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Abstract: The article is focused on testing the mechanical, physical and chemical characteristics of the
selected protective clothing. Old anti-chemical protective clothing formerly used in tactical exercises
(but never during a real intervention) was selected. Protective clothing has an expected lifespan
when used correctly. When in use, external influences can negatively affect and function of these
garments. The article describes the preparation of individual samples of protective clothing which
were exposed to the effects of selected inorganic and organic chemicals, water vapor, UV radiation
and long-term exposure to elevated temperatures. The prepared samples were subsequently torn on
the tearing device, and the change of mechanical and physical properties was monitored. The stress
at which the samples broke and the length they reached at the moment of breaking were measured.
The exposure to individual chemicals, UV radiation and elevated temperature resulted in decreases
in the modulus of elasticity in each case. The largest decrease was recorded in samples treated with
hydrogen peroxide and the smallest in samples exposed to long-term thermal load.

Keywords: chemical-resistant clothing; civil protection; occupational exposure; occupational health;
occupational safety; protective clothing; quality of life

1. Introduction

Contrary to popular belief, firefighters are occupationally exposed not only to thermal
but also biological, chemical and physical hazards resulting from fire. Thus, their clothing,
including its material, fabric types, layers and properties, must withstand these challenges
in order to provide sufficient protection. Firefighters’ protective clothing undergoes con-
tinuous modifications in terms of improve air/liquid impermeability, thermal insulation
capacity and integrity, thus increasing the protection provided. To avoid injury and provide
sufficient protection of the garment and the equipment, the International Organization for
Standardization (ISO), the European Committee for Standardization (EN) and the National
Fire Protection Association of the USA (NFPA) work constantly on certified firefighter
products. However, the clothing may be damaged during individual interventions, and
its properties may change as a result of this damage. Therefore, the aim of our work was
to investigate the changes in the properties of protective clothing due to various external
factors. Some authors have already pointed to the importance of focusing on this type of
danger [1,2].

Officers of the Fire and Rescue Service (F&R Service) in Slovakia enter into various
situations during their service in which they must go to great efforts in order to help others,
including putting their own lives on the line. However, there are also cases where, in
addition to normal equipment, various special apparatus, clothing and means are used
in order to protect the life and health of the intervening firefighter in accordance with EU
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Standards. For this purpose, anti-gas services are used in the F&R Service. Their use is
approved by the Presidium of the F&R Service, and their means, use, control and testing
are described in Instruction No. 70/2003 (instruction of the President of the Fire and Rescue
Corps) [3,4]. In particular, this instruction describes the organization of work involved
in the use, testing, maintenance and repair of anti-gas services, as well as the theoretical
and practical training of the F&R Service officer in the use of these services during fire
incidences or other hazards.

Individual emergencies include situations associated with chemical, technological or
ecological accidents where the release of hazardous substances occurs or is expected to
occur; these substances not only endanger the life and health of people present but also
cause environmental pollution. Anti-gas services are used by members of the F&R Service
during interventions in hazardous environments and are intended for use in searching for
hazardous substances in the intervention area and in capturing and collecting hazardous,
neutralizing, decontaminating or sorption substances. There are also means intended for
reviving the vital functions of various filling, control, measuring and testing devices, as well
and firefighting equipment intended for carrying out chemical-technical, epidemiological–
hygienic and ecological activities [3].

In various hazardous interventions, it is important that firefighters protect their lives
and thus their health. To this end, protective clothing is used to protect the surface of the
body. There is protective clothing used for protection against chemical agents and biologi-
cal materials, protective clothing for protection against thermal radiation and protective
clothing for protection against radioactive fallout, as well as combined protective clothing.
All types of protective clothing must be used according to the instructions specified by the
manufacturer. Therefore, in order for protective clothing to be deployed in an intervention,
an order is needed from the intervention commander, who considers the situation at the
exposed articular site and subsequently issues an instruction for the use of each type of
protective clothing [4–8].

