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Abstract: Background: The Sella Turcica is a critical structure from an orthodontic perspective,
and its morphological characteristics can help in understanding craniofacial deformities. However,
accurately extracting Sella Turcica shapes can be challenging due to the indistinct edges and indefinite
boundaries present in X-ray images. This study aimed to develop and validate an automated
Sella Morphology Network (SellaMorph-Net), a hybrid deep learning pipeline for segmenting Sella
Turcica structure and extracting different morphological types; Methods: The SellaMorph-Net model
proposed in this study combined attention-gating and recurrent residual convolutional layers (AGM
and RrCL) to enhance the encoder’s abilities. The model’s output was then passed through a squeeze-
and-excitation (SE) module to improve the network’s robustness. In addition, dropout layers were
added to the end of each convolution block to prevent overfitting. A Zero-shot classifier was employed
for multiple classifications, and the model’s output layer used five colour codes to represent different
morphological types. The model’s performance was evaluated using various quantitative metrics,
such as global accuracy and mean pixel-wise Intersection over Union (IoU) and dice coefficient, based
on qualitative results; Results: The study collected 1653 radiographic images and categorised them
into four classes based on the predefined shape of Sella Turcica. These classes were further divided
into three subgroups based on the complexity of the Sella structures. The proposed SellaMorph-
Net model achieved a global accuracy of 97.570, mean pixel-wise IoU scores of 0.7129, and a dice
coefficient of 0.7324, significantly outperforming the VGG-19 and InceptionV3 models. The publicly
available IEEE ISBI 2015 challenge dataset and our dataset were used to evaluate the test performance
between the state-of-the-art and proposed models. The proposed model provided higher testing
results, which were 0.7314 IoU and 0.7768 dice for our dataset and 0.7864 IoU and 0.8313 dice for the
challenge dataset; Conclusions: The proposed hybrid SellaMorph-Net model provides an accurate
and reliable pipeline for detecting morphological types of Sella Turcica using full lateral cephalometric
images. Future work will focus on further improvement and utilisation of the developed model as a
prognostic tool for predicting anomalies related to Sella structures.

Keywords: Sella Turcica; lateral cephalogram; morphological types; Sella segmentation; SellaMorph-
Net

1. Introduction

The lateral cephalogram (lat ceph) is an essential tool for orthodontists when planning
treatment for craniofacial deformities. Accurate traceability and identification of different
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cephalometric landmark points on radiographs allow orthodontists to diagnose and eval-
uate orthodontic treatment. A landmark point (Sella point) marked at the centre of Sella
Turcica (represented with ST) is widely used in orthodontics. Sella Turcica is an important
structure in understanding craniofacial deformities by analysing its characteristics (shape,
size, and volume) [1,2]. The pituitary gland is enclosed within the ST, which is a bony
structure with a saddle shape. It has two clinoid projections, anterior and posterior, that
extend across the pituitary fossa [3,4]. The size of these projections can vary, and when
they converge, it is known as Sella Turcica Bridging (STB). This condition can lead to dental
deformities and disrupt pituitary hormone secretion [5,6]. Camp has identified three types
of standard Sella shapes: circular/round, flat, and oval, as depicted in Figure 1. The oval
shape is the most common, while the flat shape is the least common [7–9]. In addition to
these shapes, a condition called bridging occurs when the anterior and posterior clinoid
lobes converge, as shown in Figure 1. This condition is known to be associated with specific
syndromes and malformations that can affect dental and skeletal health, as documented in
sources [10–13].
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the length of ST involves calculating the distance between two points, i.e., the tuberculum 
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2. Another manual method involves sketching the outline of the ST on transparent graph 
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count the number of squares within the outline. Finally, many studies of ST size have 
employed Silverman’s method, which involves measuring three variables (length, depth, 
and diameter) [23]. 

Figure 1. Pre-defined types of ST: (A) Circular, (B) Flat, (C) Oval, and (D) Bridging (additional).

Studies have used various statistical methods to analyse the morphological charac-
teristics of the ST structure in radiographs. One commonly used method for measuring
the length of ST involves calculating the distance between two points, i.e., the tuberculum
sellæ (TS) and the dorsum sellæ (DS) projection [6,14–22]. To measure the area of ST, some
researchers multiply the length and breadth of the structure, as illustrated in Figure 2.
Another manual method involves sketching the outline of the ST on transparent graph
paper and then placing it over a calibrated graph. Then the dental experts or practitioners
count the number of squares within the outline. Finally, many studies of ST size have
employed Silverman’s method, which involves measuring three variables (length, depth,
and diameter) [23].
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Subsequently, studies have been conducted to evaluate the length, area, volume, and
forms of ST in cleft patients through the use of CBCT images. These studies have confirmed
that ST length is indeed shorter in cleft patients [15,16]. To locate the Sella point, 3D
maxillofacial software is commonly used to convert 3D CBCT data into 2D ceph datasets.
Another method of identifying the Sella point involves the use of 3D models based on a
new reference system, which can be more effective and reliable than converting 3D image
datasets into 2D [17,18]. However, using Cone-Beam-CT and digital volume tomography
to measure Sella size may not be practical for routine use.

