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Abstract: Deep learning techniques have demonstrated significant advancements in the task of
text classification. Regrettably, the majority of these techniques necessitate a substantial corpus of
annotated data to achieve optimal performance. Meta-learning has yielded intriguing outcomes in
few-shot learning tasks, showcasing its potential in advancing the field. However, the current meta-
learning methodologies are susceptible to overfitting due to the mismatch between a small number of
samples and the complexity of the model. To mitigate this concern, we propose a Prompt-based Graph
Convolutional Adversarial (PGCA) meta-learning framework, aiming to improve the adaptability of
complex models in a few-shot scenario. Firstly, leveraging prompt learning, we generate embedding
representations that bridge the downstream tasks. Then, we design a meta-knowledge extractor
based on a graph convolutional neural network (GCN) to capture inter-class dependencies through
instance-level interactions. We also integrate the adversarial network architecture into a meta-learning
framework to extend sample diversity through adversarial training and improve the ability of the
model to adapt to new tasks. Specifically, we mitigate the impact of extreme samples by introducing
external knowledge to construct a list of class prototype extensions. Finally, we conduct a series of
experiments on four public datasets to demonstrate the effectiveness of our proposed method.

Keywords: meta-learning; prompt learning; graph convolutional neural network; adversarial network

1. Introduction

The text classification problem refers to the task of determining the most suitable label
from a given list of potential classes for a given unlabeled text. The task has been extensively
studied and applied in many practical scenarios [1–5] such as social media, news websites,
literature classification, etc. Deep-learning-based supervised text classification methods,
including CNN, RNN, Transformers [6–9], and more, have demonstrated their superiority
and achieved remarkable achievements.

But, in order to learn numerous model parameters, deep learning-based text catego-
rization techniques need a lot of labelled data. In the real world, obtaining large-scale
labeled data is time-consuming and expensive. Deep-learning-based algorithms have
trouble learning the semantic space when there are few data available, which leads to
subpar text categorization outcomes. As a result, few-shot text classification becomes a
challenging task.

In recent times, prompt tuning [10,11] has emerged as a pragmatic strategy for address-
ing the challenges associated with few-shot learning. This process entails converting the
original problem into a cloze test, thereby establishing a connection between pre-training
and subsequent tasks in a manner that promotes cohesive integration. By doing so, prompt
tuning addresses the overfitting challenge in few-shot learning by leveraging embeddings
to transform samples into a more adaptable distribution space. This process encourages
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the pre-training model to retrieve pertinent information from the pre-training phase that is
specifically relevant to the target task. In general, the downstream task has to introduce
additional parameters to adapt to the corresponding task needs. However, the downstream
task model has difficulty learning the knowledge needed for the task quickly with a few
samples. Meta-learning is a standard means of addressing this issue.

Through several meta-training tasks, meta-learning tries to enhance a model’s capacity
for learning, enabling the model to swiftly adapt to new tasks with a little amount of
training data. Numerous meta-learning-based techniques [12–16] have proven to be supe-
rior in tackling challenges involving few-shot text categorization. However, the existing
meta-learning methods suffer from the problem of overfitting caused by the mismatch
of a few samples on the complex model. Ref. [17] first proposed the introduction of
adversarial domain adaptive networks to enhance the generalization capability of the
meta-learning framework.

Meanwhile, the majority of the few-shot text categorization techniques now in use [15]
primarily emphasize information transmission between samples belonging to the same
category, neglecting the relationships between different categories. Graph neural networks
(GNNs) can effectively provide richer semantic representations by capturing the relation-
ships between nodes through inter-instance information transfer and aggregation over
graph structures, which is well suited for small-sample learning.

