmax, k) can be drawn in the original space (x, y).

The algorithm is given for the case of straight lines like (1), but it can be generated
easily to any kind of parametric curve. In the case of colorectal polyps, the circular or
elliptic Hough transform is the most plausible, with parametric equations

r2
0 = (x− a0)

2 + (y− b0)
2, (3)

1 =
(x− h0)

2

a2
0

+
(y− k0)

2

b2
0

(4)

It can be seen that the circle has three parameters, the radius r0, and the centre
coordinates a0 and b0, while the ellipse has four parameters, the half axes a0 and b0, and
the centre coordinates h0 and k0.

Nowadays, Hough transforms are applied to images after edge detection [14–16], thus,
the original space already has an innate grid, i.e., step 1 is mostly not necessary. Very often
this edge detection step is considered as the first step of the Hough transform.

As the focus of our paper is on circular Hough transform, here the pseudocode of the
classical circular Hough transform is given in Algorithm 1.
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Algorithm 1: Classical Hough transform for a circle with parameters a, b and r

Requirements:
an edge image I

[
ix, iy

]
with size Lx, Ly,

a finite parameter space V[ja, jb, jr] with size La, Lb, Lr with initial values of 0
a threshold for peak percentage Pp,
a result image R

[
ix, iy

]
, with size Lx, Ly, with initial values of 0

1: for each image row ix from 1 to Lx
2: for each image column iy from 1 to Ly
3: for each parameter space row ja from 1 to La
4: for each parameter space column jb from 1 to Lb
5: for each parameter space 3rd dimension jr from 1 to Lr

6: if j2r = (ix − ja)2 +
(
iy − jb

)2

7: V[ja, jb, jr] = V[ja, jb, jr] + 1
8: end if
9: end for
10: end for
11: end for
12: end for
13: end for
14: compute the global maximum MG in V[ja, jb, jr]
15: compute local maxima M(k) = V

[
ja,k, jb,k, jr,k

]
16: select local maxima with M(k) > Pp ·MG
17: calculate the number NM of the local maxima from line 16
18: for each local maximum k from 1 to NM
19: for each result image row ix from 1 to Lx
20: for each result image column iy from 1 to Ly

21: if j2r,k =
(
ix − ja,k

)2
+
(
iy − jb,k

)2

22: R
[
ix, iy

]
= 1

23: end if
24: end for
25: end for
26: end for

In real life, the images have noise, thus, even if the original objects had straight lines,
circles or ellipses as their edges, the images will probably have distorted edges. If this
distortion is not too large, then the classical Hough transform is still effective, though
sometimes more lines arise instead of one. However, there is a method that can handle
not only slightly distorted edges, but larger deviations from the circles. This method is the
fuzzy Hough transform, introduced by Han, Kóczy and Poston [18].

The fuzzy Hough transform considers the points (x, y) as fuzzy points. Fuzzy points
are based on Zadeh’s original idea of fuzzy sets [43], which generalized the classical,
Boolean sets to have fuzzy perimeters by introducing a so-called membership function µ. In
the classical, Boolean algebra, only the membership values of µ = 0 and µ = 1 are possible,
i.e., something can either be a member of a set or not. In Zadeh’s approach, the objects can
not only be elements or not of a set, but there is a strength of their membership. In the case
of a geometrical point (x, y), it can also be considered as a fuzzy set, it has membership
value µ = 1 at the coordinate point (x, y), and the membership value decreases to zero
monotonously as we get further from the coordinate (x, y), leaving its environment still be
partially belonging to the fuzzy point (x, y). Using this approach in the fuzzy transform,
we can consider not only the coordinate point (x, y) to give a vote 1 to the corresponding
parameter space points, but also its environment can give votes proportional to their
membership value.

This approach modifies the previously described classical Hough transform in the
following way. (For the sake of generality, (a, b, . . .) were used, instead of (a, b) to express
the applicability to any type of parametric curve, not only straight lines).
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1. Divide the space of fuzzy points (x, y) by a finite grid (if not already executed).
2. Divide the transformed space (a, b, . . .) by a finite grid, it gives the resolution of

the result.
3. For each point (a, b, . . .) in the transformed space, and its environment add a vote

proportional to the membership function for each fuzzy point (x, y) in the original
space, that is part of the fuzzy curve.

4. Search for the maximum of votes

a. If there is just one curve segment, the global maximum (amax,0, bmax,0, . . .)
will be the approximation of parameter (a0, b0, . . .) of the curve we were
looking for.

b. If there are multiple curves, with longer and shorter segments, the local maxima
(amax,k, bmax,k, . . .) will also approximate parameters of the curves. The longer
the curve in the original space, the more votes it obtains. By setting up a
threshold the length of the detected segment can be controlled.

5. The curves with the detected approximate parameters (amax,k, bmax,k, . . .) can be
drawn in the original space (x, y).

Practically, if all fuzzy points (x, y) have the same membership distribution around
them, then the 3rd step of the voting manifests in adding a vote µ(|α− a|, |β− b|, . . .) to
the neighboring points (α, β, . . .) of the studied parameter space point (a, b, . . .).

Using this approach made the Hough transform more tolerant to distortions from the
original parametric curves. This made us able to use circular Hough transform for searching
for contours of polyps, i.e., the three-parameter Equation (3) could be used instead of the
four-parameter Equation (4).

Using these considerations, the pseudocode of the circular fuzzy Hough transform is
as follows in Algorithm 2.

The applied voting membership function was a 3D-Gaussian, as it had a rather wide
region around the center that is still close to 1. For a given parameter point (a0, b0, r0 ), the
votes were given to the neighboring points ([a0 − σ, a0 + σ], [b0 − σ, b0 + σ], [r0 − σ, r0 + σ] )
according to the membership function

µ(a, b, r) = exp

(
− (a− a0)

2 + (b− b0)
2+(r− r0)

2

2σ

)
. (5)

As an example, an image (No. 220 form database CVC-Colon), its preprocessing steps,
and transformed images are shown in the following figures. Figure 1 shows the image after
reflection removal, its ground truth mask and its Prewitt edge detected version. Figure 2
shows the resulting votes for classical and fuzzy Hough transforms (for one with σ = 5
slight fuzziness, and another with σ = 15, wide fuzziness). Each column has four images,
two at the radius values belonging to the two main detected circles, and there are 2 pictures
with radii slightly smaller and larger than the circle at the polyp. Figure 3 shows the
detected circles for different thresholds compared to the global maximum of the votes.
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Figure 1. A sample image (220) from database CVC-Colon [42] for demonstrating the Hough trans-
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tected version of the picture in subplot (c). 

Figure 1. A sample image (220) from database CVC-Colon [42] for demonstrating the Hough
transform steps, is shown in subplot (a), its ground truth mask in subplot (b), and the Prewitt edge
detected version of the picture in subplot (c).
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Algorithm 2: Fuzzy Hough transform for a circle with parameters a, b, and r

Requirements:
an edge image I

[
ix, iy

]
with size Lx, Ly,

a finite parameter space V[ja, jb, jr] with size La, Lb, Lr, with initial values of 0
a threshold for peak percentage Pp,
a voting membership matrix µ[ja, jb, jr] with size 2da + 1, 2db + 1, 2dr + 1
a result image R

[
ix, iy

]
, with size Lx, Ly, with initial values of 0

1: for each image row ix from 1 to Lx
2: for each image column iy from 1 to Ly
3: for each parameter space row ja from 1 to La
4: for each parameter space column jb from 1 to Lb
5: for each parameter space 3rd dimension jr from 1 to Lr

6: if j2r = (ix − ja)2 +
(
iy − jb

)2

7:
V[{ja − da, . . . , ja + da}, {jb − db, . . . , jb + db}, {jr − dr, . . . , jr + dr}] =. . .