In recent years, there has been a growing interest in the use of Artificial Intelligence
(AI) in the biomedical field due to its ability to mimic cognitive processes like learning and
decision-making, which are similar to those of humans. One popular type of AI model is
the Convolutional Neural Network (CNN), which can detect important image features with
high computational efficiency, closely resembling biological visual processing. However, in
orthodontics, manually inspecting ceph X-ray images for morphological features of ST or
using 3D models based on Cone-Beam-CT scans can be time-consuming, require expert
intervention, and expose patients to radiation. Therefore, in addition to clinicians, AI can be
used as an assistive tool to identify subtle details that may not be visible to the naked eye.

Therefore, we identified the gap and were the first to work on AI-based learning
of ST features using radiographic images (easily accessible) [24,25]. In reference to our
study, a recent study was conducted on identifying ST features automatically using CBCT
images [26]. The challenge of our study is working on radiographs themselves, as the
characteristics of ST vary from patient to patient in the considered dataset; therefore, in
our study, ST differs from regular to complex altered structures. Thus, the proposed study
has grouped the dataset into three subgroups based on the complexity of the ST features:
regular ST, moderately altered ST, and complex altered ST, which require the extraction of
minute details.

This study presents a novel hybrid segmentation pipeline for identifying the different
morphological features of the Sella Turcica (ST) in lateral cephalometric radiographs. The
method uses a hybrid encoder-decoder convolution structure with densely connected layers
as the encoder to predict the initial mask. This predicted mask is combined with the input
image and the encoder-decoder network, consisting of recurrent residual convolutional
layers (RrCLs), squeeze-and-excite blocks (SEs), and an attention gate module (AGM),
to provide the final improved segmentation mask by eliminating undesirable features.
Additionally, a zero-shot linear classifier (ZsLC) is integrated for the accurate and distinctive
classification of ST characteristics.
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The introduced method leverages the novel combination of SE, AGM, and ZsLC
components, not previously studied in this context, making the segmentation process
more robust, accurate, and adaptable. The hybrid model effectively captures intricate
patterns, focuses on relevant regions, and seamlessly addresses the complexities present in
the pre-defined ST classes, which is difficult through conventional methods. The model
works on deep layers through extracting minute features and distinct between different
Sella types automatically. The unique combination of different modules allows the model
to achieve state-of-the-art segmentation results and shows potential for a wide range of
segmentation tasks in the future. The proposed method is evaluated on two standard
datasets. The first is a self-collected dataset comprising four pre-defined classes (circular,
flattened, oval, and bridging ST types) and three sub-classes (regular, moderately altered,
and complex altered ST). The second dataset is the publicly available IEEE ISBI 2015
challenge dataset for four-class segmentation. The proposed method outperforms the
existing state-of-the-art CNN architectures in segmenting the morphological characteristics
of lateral cephalometric radiographs.

The study’s significant contributions are as follows:

• We introduced Sella Morphology Network (SellaMorph-Net), a novel hybrid pipeline
for accurately segmenting different Sella Turcica (ST) morphological types with precise
delineation of fine edges.

• The approach utilised a complete CNN framework with efficient training and excep-
tional precision, eliminating the need for complex heuristics to enhance the network’s
sensitivity for focused pixels.

• Attention Gating Modules (AGMs) were incorporated into our proposed method, al-
lowing the network to concentrate on specific regions of interest (RoI) while preserving
spatial accuracy and improving the feature map’s quality.

• The results demonstrate meaningful differentiation of ST structures using a Zero-shot
linear classifier, along with an additional colour-coded layer depicting ST structures in
lateral cephalometric (lat ceph) radiographic images.

2. Materials and Methods
2.1. Materials

This analytical study was approved by the Institute Ethical Committee (IEC-09/2021-
2119) of the Postgraduate Institute of Medical Education and Research, Chandigarh, India.
The research team collected 1653 radiographic images of 670 dentofacial patients and
983 healthy individuals for the study. The images were categorised based on pre-defined
morphological shapes of ST: circular, flat, oval, and bridging. The 450 images were con-
sidered for the circular, oval, and bridging shapes, and 303 were flattened. Further, based
on the complexity of these structures, we sub-grouped the Sella shapes into regular ST,
moderately altered ST, and complexly altered ST to study the morphological characteristics
of this important structure.

To ensure privacy and anonymity for participants, radiographs were randomly chosen
without considering any personal information, such as age and gender. The cephalometric
radiographs were captured using the Carestream Panorex and followed standard procedures.

Pre-Processing

This study utilised image processing techniques to improve the quality of cephalo-
metric radiographs and acquire more comprehensive information on the Sella Turcica (ST).
The process involved several steps to enhance grayscale medical images. Firstly, the image
resolution was adjusted to 512 px, and a weighted moving averaging filter was applied
to eliminate noise [27]. This filter used a 3 × 3 weighted grid size combined with the
original radiographs. To further enhance the image’s details, we modified the contrast
ratio using the transformed intensity of the image [28]. Lastly, the Sobel operator enhances
the edges of the image by calculating the gradient along the ‘y’ and ‘x’ dimensions [29,30].
We then obtained a sharper image with increased edge clarity by computing convolution
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using the original image [31]. Lastly, we performed a negative transformation using the
enhanced image as a reference for manual labelling (annotation). These pre-processing tech-
niques resulted in reduced training complexity and more accurate analysis of cephalometric
radiographs.