In this paper, we propose a Prompt-based Graph Convolutional Adversarial (PGCA)
meta-learning network framework. First, we leverage prompt learning and pre-trained
language models to obtain text embeddings adapted to downstream tasks. Then, we con-
struct a GCN-based meta-knowledge extractor, allowing feature interactions among a few
samples to capture the relationship information between nodes and fully extract the internal
meta-knowledge of the text, generating higher-quality text embedding representations for
the text classification task. In addition, we incorporate the adversarial network into the
meta-learning framework, where the generator and discriminator are represented by GCN
and feed-forward neural networks, respectively. We extend the text embedding feature
space through adversarial training and enhance sample diversity. In addition, we introduce
external knowledge to obtain a class prototype extension label list for each class. These
class prototype representations are embedded into the feature space, considering label
names and related word information, which we believe are more reliable. This approach
effectively avoids extreme samples that may arise when obtaining class prototypes from
support instances. The following are the primary contributions of our work:

• We propose a Prompt-based Graph Convolutional Adversarial (PGCA) meta-learning
network framework to address the overfitting issue in few-shot text classification.

• We design a GCN-based meta-knowledge extractor to fully use the limited knowl-
edge by obtaining node-relationship information through inter-instance interactions.
We also integrate adversarial networks into the meta-learning framework to extend
the sample space through adversarial training and improve the model’s generaliza-
tion ability.

• Our tests on four openly accessible datasets show that our strategy outperforms a
number of other competing categorization strategies.

The remainder of the essay is structured as follows. The work on small sample text
categorization is presented in Section 2. We go into great depth about our suggested PGCA
approach in Section 3. The specifics of our experiments are described in Section 4, along
with an analysis of the results. Section 5 draws the summary.

2. Related Work
2.1. Meta-Learning

Meta-learning is the process of improving a model’s capacity for learning via training
it on a variety of meta-training tasks, allowing it to swiftly pick up new information and
adapt to new tasks with a little amount of practice. Existing meta-learning methods can be
primarily classified into two categories:
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(1) Optimization-based meta-learning methods aim to learn a well-initialized generalized
model that allows the model to converge and adapt quickly to new tasks with only a
few training samples. This type of meta-learning approach is typified by MAML [14],
which learns a generic initialized model parameter that allows the model to converge
to optimal performance with a small number of iterations of training when faced with
a new task [12,18]. To enhance the ability of models to adapt to new tasks, ref. [17] first
proposed using adversarial networks to enhance the adaptability of meta-learning
architectures. Ref. [19] mitigated the overfitting of meta-learning through gradient
similarity using an adaptive meta-learner.

(2) Metric-based meta-learning techniques seek to boost meta-learning performance by
teaching participants a metric function or distance metric that may be used to compare
the similarity of various tasks. Prototype networks [20] use the idea of clustering to
project support sets into a metric space, obtain vector means based on the Euclidean
distance metric as class prototypes, and calculate the distance to each prototype for
test samples to achieve classification. However, the prototype network is susceptible
to extreme samples. Ref. [21] introduced tagged word information to construct class
prototypes, reducing the influence of extreme samples.

2.2. Graph Neural Network

Processing graph-structured data is carried out using Graph Neural Networks (GNN) [22,23].
GNNs have seen considerable application recently in a variety of disciplines, including
physics [24,25] and computer vision [26,27].

Much of the work applying graph neural networks to the field of NLP has shown
their superiority. Ref. [28] suggested a GNN model using message forwarding to spread
labelled data from labelled examples to unlabeled query instances. TextGCN [29] built
a single-text graph corpus and learned graph convolutional neural networks for text
classification. Through a heterogeneous graph attention network, HGAT [30] provides a
flexible heterogeneous information network to integrate extra information about classes
and learn the significance of various neighboring nodes and various node kinds to the
current node. By pre-training pair representations and aggregating data from nearby
instance node representations, the Frog-GNN [31] presents a multi-view aggregation-based
graph neural network may build graphs.

In order to capture information about the links between instances and provide a richer
feature representation for the classification problem, this article interacts with data between
instances using graph convolutional neural networks.

2.3. Prompt Tuning

The performance of prompt-based fine-tuning of previously trained language models
has been demonstrated in few-shot learning. In order to aid language models in under-
standing a task, ref. [32] introduced pattern formation training, in which input examples
are reconstructed as ideal fill-in-the-blank sentences. Ref. [33] proposed prefix adaptation
to guide downstream language models by upstream prefixes [11]. Explored prompt fine-
tuning, proposing efficient learning soft prompt mechanisms that adjust frozen language
models to perform specific downstream tasks [21]. Prompt tuning and meta-learning
combined, where base learners pick up task-specific tag words while meta-learners tweak
task-neutral templates and encoders.