V[{ja − da, . . . , ja + da}, {jb − db, . . . , jb + db}, {jr − dr, . . . , jr + dr}] + µ[ja, jb, jr]
8: end if
9: end for
10: end for
11: end for
12: end for
13: end for
14: compute the global maximum MG in V[ja, jb, jr]
15: compute local maxima M(k) = V

[
ja,k, jb,k, jr, k

]
16: select local maxima with M(k) > Pp ·MG
17: calculate the number NM of the local maxima from line 16
18: for each local maximum k from 1 to NM
19: for each result image row ix from 1 to Lx
20: for each result image column iy from 1 to Ly

21: if j2r,k =
(
ix − ja,k

)2
+
(
iy − jb,k

)2

22: R
[
ix, iy

]
= 1

23: end if
24: end for
25: end for
26: end for

2.2. Gradient Filtering

In mathematics, for a 2D continuous function, we use the partial derivatives to measure
the degree of variation along each dimension. The edges in an image are segments that
can be formed from the point locations where there is a rapid change in the image gray-
level intensity in a small region. The connection between the previous two concepts
made it possible to apply gradient filtering techniques in the field of image processing to
detect edges.

The gradient of an image intensity function is a 2D vector with two components
defined by the horizontal and vertical derivatives at each image point, and using these
two values, we can identify the strength of the edge’s magnitude and its orientation at
each pixel.

The common mathematical formulation of the gradient for 2D image is the
following vector:

G[ f (x, y)] =
[

Gx

Gy

]
=

[
(∂ f

∂x)

(∂ f
∂y)

]
, (6)

where f is the image intensity function, and x and y are the spatial coordinates of the
image. The magnitude and direction of the gradient are consecutively given by the two
equations below:

G[ f (x, y)] =
√

G2
x + G2

y , (7)
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α(x, y) = tan−1
(

Gy

Gx

)
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umn: 𝜎 = 5 fuzzy Hough transform, and the 3rd column: 𝜎 = 15 fuzzy Hough transform. 

Figure 2. The Hough transformed images of the edge detected picture in Figure 1c. The center
coordinates a and b are shown in one plane for 4 different values of the radius r. The number of the
votes are indicated by colors. It can be seen in the colorbar beside each image. The rows mean the
different radii, the 1st row is r = 42, the 2nd row is r = 57 (the radius of the final circle around the
polyp), the 3rd row is r = 72, and the 4th, last row is r = 115 (the radius of the other final circle). The
columns mean the following: the 1st column: the classical Hough transform result, the 2nd column:
σ = 5 fuzzy Hough transform, and the 3rd column: σ = 15 fuzzy Hough transform.

All of the aforementioned considerations are carried out in the continuous domain. In
the case of a digital image, where the intensity function is sampled at image discrete points,
we replace the gradient operator by a discrete operation, i.e., by a convolution between the
image and a kernel, which is a matrix of smaller size. For partial differentiation the discrete
counterpart is taking the difference of neighboring pixels. The following gradient kernels
are often used in practice.

Roberts1 =

[
−1 0
0 1

]
, Roberts2 =

[
0 −1
1 0

]
. (9)

Prewittx =

−1 −1 −1
0 0 0
1 1 1

, Prewitty =

−1 0 1
−1 0 1
−1 0 1

. (10)
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Sobelx =

1 0 −1
2 0 −2
1 0 −1

, Sobely =

 1 2 1
0 0 0
−1 −2 −1

. (11)
Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 43 
 

   

   

   
Figure 3. The resulting final circles from the inverse Hough transform of the picture in Figure 1. 
Similar to Figure 2., the columns indicate the fuzziness of the transform, i.e., the 1st column: classical 
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Figure 3. The resulting final circles from the inverse Hough transform of the picture in Figure 1.
Similar to Figure 2., the columns indicate the fuzziness of the transform, i.e., the 1st column: classical
Hough transform, the 2nd and 3rd columns: fuzzy Hough transform for σ = 5 and 15, respectively.
The rows in this case give the local maximum threshold compared to the global maximum. The 1st
row: 50%, the 2nd row: 70%, and the 3rd row: 90% of the global maximum.

2.3. The Implemented Edge Detection Algorithms

Edge detection methods can be used as mathematical techniques to identify par-
ticular locations in an image where the gray level intensities show discontinuities. The
resulting edge maps serve as the basis for subsequent processing steps in numerous signifi-
cant computer vision applications. In this section of the paper, a brief description of the
four used edge detection methods is provided.

2.3.1. Roberts, Prewitt, and Sobel Edge Detection Algorithms

The well-known Roberts, Prewitt, and Sobel edge detection algorithms are widely
used because of their simplicity and easiness of implementation. All of these algorithms
have the same work mechanism, but with different kernels. Each kernel has the ef-
fect of calculating the gradient in the specified direction. However, the choice of algo-
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rithm to be used depends on the desired application and the characteristics of the image
being processed.

Roberts edge detection method uses convolutional filters to detect the variations in
the image gray-level intensity in the diagonal directions [44], whereas Prewitt and Sobel
methods use convolutional matrices to detect the changes in both x and y directions [45,46].

The previously mentioned kernels, (9), (10), and (11), are used by the Roberts, Prewitt,
and Sobel edge detection algorithms, consecutively.

2.3.2. Canny Edge Detection Algorithm

John Canny first presented Canny edge detection in 1986 [47] as a multistep algorithm.
Canny algorithm is looking for the connectivity of the edge points as well as the high
gradient image points which makes it the most popular edge detection technique in many
computer vision and image processing applications. This technique produces very reliable
and highly accurate edge maps that are close to the human perception of edges.

The process of Canny algorithm consists of four main steps. First, the original image
is refined using a Gaussian filter to remove unwanted noise. The applied Gaussian filter is
defined as follows:

g(x, y) = Gσ(x, y) ∗ f (x, y), (12)

where

Gσ(x, y) =
1

2πσ2 exp
(
− x2 + y2

2σ2

)
(13)

The convolution operator is represented by the symbol ∗, and the indices x and y are
used to identify a pixel’s location within an image. The two-dimensional function Gσ(x, y)
is a Gaussian function with the variance of σ2.

The smoothened image’s gradient magnitude and direction are then calculated using
a certain gradient operator, i.e., Roberts, Prewitt, or Sobel. The third step is implementing
the Non-maximum Suppression (NMS) approach to check if the pixels are part of the local
maxima, and if not, they are put down to zero. Two hysteresis high and low thresholds are
computed in the final step. Every edge point with a gradient value greater than the higher
threshold is identified as a strong edge, whereas the edge points whose gradient values
fall below the lower threshold are eliminated. The connectivity of the residual edge points
which have gradient values between the low and high thresholds is tested: the examined
point is considered as an edge pixel only if at least one of the neighboring pixels is a strong
edge pixel [48].

3. Practical Application of the Proposed Method
3.1. Edge Detection Methods—Application, Evaluation, and Selection

For these tasks, several processing steps were carried out. They are sequentially
summarized below together with the illustrated figures and plots. Three publicly avail-
able colonoscopy image databases, CVC-Clinic [9], CVC-Colon [42], and ETIS-Larib [34]
are used.