A team consisting of a radiographic specialist and two dental clinicians utilised a
cloud-hosted artificial intelligence platform named Apeer to meticulously annotate images
pixel-by-pixel, as shown in Figure 3 [24]. This platform allows for the precise storage
and annotation of images with high resolution. The process involves saving segmented
portions with high accuracy following rough calculations. Then, a precise binary mask
is generated by assigning sub-pixel values to the chosen boundary pixels and applying
pixel-level morphological operations through border modification. Apeer’s workflow
involves re-annotating unmarked pixels, filling the image background with a region-filling
technique, clustering pixels with specific labels using a connected component labelling
approach, and ultimately saving the mask images for training.
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2.2. Methods

In this section, we begin by presenting an overview of the current state-of-the-art
methods utilised for performance comparison with the proposed method, as discussed
in Section 2.3. Subsequently, in Section 2.4, we outline the proposed pipeline in detail,
providing a comprehensive explanation of its components and workflow. Finally, in
Section 2.5, we describe the evaluation metric employed to assess the performance and
effectiveness of the proposed method, elucidating the specific criteria and measurements
used in the evaluation process.

2.3. Deep Learning Methods

Deep learning (DL) approaches utilise hierarchical and dynamic feature representa-
tions that leverage multiple levels of abstraction instead of shallow learning techniques.
However, despite the widespread success of DL compared with shallow learning in numer-
ous domains, the scarcity of labelled data poses challenges to the practical implementation
of DL. However, in the medical field, Convolutional Neural Networks (CNNs) have been
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successfully used to segment and classify the Sella structure in cephalometric radiographs,
despite the challenge of limited labelled data for training. Recently, researchers have
employed few techniques for segmenting and classifying the Sella Turcica in medical im-
ages [26]. Shakya et al. used a U-Net model with a different pre-trained model as the
encoder for cephalometric radiographs, while Duman et al. adopted the Inception V3
model to segment and classify the structure using CBCT images, with reference to Shakya’s
work [24–26]. Additionally, Feng et al. utilised a U-Net-based approach that incorporated
manual measurements to evaluate the length, diameter, and depth of the Sella Turcica [32].

The published studies have developed different methods to segment and classify the
Sella Turcica part from cephalometric ROI images instead of considering full cephalometric
images, as suggested by Shakya, to identify dentofacial anomalies related to the Sella
Turcica in future work. It is important to note that a complete cephalometric analysis
with accurate feature extraction of the Sella Turcica is necessary to evaluate dentofacial
anomalies comprehensively. Recently, Kok et al. proposed traditional machine learning
algorithms such as SVM, KNN, Naive Bayes, Logistic Regression, ANN, and Random Forest
for analysing and determining growth development in cephalometric radiographs [33].
However, this approach is slow in performance and complex in terms of comprehending
the structure of the algorithm. Furthermore, Palanivel et al. and Asiri et al. have suggested
a training technique that uses a genetic algorithm. The method involves training a network
on input cephalometric X-rays in the first attempt, followed by multiple attempts with the
same input images to determine the optimal solution [34,35]. However, these techniques are
costly in terms of computational resources and require extra post-processing steps for better
results. On the other hand, our study proposes a hybrid encoder-decoder method that can
be trained without post-processing, making it a more efficient solution. The results of the
proposed SellaMorph-Net model are further compared with other popular state-of-the-art
models, e.g., VGG-19 and InceptionV3, in terms of mean IoU, dice coefficient, training
accuracy, and validation accuracy, with corresponding loss values defined by ST structure
segmentation and classification.

VGG-19 and InceptionV3

The VGG-19 model uses a combination of convolutional and fully connected layers
to improve the process of extracting features [24,25]. In addition, it uses Max-pooling,
rather than average pooling, for down-sampling and the SoftMax activation function for
classification [36–38].

The InceptionV3 model contains a classification element and a learned convolutional
base [24,26,39]. The classification component comprises a global average pooling layer, a
fully connected layer that uses softmax activation, and dropout regularisation to prevent
overfitting [40,41]. To extract features from the convolutional layers, 3 × 3 filters are used
for down-sampling with max-pooling, followed by softmax activation and max-pooling.
The classification element consists of a classifier that is fully connected, along with layers
incorporating dropout. The global average pooling layer is used instead of a flattened layer
to maintain spatial information and reduce the number of parameters in the model [42].

2.4. Proposed Method

The proposed framework for the segmentation task includes a hybrid encoder and
decoder, as illustrated in the figure. The encoder comprises convolutional and dense layers
to enhance the extraction of characteristics from the input images. After extracting details,
they are passed through a squeeze-and-excite (SE) block, which only sends the required
details to the decoder for creating the preliminary segmentation mask. The SE block
promotes feature representation by capturing inter-channel dependencies. As a result, the
model can prioritise crucial features while suppressing less informative ones. Integrating
softmax and ReLU activation functions signifies the utilisation of non-linear mapping,
while incorporating the recurrent residual convolutional layer (RrCL) helps capture deeper
layer characteristics by enhancing the RrCL block by incorporating two RCL units. The
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RCL expansion strategy involves expanding the RCL to two-time steps (T = 2) to extract
valuable features further.