2.4. Inspiration

Inspired by the work of [21], we combined meta-learning with prompt fine-tuning to
fine-tune the pre-trained language model in an external loop of meta-learning. We also
focused on the relational information between different classes of samples, so we designed a
GCN-based feature extractor to capture the relational information between instances using
the inter-node interaction of the GCN, which we refer to as meta-knowledge. We were
also inspired by [17] to integrate adversarial networks into the meta-learning framework
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to extend the feature space of samples and enhance the ability of the model to adapt to
new tasks.

3. Methodology
3.1. Problem Formulation

In this paper, we built a few-shot text classification task in the meta-learning frame-
work [34]. Specifically, we gave labeled instances from a set of classes Ctrain. We aimed to
learn a classification algorithm on Ctrain and then make predictions in new classes with
only a few samples. These new classes belong to a set of classes Ctest that do not intersect
with Ctrain.

We took a sample of N-way K-shot tasks from Ctrain and assessed them similarly on
Ctest to replicate the few-shot scenario. We sampled N classes from Ctrain in the meta-
training phase to create a meta-task. In meta-learning, each meta-task consists of a support
set S and a query set Q. During the inner loop of meta-learning, we employed the support
set to train the model parameters θ and the query set to test the model’s performance. We
sampled K examples for the support set S for each of these N classes and T instances for

the query set Q, i.e., S = {(Xi, yi)}
N×K
i=1 and Q =

{(
Xj, yj

)}N×T

j=1
. In our text classification

model, the initial parameters are denoted as θ0. A set of model parameters θ̂ is obtained in a
meta-training task by feeding the model the support set S and optimising the internal loop.
Subsequently, the parameters θ̂ of the model are employed on the query set Q, and the
parameters θ0 are updated by minimizing the loss incurred on the query set Q. During the
meta-testing phase, we utilized a rigorous episodic-based approach to assess the model’s
ability to quickly adapt to new class Ctest.

3.2. PGCA

The general structure of the PGCA network we propose is shown in Figure 1. Four
major modules make up our model: an encoder with templates, a GCN-based meta-
knowledge extractor, a domain discriminator, and a feature fusion module. Specifically,
four main steps were performed. Firstly, leveraging prompt learning, we encoded sentences
by adding templates and using a masked language model. Then, we designed a GCN-
based meta-knowledge extractor to facilitate instance-level interactions and extract meta-
knowledge. The domain discriminator and GCN were employed in an adversarial manner
to expand the sample feature space and enhance sample diversity. Finally, we fused the
encoder output with the output of the GCN-based meta-knowledge extractor to obtain a
probability distribution and make label predictions.

3.2.1. Coder with Template
In previous work, given an instance x = {w1, . . . , wn} with label y, our goal was to

map x to the feature space through the language model and eventually compute P(y|x). In
contrast, in prompted learning, we entered samples into the pre-trained language model in
a manner similar to the following:

xprompt = x + TEMPLATE = {[CLS], w1, . . . , wn, [SEP], p1, . . . , [MASK], . . . , pt, [SEP]} (1)

where TEMPLATE is the template statement with the [MASK] token, noted as
{[SEP], p 1, . . . , [MASK], . . . , pt}. Using sentiment comment classification, first, the prompt
is constructed: TEMPLATE = { It is a [MASK] comment.}; then, the original text is input
with the prompt spliced with xprompt into a masked language model named M to predict
[MASK] as the predicted answer representation. Such an operation converts our goal
from computing P(y|x) to computing P

(
[MASK] = wy

∣∣xprompt
)
, where wy ∈ Rd is the

embedding representation of the labeled word y. We use vectors in continuous space as cue
templates, and although the choice of templates is manual, the embedding representation
obtained in this way is learnable, and the language model can be fine-tuned by example.
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We define the parameters of the encoder as θM and the embedding of the prompt template
as θp. The encoder can be formulated as follows:

X = M
(
xprompt; θM, θp

)
(2)