1. Cutting off the black frame surrounding all original images to reduce unnecessary
information.

2. Removing the colonoscope’s light reflections: The colonoscope light’s reflections (and
consequently their contours) were removed from all the databases’ images as a step
towards reducing the number of redundant edge pixels (Figure 4b). The histogram
of the image pixel intensities was used as the basis for the reflection removal step.
Briefly, we cut out the histogram’s highest (and lowest) intensity peaks, and then the
pixel intensities were re-normalized to the original [0 to 255] domain. A “white mask”
was created using the pixels that made up the histogram’s highest peak. Similar to the
procedure described in [49], the “white mask” was extended and smoothened into
the neighboring pixels.



Appl. Sci. 2023, 13, 9066 12 of 36

3. Extracting polyp contour: For each of the ground truth masks (Figure 4c), the contour
was defined (Figure 4d). The number of pixels that make up the polyp mask contour
was calculated for later use in the evaluation process.

4. Generating the “ring mask” for the colorectal polyp contour: In many cases of the
manually drawn masks, the edges of the polyp’s contour are not completely visible,
either because the polyp is located in the area of bowel folds, or it is covered with
impurities. Moreover, reasons related to the human fatigue or error can also affect
the drawing accuracy of the colorectal polyp mask. These are the main reasons why
it was necessary to extend the contour of the manually drawn database mask to
a finite width ring which is proportional to the size of the examined image. The
previously extracted contour was extended into a ring (Figure 4e). To do that, we
selected the first x nearest pixels of the entire contour as a width of the ring mask.
As the databases images are with different sizes, we used different ring mask widths
based on the database images size (they are x = 3 for CVC-Clinic database [9], x = 5
for CVC-Colon database [42], and x = 10 for ETIS-Larib database [34]).

5. Calculating the gradient magnitude for each of the studied samples, like in (Figure 4f).
6. Detecting polyp edges: Canny, Prewitt, Roberts, and Sobel techniques were applied

as four different edge detection methods (Figure 5a,c,e,g respectively). By employing
this edge detection operation, it becomes possible to decrease the time required for
the following pre-processing steps and offers a comparatively consistent data source
that tolerates geometric and environmental variations while performing the Hough
transform calculations. The total number of edge pixels resulting from each filtering
technique for all the images of the three databases was calculated and plotted in
Figure 6.

7. Finding the gradient-weighted edges: The edge filtered images (Figure 5a,c,e,g) were
multiplied by the gradient magnitude output (Figure 4f). The reason for performing
this multiplication step is to determine the gradient magnitude domain, where the
polyp edges are most likely to be present within the whole gradient domain.
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Figure 4. 1st row: (a) The original image of the sample (111) from database CVC-Clinic [9], (b) the
preprocessed image version, and (c) its ground truth polyp mask. 2nd row: (d) The mask contour,
(e) the extended contour ring mask, i.e., the 3 nearest neighbors in all directions for all the contour
pixels, and (f) the gradient magnitude filtered image.

As an example, we received images like (Figure 5b,d,f,h) for Canny, Prewitt, Roberts,
and Sobel techniques. (It is visible, that in contrast with the full gradient subplot
(Figure 4f), subplots (Figure 5b,d,f,h) contain the gradient values only where the edge
mask value is 1, i.e., where the white pixels are located in subplots (Figure 5a,c,e,g).
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8. Normalizing: To make the proposed approach universally applicable, for all the
pictures in all the databases, the gradient-weighted edges pixels were normalized into
the interval [0, 1] for each image separately.

9. Counting the number of the edge pixels located inside the ring mask, (this number
serves as the reference: it is the number of the useful edge pixels).

10. Calculating the final evaluation metrics: Considering our application requirements,
two quantities were introduced to evaluate each of the four implemented edge detec-
tion methods. For each image of the three studied databases, the statistics calculated
in the previous steps (the total number of pixels in the polyp mask contour, the to-
tal number of edge pixels resulted from each edge detection method, and the total
number of edge pixels inside the ring mask) were used in composition the following
two metrics.

a. The first evaluation parameter, i.e., the one referring to the calculation effi-
ciency, is defined by the ratio between the number of edge pixels in the ring
mask around the polyp contour and the total number of edge pixels in the
entire image,

R_calc =
(No. o f edge pixels in the ring mask)

(Total No. o f edge pixels)
. (14)

This ratio represents the quality of the edge detection method with regard to the
Hough transforms and polyp detection. R_calc values’ range is between 0 and 1.
The higher this ratio is, the fewer non-mask contour edges are identified, and the
less unneeded calculation is required in the classical or fuzzy Hough transform.
Figure 8 shows the values of this metric resulting from Canny, Prewitt, Roberts,
and Sobel filtering techniques for the three databases.

b. The second evaluation parameter, i.e., the metric referring to the goodness of
the edge pixels finding the ideal polyp contour (derived from the ground truth
mask), is given by the ratio between the number of edge pixels in the ring mask
and the number of pixels in the database polyp mask contour,

R_edge =
(No. o f edge pixels in the ring mask)

(No. o f pixels in mask contour)
. (15)

In ideal case, this ratio should be as close to 1 as possible. Figure 7 displays the
values of this metric resulting from all edge detection techniques for all studied
databases. We have to note that the detected edge pixels in the ring mask may
not exactly be the same as the edge pixels in the manually drawn database mask
contour, but it still could be used for finding the polyp.

11. Selecting the most appropriate edge detection technique: Canny method detects
a wide range of fine edges and gives a dense detailed edges map. It also tends
to connect edge pixels to continuous edge lines, in contrast with the other three
techniques. Figure 6 clearly shows the large difference between the total number of
edge pixels resulting from Canny and the other three edge detection methods. Prewitt,
Roberts, and Sobel have very similar results for the majority of samples. As we are
interested not only in decreasing the number of edge points scanned by the Hough
transform, but also in increasing the efficiency of finding the colorectal polyp, we
relied on the definition of the previous two evaluation metrics R_calc and R_edge as a
basic for selecting the most appropriate edge detection technique as following.
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masked gradient magnitude image. The 2nd, 3rd, and 4th rows are exactly like the 1st row, but for
Prewitt (c,d), Roberts (e,f), and Sobel (g,h) edge detection methods consecutively.

a. Selection of the most appropriate edge detection technique using R_calc: We
tested two different selection strategies using metric R_calc. Based on the
definition of R_calc, the nearest the value R_calc to 1 is, the better the filter
is. According to the 1st strategy, we can select the filter, that has the mean
of the metric R_calc values closest to 1. For each database and each type of
the four edge detection methods we calculated the mean of the R_calc values.
However, for the values of metric R_calc, in all databases, for all the four edge
detection techniques, there was many samples between [0, 0.1], as it is visible
in Figure 8. This is the reason why another strategy has to be considered as
well. According to the 2nd strategy, we can select the filter, which has the most
samples close to the ideal value. For this purpose, a goodness interval can be
defined, and the number of samples within that interval can be calculated. In
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our case, for every edge detection technique, we checked how many samples
in each database had a R_calc value greater than 0.1 as a measure of the filter
suitability. Accordingly, the higher the number of resulting samples, the better
the filter is. Of course, the percentage of this number within the total number
of images in each database has to be considered; database CVC-Clinic [9] has
612 images, database CVC-Colon [42] has 379 images, and database ETIS-
Larib [34] has 196 images). Table 3 lists the total results of this step.
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Figure 6. The total number of edge pixels resulting from Canny, Prewitt, Roberts, and Sobel techniques
for the three databases.

b. Selection of the most appropriate edge detection technique using R_edge:
We also tested two different choosing strategies based on metric R_edge. Ac-
cording to the 1st strategy, similar to what we executed for R_calc, we can test
how similar the results to their ideal value are. However, instead of calculating
the mean value, we calculated the mean absolute error (MAE) value for metric
R_edge from its ideal value 1. For this criterion, the smallest MAE value nomi-
nates the better filter. According to the 2nd strategy, as metric R_edge should
be as close to 1 as possible, we suggested finding the goodness interval around
R_edge = 1, i.e., considering each sample that has R_edge value within [0.5, 1.5]
among the good samples. Consequently, the higher the number of samples
within the goodness interval, the better the filter is. Table 2 arranges the total
results of this step.
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Table 2. Results of selection the most appropriate edge detection technique using metric R_edge.