Additionally, the features of the encoder are improved using Attention Gating Mod-
ules (AGMs) that focus on specific areas of interest without losing the spatial resolution
of the feature maps. The resulting feature maps are then up-sampled and sent to the
decoder, along with a zero-shot linear classifier (ZsLC) that generates the final classified
segmentation output with improved accuracy. The flow diagram in Figure 4 illustrates the
process of the proposed methodology.
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2.4.1. Encoder

The present study constructed a DL encoder from scratch using a series of conv and
max-pooling layers, repeated four times with the same number of filters. To prevent
overfitting, we added a dropout layer after each max-pooling layer. Instead of a dense
layer, we used a single conv layer that acted as a bottleneck in the network, separating the
encoding and decoding networks. The Rectified Linear Unit (ReLU) activation function
is employed to represent the non-linear mapping into the model [43,44]. The SE block,
which is exhibited in Figure 5, is then involved in enhancing the feature maps and learning
accurate boundaries of Sella structures in cephalometric radiographic images [44,45]. In
the squeezing step Zsqueeze, ∈ Rc reduces the spatial dimensions of feature maps to a
1 × 1 representation using global average pooling, while in the exciting step Zexcite ∈ Rc,
learnable weights are applied to the squeezed feature maps to recalibrate channel-wise
information. The mathematical equation below illustrates the SE combination:

SE = γ2

(
W2 × γ1

(
W1 ×

1
H ×W ∑ i∑ jXijc

))
⊗ X, (1)

where γ2 denotes the softmax activation function, γ1 denotes the ReLU activation function,
W1 and W2 are learnable weight matrices, H and W are spatial dimensions, and × denotes
matrix multiplication.
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Moreover, to enhance the encoder’s ability to integrate context information, a recurrent
residual convolutional layer (RrCL) is incorporated in individual steps [44,46]. The RrCL
consists of 3 × 3 convolutions, which allows for a deeper model and better accumulation
of feature representations across different time steps. However, the use of RrCL leads
to an increase in the number of feature maps and a reduction in size by approximately
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half. In addition, batch normalisation (BN) is applied after each convolution operation to
regularise the model and reduce internal covariate shifts [44,47]. In the RrCL block, the
network output Oi at time step ts can be mathematically described by the equation below,
assuming ωi as the input of the ith layer and (p, q) as the localised pixel in the input on
the nth feature map, as illustrated in the accompanying figure.

Oi(p,q,ts)
= (Wc

n)
T ×ωi(p,q,ts)

+ (Wr
n)

T ×ωi(p,q,ts−1)
+ bn, (2)

where Oi is the output at position (p, q) in the nth feature map of the ith layer at time step
ts, with (Wc

n)
T and (Wr

n)
T as weight matrices, ωi as the input at time step ts, ωi(p,q,ts−1)

as
the input at time step ts−1, and bn as the bias term for the nth feature map. The recurrent
convolutional unit’s output ω(i + 1) is then sent to the residual unit, which is represented
by the following equation:

ω(i + 1) = ωi + FO(ωi, τi) (3)

The RrCL takes inputs ωi and produces outputs FO(ωi,τi), which are utilised in the
encoder and decoder layers of the proposed network’s down- and up-sampling layers.
The subsequent sub-sampling or up-sampling layers rely on the final output ω(i + 1) as
their input.

2.4.2. Decoder

The decoder blocks in the DL network use transposed convolution for up-sampling
the feature maps, effectively increasing their size. However, spatial resolution is preserved,
and output feature map quality is improved through fully connected connections between
the encoder’s and the decoder’s output feature maps. Each decoding step involves up-
sampling the previous layer’s output using the Rr-Unit, which halves the feature map
count and doubles the size. The final decoder layer restores the feature map size to the
original input image size. Batch normalisation (BN) is employed during up-sampling for
stability and convergence acceleration during training, and the BN output is then passed to
the Attention Gating Modules (AGMs) [44,48]. Additionally, a zero-shot linear classifier is
incorporated with AGMs to further enhance the model’s classification capabilities [49].

The network utilises AGMs to enhance the down-sampling output and combine it
with the equivalent features from the decoder, which prioritises high-quality features
and helps to preserve spatial resolution, ultimately enhancing the quality of the feature
maps. In addition, a zero-shot linear classifier is incorporated to enhance classification
performance further. The combination of AGMs and the linear classifier improves feature
representation and classification accuracy, making the approach well-suited for multi-class
classification tasks. First, the attention values are calculated for each individual pixel of
all the input features ωi

p. Then, the gating vector δp is applied to each pixel to capture
pixel-wise information for fine-grained details and local contextual information, resulting
in accurate and discriminative classification STm+1 outcomes. The additive equation is as
follows:

βi
p = Smax

(
STm+1

(
γ2

(
ϕT
(

γ1

(
W

ω
Tip

+ WδT × δp + Bδ

))
+ Bϕ

)))
, (4)

where the activation functions ReLU (γ1) and sigmoid (γ2) are utilised in the Attention
Gating Modules (AGMs), along with linear transformation weights (Wω) and (Wδ) and
biases (Bδ) and

(
Bϕ

)
. The introduction of STm+1 enables a tailored transformation of

attention values for multi-class classification, thereby improving the model’s accuracy and
performance in handling multi-class tasks. Prior to applying the activation functions γ1
and γ2, attention values are transformed using the transpose of variable ϕ, identified as ϕT .
The final prediction output is generated using a SoftMax activation function.
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2.5. Performance Evaluation Metrics

This study used six image operations that included different transformations such
as scaling, flipping 360 degrees, Gaussian blur addition, histogram colour adjustment,
Gaussian noise addition, and elastic 2D modification. In addition, the magnitude and scale
of the elastic deformation were adjusted using Alpha and Sigma, and the study was divided
into seven values for easy magnitude range location. The experiments were conducted
on a professional Windows operating system with a Ryzen computer that had 32 GB of
memory and a 16 GB RTX graphic processor. The network could predict segmented images
of 512 px and accept tests on images of any size. After testing various combinations, it
was determined that a batch size of 4, along with learning rates of 0.001, beta values of
0.9 and 0.999, and 2170 iterations for 70 epochs, yielded satisfactory results [50]. The neural
network framework Keras, which is open-source and written in Python, was used alongside
TensorFlow.