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 15 
 

 
Figure 1. The overall PGCA model architecture. Source set is from the source domain, whereas Sup-
port set, Query set, and Source set are all from the target domain. The target and source domains do 
not cross each other. The Coder with Template module encodes instances using the mask language 
model and obtains label predictions at [MASK] as input for downstream tasks (Section 3.2.1); 
whether an instance is from the source domain or the target domain is determined by the Domain 
Discriminator module. (Section 3.2.2); the GCN-Based Meta-Knowledge Extractor module acquires 
meta-knowledge through inter-sentence interactions and expands the sample space by adversarially 
matching the Domain Discriminator to enhance sample diversity (Section 3.2.3); and the Feature 
Fusion module fuses the encoder output and the output of the GCN-Based Meta-Knowledge Ex-
tractor with features and performs classification scoring. 

3.2.1. Coder with Template 
In previous work, given an instance 𝒙 = {𝑤ଵ, … , 𝑤} with label 𝑦, our goal was to 

map 𝒙 to the feature space through the language model and eventually compute 𝑃(𝑦|𝒙). 
In contrast, in prompted learning, we entered samples into the pre-trained language 
model in a manner similar to the following: 𝒙௧  =  𝒙 + 𝑻𝑬𝑴𝑷𝑳𝑨𝑻𝑬 = {[𝐶𝐿𝑆], 𝑤ଵ, … , 𝑤, [𝑆𝐸𝑃], 𝑝ଵ, … , [𝑀𝐴𝑆𝐾], … , 𝑝௧, [𝑆𝐸𝑃]}  (1)

where 𝑻𝑬𝑴𝑷𝑳𝑨𝑻𝑬  is the template statement with the [MASK] token, noted as {[𝑆𝐸𝑃], 𝑝ଵ, … , [𝑀𝐴𝑆𝐾], … , 𝑝௧}. Using sentiment comment classification, first, the prompt is 
constructed: 𝑻𝑬𝑴𝑷𝑳𝑨𝑻𝑬 = { 𝐼𝑡 𝑖𝑠 𝑎 [𝑀𝐴𝑆𝐾] 𝑐𝑜𝑚𝑚𝑒𝑛𝑡. }; then, the original text is input 
with the prompt spliced with 𝒙௧ into a masked language model named M to predict 
[MASK] as the predicted answer representation. Such an operation converts our goal from 
computing 𝑃(𝑦|𝒙) to computing 𝑃([𝑀𝐴𝑆𝐾] = 𝒘௬|𝒙௧), where 𝒘௬ ∈ 𝑅ௗ  is the em-
bedding representation of the labeled word 𝑦. We use vectors in continuous space as cue 
templates, and although the choice of templates is manual, the embedding representation 
obtained in this way is learnable, and the language model can be fine-tuned by example. 
We define the parameters of the encoder as 𝜽ெ and the embedding of the prompt tem-
plate as 𝜽. The encoder can be formulated as follows: 𝑿 = 𝑀൫𝒙௧; 𝜽ெ, 𝜽 ൯ (2)

3.2.2. Domain Discrimination 
Firstly, let us provide an introduction to the input of the domain discriminator. In the 

meta-training procedure, the target domain is the category that contains the samples for 
the goal task, and the source domain is the category that contains the remaining training 
data. In other words, a meta-task’s support set and query set samples are drawn from the 
target domain, while the task’s source set is drawn from a subset of the source domain 

Support set

Coder
W ith

Tem plate

D om ain
D iscrim inator

Softm ax
Source set

Q uery set

G C N -
B ased 
M eta-

K now ledge 
Extractor

Feature
Fusion

Figure 1. The overall PGCA model architecture. Source set is from the source domain, whereas
Support set, Query set, and Source set are all from the target domain. The target and source domains
do not cross each other. The Coder with Template module encodes instances using the mask language
model and obtains label predictions at [MASK] as input for downstream tasks (Section 3.2.1); whether
an instance is from the source domain or the target domain is determined by the Domain Discriminator
module. (Section 3.2.2); the GCN-Based Meta-Knowledge Extractor module acquires meta-knowledge
through inter-sentence interactions and expands the sample space by adversarially matching the
Domain Discriminator to enhance sample diversity (Section 3.2.3); and the Feature Fusion module
fuses the encoder output and the output of the GCN-Based Meta-Knowledge Extractor with features
and performs classification scoring.