Canny Prewitt Roberts Sobel

1st strategy: R_edge
MAE

0.459919 0.447193 0.579451 0.44937 CVC-Clinic

0.779827 0.582246 0.683746 0.588328 CVC-Colon

2.609909 0.44718 0.536933 0.451125 ETIS-Larib

2nd strategy:
Num. of samples with

0.5 < R_edge < 1.5

346 353 221 349 CVC-Clinic

132 156 90 152 CVC-Colon

4 122 88 121 ETIS-Larib

Table 3. Results of selection the most appropriate edge detection technique using metric R_calc.

Canny Prewitt Roberts Sobel

1st strategy: R_calc
Mean

0.063001 0.153718 0.147087 0.152823 CVC-Clinic

0.04806 0.099965 0.081437 0.09925 CVC-Colon

0.026186 0.06001 0.049776 0.059926 ETIS-Larib

2nd strategy:
Num. of samples
with R_calc > 0.1

70 394 360 394 CVC-Clinic

29 138 108 141 CVC-Colon

0 35 22 33 ETIS-Larib

The highlighted results presented in the above two tables show that the Prewitt filter is
the most appropriate edge detection technique based on our proposed selection strategies
using both metrics R_calc and R_edge in most cases.

It should be noted from Table 3 (2nd strategy) that the results of Sobel filter are very
close to the Prewitt ones, especially for database CVC-Clinic: they are the same. Moreover,
for database CVC-Colon, the number of samples that had an R_calc value greater than 0.1
is three samples more in the Sobel filter than in the Prewitt case.

The flowchart in Figure 9 summarizes the overall edge detection method
selection procedure.

3.2. Gradient-Based Thresholding for Prewitt Edge Detection Results

In this part of the proposed method, the dynamic distribution of the normalized
gradient-weighted edges pixels resulting from the Prewitt method of both the ring mask
(i.e., the area surrounding the ground truth mask contour) and the full image was studied
by generating the individual histograms of all images in all databases.

Four individual histograms of four different samples can be found in Figure 10. Please
note that as in most of the cases the gradient intensities were in the first 20%, the density of
the histogram bins in that domain were made to be larger. This dividing of the normalized
gradient range resulted in a more detailed tendency view in the domain with dense bin
distribution. Additionally, as the column height in the dense bin distribution domain
became relatively smaller, thus, the visibility of the small column magnitudes in the other
parts of the histogram (i.e., in the higher normalized gradient domain) became better.

In most of the cases, the distributions of the full image edges (cyan) and the ring mask
edges (yellow) showed a very similar tendency with different magnitude, like in the case of
the first example, subplot (a) of Figure 10. Very often beside the similar tendency in the low
gradient domain, the higher gradient parts were missing in the case of the ring mask edges,
like in the 2nd and 3rd example (subplots (b) and (c)). In some other cases, the distributions
of the full picture and the ring mask had different tendencies, like in the case of the 4th
example, in subplot (d).

To summarize the results of the individual histograms, 3D-histograms were created
for the three databases with the picture number being the 3rd dimension. These total
histograms are plotted in Figures 11 and 12. Figure 11 shows the perspective view in linear
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scale, while Figure 12 gives the top view of the same histograms in logarithmic scale. It is
worth mentioning that the linear and logarithmic scale plots of the same histogram are both
given, because the smaller valued histogram parts at the lowest and the highest normalized
gradient bins cannot be observed well in the linear scale plots of the total histograms. On
the other hand, the top view of the logarithmic scale plots makes the entire set of data
viewable without columns blocking the ones behind them.Appl. Sci. 2023, 13, x FOR PEER REVIEW 20 of 43 
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To summarize the results of the individual histograms, 3D-histograms were created 
for the three databases with the picture number being the 3rd dimension. These total his-
tograms are plotted in Figures 11 and 12. Figure 11 shows the perspective view in linear 
scale, while Figure 12 gives the top view of the same histograms in logarithmic scale. It is 
worth mentioning that the linear and logarithmic scale plots of the same histogram are 
both given, because the smaller valued histogram parts at the lowest and the highest nor-
malized gradient bins cannot be observed well in the linear scale plots of the total histo-
grams. On the other hand, the top view of the logarithmic scale plots makes the entire set 
of data viewable without columns blocking the ones behind them. 

Figure 10. Histograms of the normalized gradient-weighted edge pixels resulting from Prewitt
method for four different samples (examples from Database CVC-Clinic (a,c), CVC-Colon (d), and
ETIS-Larib (b), are selected so, that typical behaviors would be visible). The interval [0, 0.2] has
narrower bins, as most of the values in most of the samples were concentrated there, and we
needed higher resolution results in this domain. (The yellow histograms for the ring masks are
semitransparent, plotted in front of the teal columns for the full images.)
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Figure 11. The total histograms (linear scale) of the normalized gradient-weighted edges pixels
resulted from Prewitt edge detection method. The 1st column is for the edge points in the full
images, and the 2nd column is for the edge points in the corresponding ring masks, for the databases
CVC-Clinic [9], CVC-Colon [42], and ETIS-Larib [34]. The horizontal axes are the normalized gradient
magnitudes intervals and the picture number in the given database.

Based on results in Figures 11 and 12, it is visible that the edges with very high gradient
values do not belong to the polyp edge, i.e., most of the ring mask edge results have 0 values
over 0.3. Additionally, they have zero values below 0.06. Moreover, in many cases this
lower limit can be brought up to 0.08, and the upper limit can be as low as 0.2. We decided
to use this property and omit the edges with too high and too low gradient magnitudes in
order to both reduce the number of pixels to be Hough transformed and to sort out those
pixels that certainly do not belong to the polyp edges. Thus, in the next calculations, beside
the full Hough transforms for all the edges, we performed restricted Hough transform for
the edges with normalized gradient values within a wide threshold interval [0.06, 0.3] and
a thin threshold interval [0.08, 0.2]. The full Hough transform results can be interpreted as
a reference, to analyze how the restricted transforms influence the results.
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3.3. Gradient-Weighted Voting Approach for Classical and Fuzzy Hough Transforms 

Figure 12. The top view of the logarithmic scale plots for the total histograms of the normalized
gradient-weighted edges pixels resulted from Prewitt edge detection method. The 1st column is for
the edge points in the full images, and the 2nd column is for the edge points in the corresponding
ring masks, for the databases CVC-Clinic [9], CVC-Colon [42], and ETIS-Larib [34]. The horizontal
axis is the picture number in the given database and the vertical axis is the normalized gradient
magnitudes intervals.

3.3. Gradient-Weighted Voting Approach for Classical and Fuzzy Hough Transforms

In addition to excluding the edge points with too high or too low contrast (i.e., gradient
thresholding), the gradient values can be used for another purpose, namely, to modify the
voting process.

Even after the thresholding, polyp contours usually have segments with higher gra-
dient magnitudes, mixed with lower gradients, whereas some of the background pat-
terns have very low gradients. To decrease the influence of these lower gradient back-
ground edges on the Hough transform results, the following weighted voting approach
was introduced.