To measure the similarity between the predicted and true segmentations, the mean
Intersection Over Union (IoU) was used, which is a comparison metric between sets [51]. It
assesses the accuracy of segmentations predicted by different models by comparing their
outputs to the ground truth. Specifically, the IoU for two sets, M and N, can be defined
as follows:

Jindex =
|M ∩ N|
|M ∪ N| =

|M ∩ N|
|M|+ |N| − |M ∩ N| , (5)

where the images are composed of pixels. As a result, the final equation can be adjusted to
represent discrete objects in this manner:

Jindex =
1

num

4

∑
C=1

ωC

num

∑
Pi=1

 lC
Pi

ˆlC
Pi

lC
Pi
+ ˆlC

Pi
− lC

Pi
ˆlC
Pi

 (6)

To address the class imbalance, the study incorporated class weights ωC into the
network. For this problem, ωC = 1 was assigned to classes C ∈ [1.....4] for simplicity. To
enhance robustness and evaluate the loss performance, the study employed the Binary
Logistic loss (BLogloss), which is shown in Equation (7). This formula includes CT as the
actual mask image, CTs as a single element of that mask, CP as the projection of the output
image, and CPs as a single feature of that projection. In this equation, lC

Pi
represents the

binary value (label), and ˆlC
Pi

represents the estimated probability for the pixel Pi of class C.

BLogloss = ∑
s
−(CTslogCPs + (1− CTs)log(1− CPs)) (7)

when CPs has a value of 1 or 0, the result of log(0) is undefined. To avoid this, the values of
CP are restricted to a range of [δ, 1− δ]. The Keras framework handles this by setting δ to
1× 10−7.

In order to further evaluate the performance of segmentation models, this study
employed the dice similarity coefficient, a statistical metric. The dice coefficient, also known
as the Sørensen–Dice coefficient or F1 score, is calculated by multiplying the overlapping
area of actual and predicted images by two and then dividing it by the sum of the pixels in
those images [52]. By measuring the spatial overlap, the dice coefficient provides a measure
of accuracy and predictability for the segmentation model:

DSC =
2TP

(2TP + FN + FP)
(8)

Unlike the dice coefficient, which overlooks many instances of improper segmentation,
the IoU (Intersection over Union) only takes into account one occurrence of imprecise
segmentation. This means that an algorithm with occasional errors will have a lower IoU
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score than the dice coefficient. However, the dice coefficient is a better indicator of average
performance when compared with each individual.

After analysing the performance metrics, the morphological types of the ST were classi-
fied using a colour-coded system for each of the defined classes, including the background.
Figure 6 illustrates this colour-coding representation for the ST types.
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3. Results

This section accounts for the results obtained from the proposed method’s quantitative
and qualitative evaluation, utilising three subgroups of the collected cephalometric dataset.
The cephalometric dataset was divided into three subgroups based on the complexity of the
ST, ranging from regular to complex altered structures. These subgroups include regular
ST, moderately altered ST, and complex altered ST, which require more detailed extraction.
To obtain optimal results, different techniques of data pre-processing, augmentation, and
hyper-parameter fine-tuning were implemented. The collected dataset consists of 1653 im-
ages, which is an odd number. Therefore, a split ration of 70:15:15 was applied for model
evaluation, and a k-Fold cross validation method, where k size is five, was used for equal
size distribution. The quantitative results compare how well the proposed method can
identify different anatomical structures in datasets with varying levels of complexity in
Sella features. Meanwhile, the qualitative analysis provides an observable illustration of
the performance of the proposed method.

The proposed hybrid SellaMorph-Net model’s quantitative results are presented in
Tables 1–3. This model was specifically designed to identify and classify different types
of ST. The model reduces the input size of the images and then extracts features from the
dataset to identify Sella types. The model was created from scratch using a consistent batch
size of 4. It was optimised using AGM with a momentum value of 0.99. The learning rate
for training was initially set at 0.001 and gradually decreased with each training epoch
until it reached a specific number, which is 0.00001. The evaluation results of the proposed
hybrid model on the regular ST subgroup are presented in Table 1. Table 2 shows the results
for the moderately altered ST subgroup, and Table 3 presents the results for the complexly
altered ST subgroup using the cephalometric radiographic dataset employed in this study.

First, we trained the proposed SellaMorph-Net model for the divided subgroups of the
cephalometric radiographic dataset with augmentation and 2170 iterations and indicated
this in Tables 1–3. At the end of the 70th epoch and 2170th iteration, the time elapsed for the
regular ST subgroup was 02 h 25 min 44 s, while the time elapsed for the moderately altered
ST subgroup and complex altered ST subgroup was 02 h 29 min 07 s and 02 h 32 min 17 s,
respectively. Similarly, the mini-batch accuracy values of the regular ST subgroup were
equal to 99.57%, while these values were 99.51% and 99.49% for the moderately altered ST
and complexly altered ST subgroups, respectively.
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Table 1. Evaluation metrics of the proposed SellaMorph-Net model for regular ST subgroup of the
dataset.