3.2.2. Domain Discrimination

Firstly, let us provide an introduction to the input of the domain discriminator. In the
meta-training procedure, the target domain is the category that contains the samples for
the goal task, and the source domain is the category that contains the remaining training
data. In other words, a meta-task’s support set and query set samples are drawn from the
target domain, while the task’s source set is drawn from a subset of the source domain that
is drawn from the same size as the query set samples. Data from both the query set and the
source set are fed into the domain discriminator, whose job it is to determine if the data
come from the source domain or the target domain.

The discriminator is a three-layer feedforward neural network, and the probability
distribution P

(
yp
∣∣ x
)

is computed by applying a softmax function in the output layer. We
employ a cross-entropy loss function to determine the loss LossDomain, and the prediction
labels of the discriminator are either 0 or 1, indicating that the samples come from the query
set or the source set, respectively:

LossDomain = −
[
yplogŷ +

(
1− yp

)
log(1− ŷ)

]
(3)

where yp denotes the predicted label result and ŷ denotes the actual label.
Specifically, our model training is not aimed at minimizing LossDomain. Instead, we

want to make it impossible for the discriminator to tell whether the feature vector produced
by the generator belongs to the source domain or the target domain. Such an operation
expands the feature space of the samples, enhances the diversity of sample features, and
improves the ability of the generative model to adapt to new tasks. Our justification for
incorporating adversarial networks in the meta-learning framework is that, according to
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domain adaptation theory, predictions must be based on features that cannot distinguish
between the source and target domains in order to achieve compelling domain transfer.

3.2.3. GCN-Based Meta-Knowledge Extractor

We constructed the meta-knowledge extractor using a graph convolutional neural
network (GCN). For a given N-way K-shot task, we constructed a graph G = (V, E, A)
to represent the relationships between instances, where V and E denote the set of nodes
and the set of edges, respectively. Each instance is treated as a node vi ∈ V, and the edges
ei, j ∈ E correspond to the connectivity of neighboring nodes vi and vj. A = Rn×n denotes
the adjacency matrix, where each element represents the connectivity between nodes and
n = N × K. Let H ∈ Rn×d be the matrix containing all n nodes and their features. d is the
dimension of the feature vector, and each row hi ∈ Rd is the feature vector of node vi. GCN
can capture information about their direct neighbors through one layer of convolution, and
when multiple GCN layers are stacked, information about larger neighbors can be obtained.

The output of the graph convolution operation for the L-th layer is defined as:

H(L+1) = σ

(
∼
D
− 1

2 ∼
A
∼
D
− 1

2
H(L)W(L)

G

)
(4)

where H(L) ∈ Rn×d is the node feature matrix of this layer, representing the meta-knowledge
contained in the sentence obtained by the meta-knowledge extractor, W(l)

G is the learnable
weight matrix of the graph convolution of this layer, and σ is the activation function.
In the masked language model, the node feature matrix H(0) at layer 0-th is the label

prediction output X of xprompt.
∼
A = A + In, where In is the unit matrix. The adjacency

matrix is constructed as shown in Figure 2, and the adjacency matrix is constructed after

experimental verification to obtain the optimal structure.
∼
Dii = ∑

j

∼
Aij is the degree matrix

of the adjacency matrix, which is used to normalize the node features. GCN convolves
the features of neighboring nodes and propagates their embedded vectors to their nearest
neighbors, learning global features through the information interaction of neighboring
nodes, fully mining the useful information carried in small-sample instances, and obtaining
a better representation of sample embeddings.
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3.2.4. Class Prototype