During the original Hough transform, all edge points receive the same vote, no matter
how strong these edges are. In our method, instead of 1, each point uses its normalized
gradient magnitude as a vote. In the case of the fuzzy Hough transforms, the whole voting
membership function is multiplied by the gradient magnitude of the given pixel. As a



Appl. Sci. 2023, 13, 9066 21 of 36

result, the smaller the step in the intensity at the edge is, the smaller the weight in the
voting becomes for the edge point, no matter if it is a classical or a fuzzy point. To clarify
better, the pseudocode of the fuzzy circular Hough transform with gradient-weighted
voting approach is given in Algorithm 3.

Algorithm 3: Fuzzy Hough transform for a circle with parameters a, b, and r with
gradient-weighted voting approach

Requirements:
an edge image I

[
ix, iy

]
with size Lx, Ly

a gradient magnitude image G
[
ix, iy

]
with size Lx, Ly

a finite parameter space V[ja, jb, jr] with size La, Lb, Lr with initial values of 0
a threshold for peak percentage Pp,
a threshold interval for the gradient magnitudes [gmin, gmax]
a voting membership matrix µ[ja, jb, jr] with size 2da + 1, 2db + 1, 2dr + 1
a result image R

[
ix, iy

]
, with size Lx, Ly, with initial values of 0

1: for each image row ix from 1 to Lx
2: for each image column iy from 1 to Ly
3: for each parameter space row ja from 1 to La
4: for each parameter space column jb from 1 to Lb
5: for each parameter space 3rd dimension jr from 1 to Lr

6: if j2r = (ix − ja)2 +
(
iy − jb

)2 and gmin ≤ G
[
ix, iy

]
≤ gmax

7:
V[{ja − da, . . . , ja + da}, {jb − db, . . . , jb + db}, {jr − dr, . . . , jr + dr}] =. . .

V[{ja − da, . . . , ja + da}, {jb − db, . . . , jb + db}, {jr − dr, . . . , jr + dr}] + G
[
ix, iy

]
· µ[ja, jb, jr]

8: end if
9: end for
10: end for
11: end for
12: end for
13: end for
14: compute the global maximum MG in V[ja, jb, jr]
15: compute local maxima M(k) = V

[
ja,k, jb,k, jr, k

]
16: select local maxima with M(k) > Pp ·MG
17: calculate the number NM of the local maxima from line 16
18: for each local maximum k from 1 to NM
19: for each result image row ix from 1 to Lx
20: for each result image column iy from 1 to Ly

21: if j2r,k =
(
ix − ja,k

)2
+
(
iy − jb,k

)2

22: R
[
ix, iy

]
= 1

23: end if
24: end for
25: end for
26: end for

The performance of the proposed voting technique was evaluated using selected
samples from each database for three main cases. The first case was the reference case where
the full Hough transforms (classical and fuzzy) for all the edges without any thresholding
were applied. The traditional voting technique was followed, where each edge point obtains
one vote if it is eligible. The other two cases were the restricted Hough transforms for the
edges with normalized gradient values within the wide threshold interval [0.06, 0.3] and
the thin threshold interval [0.08, 0.2]. For these two cases, the modified, gradient-weighted
voting technique was used.

In addition to the classical Hough transform, the fuzzy Hough transform was also stud-
ied in each case, with σ = 3, 5, 7, 9, 11, 13 and 15 from the voting membership
function (5). (In order to simplify the referring to these transform types, the classical
transform may be considered as a fuzziness parameter σ = 0).
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When selecting the final circles, i.e., the local maxima in the transformed image, a
threshold Pp is to be set within the Hough transform. The arising circles (their number
and location) were studied for different local maximum thresholds, namely for Pp =
50%, 60%, 70%, 80%, and 90% of the global maximum of the votes.

The goal of this step is to determine, how many of the final circles are around the
polyp for the various σs and local maximum thresholds Pps. For this purpose, the total
number of circles Ntotal was counted. A circle was considered to be around the polyp by
testing, if its center was inside the ground truth mask, and it had points within the ring
mask around the polyp contour. The number of such circles within the ring mask Nring was
also counted. The ratio

Ar =
Nring

Ntotal
(16)

was used as a metric for effectiveness of finding circles related to the polyp. If Ar is 0, then
the polyp is not found, if Ar is too small, then too many other circles are found, and if Ar is
around 1, then the circle(s) around the polyp are found, but not many other circles can be
seen in the final results.

To test the different types of Hough transforms’ tolerance degree to the deviation from
the circle, it is necessary to know the size of the polyps as well as their roundness. To
calculate the average radius of the polyp ravg, the maximum and minimum coordinates of
the polyp mask in x and y direction were used as follows,

ravg =
(xmax − xmin) + (y max − ymin)

2
. (17)

The center of the polyp was determined as the average of these coordinates,

(
cx, cy

)
=

(
(xmax + xmin)

2
,
(y max + ymin)

2

)
. (18)

This center point and the average radius were used to determine the radial displace-
ment for each mask contour point

(
mx, my

)
by

∆radial =

∣∣∣∣√(mx − cx)
2 +

(
my − cy

)2 − ravg

∣∣∣∣. (19)

The roundness error can be measured by the maximum of the ratio of the radial
displacements and the average radius:

δroundness = max
(

∆radial
ravg

)
. (20)

The larger the roundness error δroundness, the more the shape deviates from circle.
Please note, the roundness error of a circle with diameter of 30 pixels can still be as large as
δroundness,30 = 0.04, which decreases for a circle twice as large (i.e., of diameter 60 pixels)
to δroundness,60 = 0.03. Typically, an ellipse with large axis being double the size of the
smaller axis have roundness error of about δroundness,30 ≈ 0.33, while with axis ratio 1:3, this
increases to δroundness,30 ≈ 0.45, depending on the size of the ellipse in pixels.

4. Results and Discussion
4.1. Number of Circles Found by the Algorithm

In this section, the values of Ar by σs and Pps are given for databases CVC-Clinic [9],
CVC-Colon [42], and ETIS-Larib [34]. The total number of circles found on the images
Ntotal is also important, as we need as few circles, and thus, ROIs as possible for the
steps after the Hough transform. For this reason, Ntotal is also plotted for the three
databases. In Figures 13 and 14, the values Ar and Ntotal are given for CVC-Clinic, then in
Figures 15 and 16 for CVC-Colon, and finally for ETIS-Larib in Figures 17 and 18.
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Figures 14, 16 and 18 together with Figures 13, 15 and 17, completely cover the num-
ber of circles found in the complete image and in the ring masks.
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Figure 13. The ratio 𝐴 for the database CVC-Clinic [9]. The vertical axis represents the various 
sample pictures (images 111, 150, 188, 217, 265, 390, 475, 480, 503, and 504) for both the non-gradient-
weighted (original), and gradient-weighted voting process with wide and thin thresholds, respec-
tively. Each section has all the sample images in the above given order, and there is a line of white 
points to indicate the borders between the sections. The horizontal axes have the local maximum 
threshold percentages 𝑃, as well as the various fuzziness parameters 𝜎 of the Hough transform. 
The 1st subplot shows the different values of 𝜎 for each local maximum threshold level in increas-
ing order. Here also a column of white dots separates the sections belonging to the given threshold 
rates. The 2nd subplot gives the same results as the 1st one, only the horizontal axis is grouped the 
opposite way: the main groups belong to the various 𝜎 values, and within each segment the local 
maximum threshold values increase. 