Epoch Iteration Time Elapsed
(hh:mm:ss)

Mini-Batch
Accuracy

Base LEARNING
Rate

1 1 00:03:27 88.45% 0.001
10 310 00:20:43 99.13% 0.001
20 620 00:41:26 99.19% 0.001
30 930 01:02:09 99.23% 0.001
40 1240 01:22:52 99.31% 0.001
50 1550 01:43:35 99.36% 0.0001
60 1860 02:04:18 99.43% 0.0001
70 2170 02:25:44 99.57% 0.00001

Table 2. Evaluation metrics of the proposed SellaMorph-Net model for moderately altered ST
subgroup of the dataset.

Epoch Iteration Time Elapsed
(hh:mm:ss)

Mini-Batch
Accuracy

Base Learning
Rate

1 1 00:02:57 86.67% 0.001
10 310 00:20:07 98.93% 0.001
20 620 00:42:29 99.07% 0.001
30 930 01:04:59 99.13% 0.001
40 1240 01:25:13 99.29% 0.0001
50 1550 01:46:03 99.34% 0.0001
60 1860 02:10:57 99.44% 0.0001
70 2170 02:29:07 99.51% 0.00001

Table 3. Evaluation metrics of the proposed SellaMorph-Net model for complex altered ST subgroup
of the dataset.

Epoch Iteration Time Elapsed
(hh:mm:ss)

Mini-Batch
Accuracy

Base Learning
Rate

1 1 00:02:42 84.27% 0.001
10 310 00:21:27 98.64% 0.001
20 620 00:43:57 98.73% 0.001
30 930 01:07:48 98.97% 0.0001
40 1240 01:27:03 99.15% 0.0001
50 1550 01:50:00 99.23% 0.0001
60 1860 02:13:53 99.37% 0.00001
70 2170 02:32:17 99.49% 0.00001

The experiments were conducted to evaluate the performance of the proposed model
through a comparative study using two state-of-the-art pre-trained models, e.g., VGG-19
and InceptionV3, for identifying different morphological shapes of ST. According to Table 4,
the proposed CNN model efficiently identifies various shapes of the Sella, ranging from
regular to complex altered subgroups. This is achieved by distinguishing between bridging,
circular, oval, and flat classes.
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Table 4. Class based training and validation IoU results of VGG-19, InceptionV3, and SellaMorph-Net
(proposed CNN approach).

Class Bridging Circular Flat Oval

Training
IoU

Validation
IoU

Training
IoU

Validation
IoU

Training
IoU

Validation
IoU

Training
IoU

Validation
IoU

VGG-19 0.4372 ± 0.07 0.4526 ± 0.05 0.3668 ± 0.04 0.3694 ± 0.03 0.40 ± 0.03 0.4327 ± 0.03 0.2433 ± 0.06 0.2447 ± 0.03
InceptionV3 0.4357 ± 0.07 0.4381 ± 0.06 0.3847 ± 0.03 0.40 ± 0.03 0.4325 ± 0.03 0.3793 ± 0.07 0.2976 ± 0.03 0.2484 ± 0.07
SellaMorph-

Net 0.6539 ± 0.03 0.6493 ± 0.02 0.6370 ± 0.01 0.5933 ± 0.01 0.6517 ± 0.01 0.5876 ± 0.03 0.5663 ± 0.02 0.5718 ± 0.03

Furthermore, the study discovered that it was possible to achieve stable and high-score
graphs for identifying single non-linear shapes in a specific subgroup of cephalometric
radiographic data. However, the state-of-the-art models VGG-19 and InceptionV3 were
less efficient on the cephalometric dataset, sometimes identifying outliers instead of actual
morphological types and leading to false classification.

In addition, the results demonstrate that SellaMorph-Net has a faster convergence
of the loss function and significant mean pixel-wise IoU efficacy than the state-of-the-art
models under the same training conditions. Furthermore, the proposed model’s training
and validation score variation is less, between ±0.03 and ±0.01, compared with the state-
of-the-art VGG-19 and InceptionV3 (±0.07 and ±0.03) models. These outcomes show that
SellaMorph-Net is more reliable in identifying ST types in cephalometric images based on
the specified colour scheme and class provided, which is crucial in accurately detecting
different morphological types of ST.

Table 5 presents a summary of the performance results achieved by three models
on the cephalometric image dataset. The performance metrics included training and
validation accuracy, mean/average IoU, and dice coefficient scores. Among the three
models, SellaMorph-Net had the highest mean IoU at 71.29% and a dice coefficient of 73.24%
in Sella-type segmentation, higher than VGG-19 and InceptionV3. The Dice Coefficient
score measures how similar the predicted values are to the ground truth values and
is identical to the IoU score. Additionally, SellaMorph-Net is a hybrid model that is
hyperparameter-tuned on the cephalometric X-ray image subgroup datasets, which resulted
in a higher IoU and dice score compared with the other models.

Table 5. Performance results of VGG-19, InceptionV3, and proposed models SellaMorph-Net.