Our meta-learning method follows an N-way K-shot training, where N-way denotes a
total of N categories in the task, which we denote by {C1, C2, . . . , CN}. To obtain adequate
label semantics for each category label, we introduced external knowledge to construct a
class-extended label list that contains the original label words as well as words that are
similar to the label words, e.g., category Ci denotes a computer-related product whose class-
extended label list could be [“computer”, “calculator”, “machine”, “ analog computer”,
“computing”, “personal computer”, “programmer”, . . .]. The relevant terms for labeling
were derived from an external knowledge graph: https://relatedwords.org (accessed on
20 May 2023). We set the length of the class extended label list to B = 20. Then, we encoded
each element of the extended label list for each class as a d-dimensional vector using the

pre-trained language model as an encoder, denoted as
{

wb
Ci

}B

b=1
, wb

Ci
∈ Rd. For each class

prototype, we took the B d-dimensional vectors and average to obtain the final initialized
class prototype:

w0
i = mean

({{
wb

Ci

}B

b=1

})
(5)

where w0
i ∈ Rd is the initial class prototype vector of class Ci; ultimately, we obtained the

initial class prototype vector of N classes forming the initial class prototype matrix, denoted
as W0 ∈ RN×d.

In particular, the encoding embedding process of the initial class prototype matrix
W0 was not part of the model training process; W0 was initialized and saved locally, and
the model training process was then imported into our framework while we iteratively
updated W0 as a learnable feature in the internal loop of meta-learning and participated in
the computation of the probability distribution of the instance classification.

3.2.5. Feature Fusion Module

The specifics of our feature fusion module are shown in Figure 3, where we multiply
the output X of the encoder with the template with our class prototype embedding to
obtain the sentence-level probability distribution. The output H(L) of the GCN feature
extractor is then passed through a linear neural network classifier to obtain the class-level
probability distribution:

Psen = so f tmax
(

XWtT
+ b
)

(6)

Pclass = Classi f ierLinear

(
H(L)

)
(7)

where Wt ∈ RN×d is the initial class prototype matrix W0 updated by t-step iterations
to obtain:

Wt = Wt−1 − βtask∇Wt−1 Lossinner (8)

where βtask is the meta-learning internal loop learning rate and Lossinner denotes the training
loss of the support set in the meta-learning inner loop. We add up the two outputs to the
final classification score.

3.2.6. Optimization

The output of the feature fusion module is passed through a so f tmax function to
obtain the final classification result and calculate the loss:

logit = so f tmax(Psen + Pclass) (9)

Loss = − 1
N

N

∑
i=1

yk(log_so f tmax(logit)) (10)

where yk is the true data label after one-hot encoding and the log_so f tmax() activation
function takes the logarithm of the so f tmax function.

https://relatedwords.org
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In the internal loop of meta-learning, the class prototype representation W(t) is updated
through the inner loop training loss Lossinner on the support set, and in the external loop
the GCN is updated and the Bert fine-tuned by combining the classification loss on the
query set and the discriminator loss:

Loss = Lossclassi f ication − LossDomain (11)

θM+GCN = θM+GCN − βmeta∇θM+GCN Loss (12)

where βmeta is the meta-learning external loop learning rate.

4. Experiments

In this section, we conducted extensive tests to compare our suggested model with
five baselines and assess performance on four publicly accessible text classification datasets,
where we used accuracy as an evaluation parameter to accurately carry out our task.

4.1. Datasets

For the performance evaluation of text categorization, we selected 4 publicly accessible
datasets. Table 1 provides a statistical summary for all datasets.

Table 1. Information on all experimental datasets that were used.

Dataset Classes Samples Average Length

HuffPost 41 36,900 11
Amazon 24 24,000 141
Reuters 31 620 186
20 News 20 18,828 341

The HuffPost [35] topic classification dataset is divided into 41 categories, which also
contain smaller lengths of text, and is considered more challenging for text classification.
The distribution of the 41 topics is partitioned into training, validation, and test sets, with
proportions of 20, 5, and 16 topics, respectively, facilitating the systematic evaluation and
assessment of the model’s generalization capabilities.

The Amazon [36] product review dataset is so big that we only used a subset of
1000 reviews from each category for text classification studies. The dataset contains review
information for 24 goods. The 24 classes are segregated into training, validation, and test
sets with respective allocations of 10, 5, and 9 classes, enabling rigorous examination and
measurement of the model’s performance across distinct categories.

The Reuters [37] news dataset: We used a subset of this dataset under the standard
ApteMode version, of which we performed classification experiments on 31 categories. The
set of 24 classes is partitioned into training, validation, and test subsets, with 10, 5, and 9
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classes, respectively, facilitating systematic evaluation and benchmarking of the model’s
effectiveness across diverse class labels.