Figure 13. The ratio Ar for the database CVC-Clinic [9]. The vertical axis represents the various
sample pictures (images 111, 150, 188, 217, 265, 390, 475, 480, 503, and 504) for both the non-gradient-
weighted (original), and gradient-weighted voting process with wide and thin thresholds, respectively.
Each section has all the sample images in the above given order, and there is a line of white points to
indicate the borders between the sections. The horizontal axes have the local maximum threshold
percentages Pp, as well as the various fuzziness parameters σ of the Hough transform. The 1st subplot
shows the different values of σ for each local maximum threshold level in increasing order. Here
also a column of white dots separates the sections belonging to the given threshold rates. The 2nd
subplot gives the same results as the 1st one, only the horizontal axis is grouped the opposite way: the
main groups belong to the various σ values, and within each segment the local maximum threshold
values increase.
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Figure 14. The total number of circles 𝑁𝑡𝑜𝑡𝑎𝑙 found in the sample images of database CVC-Clinic 
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Figure 14. The total number of circles Ntotal found in the sample images of database CVC-Clinic [9].
The vertical axis represents the various sample pictures (images 111, 150, 188, 217, 265, 390, 475, 480,
503, and 504) for both the non-gradient-weighted (original), and gradient-weighted voting process
with wide and thin thresholds, respectively. The horizontal axis is grouped the following way: the
main groups belong to the various σ values, and within each segment the local maximum threshold
values increase.
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Figure 15. The ratio 𝐴 for the database CVC-Colon [42]. The vertical axis represents the various 
sample pictures (images 62, 74, 101, 128, 149, 220, 230, and 283) for both the non-gradient-weighted 
(original), and gradient-weighted voting process with wide and thin thresholds, respectively. The 
horizontal axes have the local maximum threshold percentages 𝑃, as well as the various fuzziness 
parameters 𝜎 of the Hough transform, similar to Figure 13. 

Figure 15. The ratio Ar for the database CVC-Colon [42]. The vertical axis represents the various
sample pictures (images 62, 74, 101, 128, 149, 220, 230, and 283) for both the non-gradient-weighted
(original), and gradient-weighted voting process with wide and thin thresholds, respectively. The
horizontal axes have the local maximum threshold percentages Pp, as well as the various fuzziness
parameters σ of the Hough transform, similar to Figure 13.
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Figure 16. The total number of circles Ntotal found in the sample images of database CVC-Colon [42].
The vertical axis represents the various sample pictures (images 62, 74, 101, 128, 149, 220, 230, and
283) for both the non-gradient-weighted (original), and gradient-weighted voting process with wide
and thin thresholds, respectively. The horizontal axis is grouped similarly to Figure 14.



Appl. Sci. 2023, 13, 9066 25 of 36
Appl. Sci. 2023, 13, x FOR PEER REVIEW 33 of 43 
 

 

 
Figure 17. The ratio 𝐴 for the database ETIS-Larib [34]. The vertical axis represents the various 
sample pictures (images 25, 65, 82, 138, and 160) for both the non-gradient-weighted (original), and 
gradient-weighted voting process with wide and thin thresholds, respectively. The horizontal axes 
have the local maximum threshold percentages 𝑃, as well as the various fuzziness parameters 𝜎 
of the Hough transform, similar to Figures 13 and 15. 

 
Figure 18. The total number of circles 𝑁𝑡𝑜𝑡𝑎𝑙 found in the sample images of database ETIS-Larib 
[34]. The vertical axis represents the various sample pictures (images 25, 65, 82, 138, and 160) for 
both the non-gradient-weighted (original), and gradient-weighted voting process with wide and 
thin thresholds, respectively. The horizontal axis is grouped similarly to Figures 14 and 16. 

4.2. Roundness Metrics Evaluation 
In order to test how tolerant the classical and fuzzy Hough transforms for the devia-

tion from the circle, we used a test image of five ellipses in an image of size 200 × 200 
pixels. The larger axis of the ellipse was the same for each of the objects in one image, and 
the ratio of the two axes were 1:1, 5:6, 4:6, 3:6, and 2:6. Three images were used, one with 
larger axis of 30 pixels, one with 60 pixels and one with 90 pixels. The properties of the 

Figure 17. The ratio Ar for the database ETIS-Larib [34]. The vertical axis represents the various
sample pictures (images 25, 65, 82, 138, and 160) for both the non-gradient-weighted (original), and
gradient-weighted voting process with wide and thin thresholds, respectively. The horizontal axes
have the local maximum threshold percentages Pp, as well as the various fuzziness parameters σ of
the Hough transform, similar to Figures 13 and 15.
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pixels. The larger axis of the ellipse was the same for each of the objects in one image, and 
the ratio of the two axes were 1:1, 5:6, 4:6, 3:6, and 2:6. Three images were used, one with 
larger axis of 30 pixels, one with 60 pixels and one with 90 pixels. The properties of the 
ellipses are given in Table 5. In Figure 19, the number of circles that were found by the 
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thresholds one or more unphysical “ghost” circles appeared, typically at the regions be-
tween 2 or 3, almost overlapping ellipses. The number of these ghost circles are also given 
under the numbers belonging to the real, physical ellipses. 

Table 5. Properties of the ellipses of the artificial test images of size 200 × 200 pixels. The order of 
the ellipses is the same as the order in the vertical axis of Figure 19, except for the ghost circles. 

Artificial Image Axes (Pixels) 𝒓𝒂𝒗𝒈 𝚫𝒓𝒂𝒅𝒊𝒂𝒍 𝜹𝒓𝒐𝒖𝒏𝒅𝒏𝒆𝒔𝒔 

 

30, 30 15.5 0.6508 0.042 
30, 25 14 1.8902 0.135 
30, 20 13 2.8758 0.221 
30, 15 11.75 4.7322 0.403 
30, 10 10.5 5.0081 0.477 

 

60, 60 30.5 0.7931 0.026 
60, 50 28 2.8902 0.103 
60, 40 25.5 5.2002 0.204 
60, 30 23 7.6023 0.331 
60, 20 20.5 10.0369 0.490 

 

90, 90 45.5 1.6081 0.035 
90, 75 41.5 4.2220 0.102 
90, 60 38 8.4958 0.224 
90, 45 34.25 12.1989 0.356 
90, 30 30.5 15.0686 0.494 

Figure 18. The total number of circles Ntotal found in the sample images of database ETIS-Larib [34].
The vertical axis represents the various sample pictures (images 25, 65, 82, 138, and 160) for both
the non-gradient-weighted (original), and gradient-weighted voting process with wide and thin
thresholds, respectively. The horizontal axis is grouped similarly to Figures 14 and 16.

The test images were selected so that their R_calc values would be larger than 0.1.
Both roundish and elongated polyps were selected from all three databases. The images
with their ground truth masks are given in Appendix A. The image numbers and their
respective R_calc and R_edge values together with the total number of Prewitt edge pixels
for each tested sample can be found in Table 4. To make the paper more accessible to the
reader, a nomenclature section of the proposed approach is also presented in Table A1.
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Table 4. The selected samples and their metrics R_calc and R_edge together with the total number of
Prewitt edge pixels. The first two lines in each case are marked by gray color as they are the “bad”
samples with low values of R_calc, the others have R_calc larger than 0.1. The last two columns
contain the metrics regarding the size and roundness of the polyp.