Model Accuracy (%) Pixel-Wise IoU Mean IoU Dice
Coefficient

Train IoU Validation
IoU

VGG-19 84.479 0.5637 0.5719 0.5974 0.6188
InceptionV3 87.283 0.5654 0.5903 0.6029 0.6324

SellaMorph-Net 97.570 0.7329 0.6973 0.7129 0.7324

We assessed the proposed SellaMorph-Net model performance through a comparative
analysis with VGG19 and Inception V3, which are state-of-the-art models. The following
performance matrix evaluates all the considered models (Precision (PS), Sensitivity (Sns),
Specificity (Sps), and F1-score (F1s)) shown in Figure 7 and Table 6.
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Table 6. Performance Matrix for Predictive Analysis on Proposed Model, VGG19, and InceptionV3
model.

Model PS Sns Sps F1s

VGG-19 76.163 82.096 90.419 73.448
InceptionV3 86.154 90.667 89.922 90.090

SellaMorph-Net 96.832 98.214 97.427 97.314

The findings demonstrate that SellaMorph-Net achieved significantly higher accuracy
than the state-of-the-art models. The proposed model outperformed in correctly identifying
positive instances (Sensitivity), accurately identifying negative instances (Specificity), and
achieving a balanced performance between precision and recall (F1-score). The confusion
matrix and performance graphs suggest that the SellaMorph-Net model provides more
accurate characterizations (PS = 96.832, Sns = 98.214, Sps = 97.427, F1s = 97.314) than
the compared models VGG19 (PS = 76.163, Sns = 82.096, Sps = 90.419, F1s = 73.448) and
InceptionV3 (PS = 86.154, Sns = 90.667, Sps = 89.922, F1s = 90.090). Thus, the proposed
model seems more accurate and reliable for predicting the Sella structure.

In order to assess the qualitative performance and efficacy of the suggested method,
the study presents visual outcomes for the segmentation of regular, moderately altered, and
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complexly altered ST structures in Figures 8–10. These structures were selected based on
the cephalometric dataset’s complexity. In addition, the study compared the accuracy of our
hybrid SellaMorph-Net model against VGG-19 and InceptionV3. The results demonstrated
that while VGG-19 and InceptionV3 were able to provide an approximate ST type, they
were unable to predict the detailed morphological structures of ST.
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On the other hand, SellaMorph-Net predicted the ST types with high precision for
all three dataset subgroups. Furthermore, the complex altered ST structure in Figure 10
was evaluated, and it was found that SellaMorph-Net predicted the edges of these complex
altered categories with greater accuracy and smoothness than the other two models. Further,
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the proposed model accuracy is validated using 400 cephalometric dataset images available
publicly, and the results show the significant performance of the proposed hybrid model in
the discussion section (Table 7).

Table 7. Comparative testing evaluation of state-of-the-art models and proposed approach on our
dataset and publicly available dataset.

Method Train Dataset Test Dataset IoU Dice Coefficient

VGG19 Our dataset
Our dataset 0.5703 0.5925

IEEE ISBI dataset 0.5753 0.5940

InceptionV3 Our dataset
Our dataset 0.5913 0.6265

IEEE ISBI dataset 0.5897 0.6108

Proposed
SellaMorph-Net Our dataset

Our dataset 0.7314 0.7768
IEEE ISBI dataset 0.7864 0.8313

4. Discussion

The extended usage of computer-aided diagnostics (CAD) in healthcare highlights the
need for a reliable and consistent system for cephalometric radiographs that can be contin-
uously evaluated and applicable to potential medical diagnoses. This research presents
a new hybrid approach to autonomous Sella structure segmentation in cephalometric
radiographs. The proposed method employs an encoder-decoder CNN architecture with
attention-gating modules (AGMs) and recurrent residual convolutional (RrCL) blocks,
replacing traditional convolutional blocks. Extensive experimental evaluations show that
the proposed hybrid encoder-decoder CNN architecture surpasses existing methods for
non-linear structural segmentation.

The figures presented in this study demonstrate the efficacy of the proposed method
in segmenting complex non-linear structures of the ST in lat ceph radiographs. The segmen-
tation was successful for various classes of ST, including bridging, circular, flat, and oval in
severely anomalous structures, indicating its potential for clinical prognostics. Additionally,
the segmentation of the Sella was conducted on a dataset that included regular and complex
subgroups, allowing for the evaluation of dataset combinations. The study utilised statis-
tical methods such as mean IoU (Jaccard Index) and Dice Coefficient (Equations (5)–(8))
to evaluate the performance of the proposed and pre-trained models. Furthermore, the
accuracy and pixel-wise IoU of each architecture were compared with determine which
performed better.

Tables 1–3 present the mean/mini-batch accuracy and time elapsed for three different
subgroups of the SellaMorph-Net model: regular, moderately altered, and complex altered
ST, respectively. The reported time elapsed refers to the inference time required for the
model to predict each subset. Table 4 presents the training and validation IoU results for
the state-of-the-art VGG-19 and InceptionV3 models and the proposed SellaMorph-Net
model based on morphological classes of the Sella. The table also indicates the variation in
training and validation accuracy using a pulse-minus (±) sign.

The results of our study on the SellaMorph-Net model are presented in Table 5. It
includes the scores for global accuracy, pixel-wise intersection-over-union (IoU) for training
and validation, mean IoU, and dice coefficient. The findings were also compared with the
results obtained under 5-fold k-cross-dataset settings. Our proposed method outperformed
the pre-trained models VGG-19 and InceptionV3 in terms of mean IoU and dice coefficient
scores, as presented in Table 5. In order to evaluate the effectiveness of the proposed model
against other advanced models, we utilised performance matrices and created confusion
matrix graphs, which helped us determine the model’s robustness, as shown in Table 6 and
Figure 7. The qualitative results from Figures 8–10 also support the quantitative findings,
especially when evaluating the model in cross-dataset settings.