The 20 Newsgroups [38] news topic classification dataset is divided into 20 different
news topics, with a total of approximately 20,000 news documents. The set of 20 classes is
divided into training, validation, and test subsets, with 10, 5, and 5 classes, respectively,
enabling comprehensive analysis and performance assessment of the model on unseen
class labels during training.

4.2. Baselines

We compared our PGCA to a number of competing baselines, which are briefly
summarized as follows:

MAML obtains a set of initialization parameters for a model by constructing a meta-
training task that allows the model to maximize the performance of a new task with one or
a few gradient updates on a small number of samples.

PROTO-BERT uses BERT as an encoder, averages support instance embeddings as
class prototypes, and calculates distances to class prototypes to predict query label results.

MLADA [17] investigates the adversarial network framework to extract sentence
features and enhance the generalization and effectiveness of the meta-learning system
across contexts.

SaAML [39] proposes a meta-learning framework for sentence-aware confrontation,
using TCN as the core generator.

FROG-GNN [31] is a graph neural network that accumulates neighboring nodes from
several aggregations to learn query embeddings.

PBML [21] combines prompt tuning and meta-learning, with base learners learning
task-specific tag words and meta-learners fine-tuning template and encoder tasks. We ran
the publicly available code for PBML as experimental results for comparison.

4.3. Parameter Settings

The pre-trained language model in our model makes use of Bertbase [40]. The external
learning rate was set to 3× 10−6, the internal learning rate to 0.01, the external update
every four tasks for the 5-way 1-shot task, the external update every two tasks for the 5-way
5-shot task, and the dropout to 0.2. For the HuffPost news dataset, we set the maximum
length of the encoder input to 50, whereas we set it to 300 for the other datasets. We
set a three-layer graph convolutional neural network as the knowledge extractor with an
input dimension and output dimension of 768. We set up a three-layer feedforward neural
network as the domain discriminator. The Adam optimizer [41] was used to train our
model. In addition, all experiments in this section were performed on a computer with
an Intel Core i9 13900K/F CPU@5.8 GHz and a GeForce RTX 3090 GPU card with 24 G of
video memory, and the model was implemented based on the Pytorch 1.12.1 framework.

4.4. Results and Analysis
4.4.1. Main Results

We compare the experimental outcomes of our suggested PGCA approach with com-
peting methods on four widely used datasets in this section. In Table 2, the results of
several models are shown for the four datasets, taking into account the 5-way 1-shot and
5-way 5-shot configurations. Our PGCA model performs best on all four datasets, with
an average accuracy of 83.94% in the 5-way 1-shot classification and 88.38% in the 5-way
5-shot classification.

It is important to note that for few-shot text classification, the performance improve-
ment in the prompt-based approach is more significant. This is because, in few-shot
scenarios, where samples carry minimal useful information, pre-trained language models
learn much prior knowledge and can significantly improve the classification performance
of downstream tasks. Prompt learning bridges the gap between the pre-trained language
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model and the downstream task, embedding the text into a feature space more suited to
the target task, effectively solving the problem of overfitting.

Table 2. The reported findings demonstrate the performance of 5-way 1-shot and 5-way 5-shot text
classification on four benchmark datasets in terms of accuracy (%).

Amazon HuffPost Reuters 20 News

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MAML 39.3 47.2 43.7 54.3 84.8 94.0 33.8 43.7
PROTO-BERT 68.1 82.5 52.9 69.3 86.7 93.9 37.8 45.3

MLADA 68.4 86.0 45.0 64.9 82.3 96.7 59.6 77.8
SaAML 71.47 86.37 51.26 69.44 - - 70.79 84.30

FROG-GNN 71.5 83.6 54.1 69.6 - - - -
PBML 80.03 87.58 71.54 75.71 94.91 96.97 87.50 92.32

PGCA (ours) 80.36 87.68 72.10 76.10 95.20 97.29 88.09 92.45
The bolded numerals in the table indicate optimal performance.