Database Image R_calc R_edge No. of Edge
Pixels ravg δroundness

CVC-Clinic

29 0.004918033 0.013274336 610 38.75 0.358

201 0.008460237 0.038314176 1182 68 0.957

111 0.247629671 0.733884298 1793 92.75 0.380

150 0.251902588 1.054140127 1314 52 0.261

188 0.364678899 0.424 436 66.5 0.173

217 0.230191827 0.74393531 1199 64.5 0.409

265 0.260652765 0.871212121 2206 110 0.775

390 0.297808765 0.641630901 1004 75.75 0.366

475 0.367805755 0.653354633 1112 106.5 0.757

480 0.222554145 0.685057471 1339 72.75 0.315

503 0.310214376 0.976190476 1586 84.75 0.151

504 0.180173092 0.68358209 1271 56.75 0.201

CVC-Colon

51 0.004398827 0.035087719 1364 27 0.278

255 0.002773925 0.006779661 721 52.25 0.299

62 0.242270224 0.801120448 2361 117 0.337

74 0.218066743 1.457692308 1738 46.25 0.694

101 0.180649379 1.978520286 4589 71.5 0.711

128 0.182273052 0.44973545 1399 84 0.483

149 0.215956424 1.099510604 3121 98 0.334

220 0.149488927 0.966942149 2348 59.5 0.202

230 0.318594104 0.641552511 882 74.25 0.442

283 0.194486983 0.404458599 653 52.25 0.132

ETIS-Larib

24 0.007230077 0.204545455 6224 39.75 0.135

151 0.0010755 0.012437811 4649 70.75 0.507

25 0.104344123 0.879186603 7044 153.25 0.549

65 0.117593198 1.24 7645 125.25 0.249

82 0.191721133 1.269230769 4131 113.25 0.321

138 0.102428256 0.649859944 2265 63.5 0.449

160 0.129833607 1.297423888 8534 151 0.430

In order to check the applicability of our method, we selected some images (two from
each database) that have unfavorable, very small R_calc values. These “bad” images are
shown as the first two images of the figures illustrating the tests samples in Appendix A, as
well as the first two lines of Table 4. These images all found zero circles in the ring mask,
except for one case CVC-Colon 255, for the original, non-gradient-weighted voting method.
This is why their results are not shown in Figures 13, 15 and 17.

In Figures 13, 15 and 17 the values of the ratio Ar = Nring/Ntotal are shown for
databases CVC-Clinic [9], CVC-Colon [42], and ETIS-Larib [34], respectively.

Each plot has three segments along the vertical axis. The uppermost segment shows
the original Hough transform’s Ar values. These are the reference values to which the
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other results should be compared. The next, middle segment corresponds to the gradient-
weighted voting with wider threshold, and the lowermost segment belongs to the gradient-
weighted voting with a thinner threshold. Each line in each segment belongs to one image,
in the order of Table 4 (except for the first two lines in each database, i.e., the “bad” images).

The plots have segments along the horizontal axes, too: the upper subplot has the
results grouped by the peak percentage Pp (i.e., threshold for the local maxima of the voting
map (a, b, r) to be considered as the circles), and each segment lists the σs from classical
(i.e., σ = 0) till the widest fuzziness parameter σ = 15. The lower subplot orders the
values the opposite way: the segments belong to various fuzziness parameters σ, while the
columns within the segments belong to the peak percentages Pp = 0.5, 0.6, 0.7, 0.8, 0.9.
The colored squares mean the number of circles found in the ring mask versus the total
number of circles for a given image, for a given

(
Pp, σ

)
pair. The darker red the little square

is, the fewer circles outside of the polyp contour domain are found. If the little square is
bright green, then no circle is found in the polyp contour’s ring mask.

From Figure 13 we can conclude that for database CVC-Clinic the fuzzy Hough
transforms can mostly find circles belonging to polyp contours (most of the little squares in
the maps are red).

The classical transform’s results are either very good (dark red) or very bad (green).
Mostly, increasing the threshold improves the results, the circles will be more in the

area of the polyp contour, but the 90% threshold might be too much. It loses the circles
in the ring mask for some cases. Thus, the most ideal value for Pp is 70–80% of the global
maximum of the votes.

The fuzziness has a kind of optimal value around σ = 5 (there the images have the
largest number of dark red points and darkest red points), but this optimum is not very
sharp, the neighboring σ values have very similar results in the domain of σ = {3, 5, 7}.
Even for those images that have no circle found in the ring mask for the classical case, the
results can be improved by the fuzzy version of the transform.

Regarding the gradient-weighted voting, and the gradient-based thresholding, the re-
sults improve compared to the original voting scheme, but the difference is not
extremely large.

There is one sample image where the circles found are not around the polyp contour
for the classical transform: image No. 475. However, it can be seen that this particular
polyp has barely visible circular contour segments. The results improve even for this case
for the gradient-weighted voting processes (except for the classical Hough transform in the
thin threshold case). Here, we have to note that in order to have the transform calculable
and also to remove the very large and very small circles from the results, we limited our
search for the r domain between 1% and 25% of the longer image dimension, so the longer
edges of the very elongated polyps, like the one on image No. 475 could not be detected.

From Figure 15, for database CVC-Colon, it can be seen that more circles are found
outside of the polyp contour ring mask, i.e., the little squares in the plots tend towards the
yellow and greenish part of the color palette.

The value of the ideal sigma seems to be a little bit higher, around σ = 7 or σ = 9, but
there is much more variation than in the case of the previous database. For some images
the higher σ domains give better results, for others the lower σ domains.

The thin threshold loses the circles in the ring mask for more images, so it is not a
good option for this database.

For the peak percentage Pp this database behaves similarly to the previous one.
Again, there is an image that does not show circles in the ring mask for most of the

three cases: image No. 230, which has a brightly lighted front part and the polyp is at
the background.

From Figure 17 it can be seen that for database ETIS-Larib, the ratio of circles outside
the ring mask is further increased, i.e., the Ar became even smaller and the plots became
even less red.
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Here, the higher σ values perform slightly better, but this tendency is even less clear
than in the case of CVC-Colon.

The Pp value here is also similar to the previous cases, 70–80%.
The thin threshold is worsening the results: even though there are pictures, where the

number of circles outside the ring mask decreases, there are more images, where the circles
within the ring mask at the polyp contour disappear.

For image No. 82, where the polyp contour is very sharp, the polyp’s circle gets lost
due to the gradient thresholding for the thin threshold.

4.2. Roundness Metrics Evaluation

In order to test how tolerant the classical and fuzzy Hough transforms for the deviation
from the circle, we used a test image of five ellipses in an image of size 200 × 200 pixels.
The larger axis of the ellipse was the same for each of the objects in one image, and the
ratio of the two axes were 1:1, 5:6, 4:6, 3:6, and 2:6. Three images were used, one with larger
axis of 30 pixels, one with 60 pixels and one with 90 pixels. The properties of the ellipses
are given in Table 5. In Figure 19, the number of circles that were found by the Hough
transforms are summarized for each of the ellipses separately. As the centers of the ellipses
were rather close to each other especially on the largest axis case, for lower thresholds one
or more unphysical “ghost” circles appeared, typically at the regions between 2 or 3, almost
overlapping ellipses. The number of these ghost circles are also given under the numbers
belonging to the real, physical ellipses.

Table 5. Properties of the ellipses of the artificial test images of size 200 × 200 pixels. The order of the
ellipses is the same as the order in the vertical axis of Figure 19, except for the ghost circles.

Artificial Image Axes (Pixels) ravg ∆radial δroundness
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It can be seen from Figure 19 that of the artificial image with objects of the smallest
size, the classical Hough transform could only detect the precise circle, even the roundness
error δroundness = 0.135 was not tolerable. As the fuzziness parameter increased, the peaks
belonging to more and more elongated ellipses grew above the half of the global maximum
of the votes, i.e., above Pp = 50%. Already for σ = 5 all the ellipses were found in the
Pp = 50% case. The corresponding radii were smaller than the larger axis of the ellipse.