The hybrid SellaMorph-Net model has several advantages over the InceptionV3 [26]
and U-Net [32] models. It offers an end-to-end solution and has demonstrated remarkable
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accuracy in analysing full lat ceph radiographs. Previous studies using InceptionV3 and
U-Net models only considered the ST RoI in CBCT and X-ray images, respectively, and
excluded the complex and crucial bridging structures, focusing only on regular circular, flat,
and oval classes. Unlike these models, the proposed SellaMorph-Net model requires no
significant image post-treatment, substantially reducing performance time. Additionally,
the AGM and SE blocks are used in the network to enhance the input images’ feature
quality and the segmentation map to direct the network. The zero-shoot classification
approach and the colour-coded layer added to the model effectively reduce outliers and
misclassification.

Further, to evaluate the performance of the proposed hybrid model, we applied testing
on a public dataset of the IEEE ISBI 2015 Challenge [53] for cephalometric landmark
detections. The dataset consists of 400 cephalometric radiograph images, of which 150 are
for training, 150 for validation, and 100 for testing.

Table 7 provides the comparative results of the proposed method’s performance for
our and publicly available datasets.

Although the proposed model has demonstrated outstanding performance in various
settings, we have identified some limitations that must be considered. Firstly, the proposed
system only achieves segmentation with colour-coded class differentiation. Secondly, this
approach is computationally expensive due to the use of advanced feature enhancement
techniques and the encoder brought in. To provide a more comprehensive CAD pipeline
for lat ceph radiographs, we plan to incorporate additional downstream tasks such as ST
classification and identification of dentofacial anomalies in future research. Additionally,
we aim to increase the model’s speed by using pruning techniques to reduce the number of
model parameters. Table 8 presents an overview of studies that have reported Sella Turcica
segmentation. Upon examining the literature, it becomes apparent that the ST is usually
segmented as round, oval, or flat. However, the proposed model can accurately segment
the Sella Turcica not only from regular ST but also from complex altered ST, including
circular, flat, oval, and bridging classes.

Table 8. Detailed overview of studies reporting Sella Turcica segmentation and classification.

Methods Year Method Description Datasets Performance

Shakya et al. [24] 2022

Manual annotations
performed by dental experts;

U-Net architecture;
backbone: VGG19, ResNet34,
InceptionV3, and ResNeXt50

Consider randomly selected
full lat ceph radiographs

IoU: 0.7651, 0.7241; dice
coefficient: 0.7794, 0.7487

Duman et al. [26] 2022

Polygonal box annotation
method performed by

radiologists; U-Net
architecture; Google

InceptionV3

Consider Sella Turcica roi in
CBCT dataset

Sensitivity: 1.0; Precision: 1.0;
and F-measure values: 1.0

Feng et al. [32] 2023
Labelme software used for

annotation; U-Net
architecture

Consider Sella Turcica roi in
X-ray dataset Dice coefficients: 92.84%

SellaMorph-Net
(proposed model) -

Annotation performed by
radiologists, dental experts,
and researchers; a hybrid

“AGM + RrCL + SE +
Zero-shot classifier” pipeline

developed from scratch

Full lat ceph radiographic
images are considered;

subdivide dataset into four
groups based on the

morphological characteristics
of Sella; dataset group

divided into subgroups
based on the structure
alteration complexity

Data subgroups mini-batch
accuracy: 99.57%, 99.51%,

and 99.49%; class-based IoU
score: 0.6539 ± 0.03,

0.6370 ± 0.01, 0.6517 ± 0.01,
and 0.5663 ± 0.02; global

accuracy: 97.570%; mean IoU:
0.7129; dice coefficient:

0.7324
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5. Conclusions

The study presents a hybrid framework that leverages deep learning to effectively
identify various Sella Turcica (ST) morphologies in full lateral cephalometric (lat ceph)
radiographic images, including bridging, circular, oval, and flat. The framework employs
an encoder-decoder network to iteratively refine the network output by merging it with the
input data and passing it through it to Attention Gating Modules (AGM) and Squeeze-and-
Excitation (SE) blocks. This process allows for the identification of anatomical characteristics
within the radiographic images. To enhance the feature maps and prioritise regions of
interest, the proposed framework utilised RrCL and AGMs instead of relying solely on
conventional convolutional layers.

By accurately extracting data from the encoder-decoder network, the proposed frame-
work facilitates precise segmentation of anatomical characteristics. This assists healthcare
professionals in predicting various dentofacial anomalies associated with ST structures.

Moving forwards, enhancement to the anatomical feature segmentation pipeline
could involve using synthetically generated samples, produced via generative adversarial
networks, to enhance performance. Further improvements may include downstream tasks
such as ST structure classification and the identification of dentofacial anomalies related
to the defined ST structures. This approach will contribute to a more comprehensive
computer-aided diagnosis (CAD) for cephalometric radiographs. Moreover, to bridge
the gap between high performance and interpretability, our future work will consider
incorporating explainable AI techniques. This approach can help elucidate the decision-
making process of our deep learning model, making its predictions more transparent and
interpretable to healthcare professionals. Additionally, a more advanced segmentation
and classification method will be investigated to achieve more accuracy and reliability in
anatomical structure segmentation and dentofacial anomaly classification.
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