Our PGCA compared to PBML [21] shows an average performance improvement of
0.44% on the 5-way 1-shot task and 0.24% on the 5-way 5-shot task, which is because PBML
ignores the interaction information between samples of different classes, which may result
in losing some knowledge from the instances. Our PGCA uses GCN as a meta-knowledge
extractor to capture the relationship information between different classes of samples
through interactions between nodes, and we also incorporate adversarial networks to
extend the sample feature space, increase the diversity of samples and enhance the model’s
capacity for generalization.

4.4.2. Ablation Experiment

We conducted an ablation study on the Amazon dataset and 20 News dataset to
validate the effectiveness of each component of our PGCA. For the ablation tests, two 5-way
1-shot tasks were set up, and two tasks were internally looped for a single external loop
update. Table 3 displays the outcomes of the ablation trial.

Table 3. Comparison of the accuracy (%) of ablation experiments using 5-way, 1-shot settings on the
Amazon dataset and 20 News dataset. DD stands for domain discriminator.

Amazon 20 News

PGCA 79.55 88.09
−w/o DD 79.32 87.74
−w/o GCN 78.60 87.68

−w/o DD + GCN 78.42 87.50

We first removed the domain discriminator and source set to verify the contribution
of adversarial network to the classification task. The performance in the 5-way 1-shot tasks
decreased by 0.22% and 0.35%, respectively. This confirms that our adversarial network
helps to improve model performance.

We then investigated the advanced performance of GCN in extracting features. Re-
ferring to the work of [17], we replaced the GCN in the meta-knowledge extractor with a
bi-directional LSTM, and the performance in the 5-way 1-shot tasks decreased by 0.95%
and 0.41%, respectively. Thus, it is more effective for us to use GCN as a meta-knowledge
extractor to extract the meta-knowledge contained in sentences.

Finally, we removed the meta-knowledge extractor and considered only the cue-based
pre-trained language model as an encoder, with a performance drop of 1.13% and 0.59%
in the 5-way 1-shot tasks. We argue that considering only the cue-based and trained
language model as an encoder loses some of the information of the sentence itself, leading
to a performance drop in the classification task. At the same time, our meta-knowledge
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extractor can obtain more feature information through sentence interactions, which helps
to improve classification performance.

4.4.3. Visualization

We used visualization to demonstrate that our model can extend the feature space of
samples and enhance sample diversity. Using t-SNE [42] to visualize the phrase feature
embeddings extracted using various techniques on the query set, we tested the 5-way
1-shot PGCA model on a test set of 20 Newsgroups. Compared to the embeddings obtained
by the PBML model, the sentence features extracted by our PGCA model represent a larger
feature space and a richer feature diversity of the samples (Figure 4).
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We also ran the PGCA model on the Amazon product review dataset to compare and
visualize actual and predicted labels, and the results are shown in Figure 5. The results of
the experiment show that our PGCA is relatively poor at predicting categorical labels for
categories that humans perceive to be relatively similar (such as ‘Instant Video’ and ‘Movies
and TV’), which are relatively poorly differentiated, and those categories that are considered
less similar by humans (such as ‘Clothing Shoes and Jewelry’ and the other four categories),
which are more in line with human perceptions and are relatively well differentiated.
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5. Conclusions

In order to enhance the adaption of complicated models in short sample situations, we
present a cue-based graph convolutional adversarial meta-learning framework (PGCA) in
this research. Specifically, our approach utilizes a prompt-enhanced pre-trained language
model as an encoder, effectively bridging the gap between pre-trained language models
and downstream tasks. We then use a GCN-based knowledge extractor to obtain sentence
dependencies through inter-instance interactions and further extract meta-knowledge to
generate higher-quality tag embeddings. We also incorporate adversarial networks into the
meta-learning framework, employing domain discriminators to counteract the knowledge
extractor. This integration aims to augment the variety of sample features, extend the
feature space of samples, and enhance the model’s capability to adapt to new tasks. In
particular, we also construct an extended list of class prototypes by introducing external
knowledge to reduce the impact of extreme samples on class prototypes. Finally, we
conduct experiments on four standard datasets, which show that our method PGCA is
more effective compared to previous small-sample text classification methods.
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