As the size of the ellipses increased, the limit for finding all the ellipses went higher.
Additionally, due to the closeness of the ellipses compared to the full width at half maximum
of the voting matrix, overlaps arose between the individual ellipses and thus, false peaks
appeared in the accumulator space, either in the area at the center of the image, which
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is circumvented by the ellipses, or at the two most elongated ellipses, that sometimes
appeared as two twin peaks at the vote maps.
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parameter, and within the cluster of each σ, the peak percentages Pp increase from 50% to 90%. In the
vertical direction the three different greater axis sizes are denoted. Within each group, the topmost
row belongs to the circle (axis ratio 1:1), the next row to the axis ratio 5:6, then 4:6, 3:6, 2:6. The last
row, separated by a horizontal line, represents the non-physical ghost circles.

It can be seen that for the larger sized ellipse, even the classical Hough transform has
a small roundness error tolerance: δroundness = 0.1 is still found, although as two circles.

If the roundness of the tested colonoscopy images is studied in the last two columns
of Table 4, we can see that very much elongated polyps also exist with δroundness > 0.9
roundness error, but the typical roundness error is between 0.15 and 0.5. This is the reason
we selected this domain for the ellipses to be studied in our artificial examples.

Similar to the case of the artificially generated test images, the polyps with very much
elongated shapes δroundness > 0.4, the polyps were very often not found if their sizes were
large, or found only for very low threshold Pp, like in the cases of ETIS 1st, 3rd and 4th
images, or CVC-Clinic 4th.

Additionally, the smaller polyps with radii around 60 are usually detected, regardless
of their roundness.

4.3. Time Evaluation

To demonstrate the effect of the running time, the ratio between the total running times
of the gradient-weighted method with wide and thin thresholds to the original Hough
transform is given in Figure 20. It can be seen that in the case of most of the images, the
wide threshold decreases the running time of the Hough transform algorithms by about
50%, and the thin threshold decreases the runtime by another roughly 50%, but in some
cases, it can go down to lower than 10% of the original transform’s running time. For
database CVC-Colon, the results are a bit better than for the other databases. From the
2nd subplot of Figure 20, we can conclude that these results are almost size independent,
though for a smaller number of edge pixels, the results are usually a little bit better.
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Figure 20. The ratio of the classical and fuzzy Hough transformations’ total running time for the wide
and thin gradient thresholds compared to the original, full Hough transform times. The two subplots
have different horizontal axes: the first subplot just lists the images according to their order in Table 4,
the second subplot’s horizontal axis is the number of pixels to be transformed in the original image
(i.e., the 5th column of Table 4).

It is important to note that the number of the pixels to be transformed has an almost
linear effect on the transformation time, so using Prewitt edge detection is a really important
step, as it can be seen from Figure 6. As the continuity of the edges is not a key point
in Hough transform, and by giving it up, we can get rid of a lot of weaker edges in the
background. This step has a double advantage.

5. Conclusions

A novel voting method was suggested for circular Hough transform analysis of
colonoscopy images. As the colorectal polyp contours have neither too large nor very small
gradients, a gradient-based thresholding was also introduced.

Based on statistical data, thresholds of [0.06, 0.3] and [0.08, 0.2] of the normalized
gradient domain were suggested to improve the ratio of the circles in the surroundings of
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the polyp among all the circles that are found by the Hough transform. The first, wider
threshold was proven to give more reliable results. Using this method, the running time
of the algorithms decreased to less than 50% compared to the full Hough transforms. The
thin threshold removes so many valuable edge points from the polyp contour edges for
some of the images that the circles there cannot be found by Hough transforms, so even
though the threshold [0.08, 0.2] further improves the running time, it is safer to keep the
wider threshold [0.06, 0.3].

The main strength of the gradient-weighted voting mechanism is that it improves
the ratio of the circles near the polyp among all the circles for the Hough transforms,
especially for the fuzzy Hough transform. The ideal threshold for the local maxima of
the voting map (a, b, r) to be considered as circles is 70–80% of the global maximum for
colonoscopy images.

The fuzzy Hough transforms perform better in finding circles in the polyp contour ring
mask than the classical transform, but the best performing fuzziness parameter varies with
the image size. For the smaller images (CVC-Clinic has image size of 384× 288) the small
σ = 3, 5, or 7 voting matrices are the most ideal, for the medium image size (CVC-Colon
has image size of 574× 500) the σ = 7 or 9 is better, while for the largest images (ETIS-Larib,
of size 1225× 966) the larger, σ values are the most fitting for the purpose of finding polyp
contours in colonoscopy images. However, this sensitivity for the values of σ becomes less
and less expressed for the larger images.

The detection success also depends on the size of the polyp and its roundness. To
measure the tolerance for shape deviation of the classical and fuzzy Hough transform,
the roundness error was introduced together with the average radius of the polyp. For
objects larger in size, smaller tolerance is allowed in roundness, while for smaller objects,
the tolerance is larger, which is rather advantageous, as in colonoscopy, mostly the smaller
lesions are the ones that might be missed by humans.

The main strength of applying fuzzy Hough transform and gradient-weighted voting
together is that fuzzy Hough transform has higher tolerance for shape deviations. Although
fuzzy voting needs more calculations than the classical one, the introducing of the gradient
threshold and the gradient-weighted voting and thus, decimating the edge points to be
transformed helps to keep the calculation time lower. The weaknesses of our methods
include that it is hard to determine a universal gradient threshold that is valid for all
databases and image sizes. Additionally, the non-conventional angles, when the polyps are
in front of dark background, need to be treated separately, though these polyps are usually
hard to miss for a human expert. In addition, many polyps with extremely large, irregular
shapes are not found by Hough transforms. As computer aided diagnosis is meant to aid
the human expert and not to substitute them, finding the smaller polyps that are easy to
miss with naked eye is the most important task in colorectal polyp localization.

It is also interesting to see that the higher resolution images with more detail tend to
give more circles outside of the polyp contour domain due to the more visible background
patterns, so it seems to be plausible to perform a mean or Gaussian filtering as the pre-
processing step of the Hough transform for these larger images. However, to investigate
this idea is out of the scope of this paper and it needs further studies. Additionally, the
applying the fuzziness to 1D Hough transform or introducing parallelization can further
improve the efficiency of the method by means of computational demand. Additionally,
other on-line available databases [50] should be used to draw more universal conclusions
in the future.
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All test samples with their masks are given in this appendix.
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Table A1. Abbreviations and nomenclature.

R_calc (14) A ratio to represent the quality of the edge detection method regarding the calculation efficiency of Hough
transforms and polyp detection

R_edge (15) A ratio to measure the goodness of the edge pixels finding the ideal polyp contour

σ
σ = 3, 5, 7, 9, 11, 13 and 15 are the chosen values for the width of the voting membership function of the fuzzy
Hough transforms

Pp
Pp = 50%, 60%, 70%, 80%, and 90% are the peak percentage values of the selected local maximum thresholds
of the global maximum of the votes

Ntotal The total number of the final resulting circles

Nring The number of final circles within the ring mask

Ar (16) A metric to measure the effectiveness of finding polyp-related final circles

xmin, xmax The minimum and maximum coordinates of the ground truth mask points in x direction

ymin, ymax The minimum and maximum coordinates of the ground truth mask points in y direction

ravg (17) Average radius of the polyp mask(
cx, cy

)
(18) The x and y coordinates of the left of the polyp mask

∆radial (19) The radial displacement of mask contour point
(
mx, my

)
δroundness (20) The maximum of the roundness error

Original The full Hough transforms for all the edge points

Wide The restricted Hough transforms for the edge points with normalized gradient values within a wide threshold
interval [0.06, 0.3]

Thin The restricted Hough transforms for the edge points with normalized gradient values within a thin threshold
interval [0.08, 0.2]
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