Moreover, protective clothing for firefighters should meet special requirements con-
cerning materials, layers and physicochemical properties, which are described in the Euro-
pean Standards: EN 469:2020, which concerns basic clothing for firefighting, referring in the
text to so-called “structure fires” [9]. The EN 15384:2020 document sets out new laboratory
methods and requirements by which to protect the firefighter’s body—except for the head,
feet and hands—using clothing that is worn during wildland firefighting [10]. Firefight-
ers are also exposed to other harmful occupational conditions besides high temperature,
e.g., during rescue operations. The EN 16689:2017 standard covers protective clothing for
technical rescue [11]. The EN 1486:2007, which is available in the English language, is the
standard indicating personal protective reflecting clothing for specialized firefighting [12];
however, in the Polish language, there is the newer PN-EN 1486:2009 standard, wherein
the requirements for reflecting thermal radiation clothing for special firefighting action
have been reported [13]. These two standards consider the use of whole-body protection,
including protection of the respiratory tract, head, hands and feet. There are also special
European Standards concerning firefighters’ head protection (EN 13911:2017; EN 443:2008;
EN 16471:2014; EN 16473:2014 [14–17]), hands protection (EN 659:2003+A1:2008 [18]), feet
protection: (EN 15090:2012 [19]) and eyes protection: (EN 14458:2018 [20]).

Protective clothing must meet the required criteria and standards. Moreover, its
expected lifespan is dependent on the proper storage and care of the suits. There are several
studies that emphasize the need to address external influences that can negatively affect
the life and quality of protective suits and thus reduce their protective properties [21,22].
The studies mainly deal with the structures of substances themselves and their disruption
after use and the influence of various conditions. The problems pertain to repeatability
and difficulties in interpreting the results. For this reason, it was necessary to carry out
testing which can be repeated under certain conditions without the need to examine the
very structure of the tested substance. The test results can be verified for other protective
items of clothing made of similar material and will enable the crisis manager to assess the



Appl. Sci. 2023, 13, 9123 3 of 13

suitability of used protective clothing for use. Based on the obtained results, it will then be
possible to achieve sufficient protection of persons who are directly involved in managing
crisis phenomena. They will not have to worry that the material used does not meet the
required protective properties.

MSA Auer Vautex Elite chemical-resistant clothing was used for testing in these ex-
periments. The tested chemical-resistant garments were classified as category III personal
protective equipment. This category includes personal protective equipment that is de-
signed to protect life and health and to protect against hazards that cannot be detected in
time. Personal protective equipment provides a degree of protection against biological and
chemical contamination and ionizing radiation. The personal protective equipment in this
category is also designed to protect against hazardous gases, liquids or solid particles. This
equipment is also used in high- or very low-temperature environments, in work where
contact with electricity may occur or in work at heights or depths [23–25].

Protective clothing can be classified within the group of pressurized chemical pro-
tective suits. The entire protective suit is covered by a layer of elastomer and laminate
foil. The suit consists of a suit body, a replaceable visor, a replaceable glove system, boots
and the sealed seams of the protective garment. The total weight is approximately 9 kg.
It provides protection not only against solid, liquid and gaseous chemicals but also from
radioactive contamination. Simultaneously, it provides high protection against flames with
a temperature of up to 800 ◦C for 5 s. It can also be used in conditions where the ambient
temperature ranges from −30 ◦C to +60 ◦C. This type of protective clothing must be stored
within the temperature range 15–25 ◦C [26,27]. With regard to the service life of the suit, a
time interval of approximately 10 years can be discussed [28]. Due to the initial purchase
price, these materials are usually used even after this period. Therefore, it is necessary to
test how external influences may affect the quality of protective clothing.

The aim of this study was to use the described experiments to verify the suitability of
protective chemical-resistant clothing over its repeated use.

2. Materials and Methods

Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) meth-
ods were used simultaneously for the thermal analysis of the filaments on a Mettler Toledo
TGA/DSC 2 instrument in the temperature range 25–750 ◦C, with a temperature rise rate
of 20.00 K/min and an air flow rate of 50.0 mL/min in an alumina crucible with a volume
of 70 µL.

The experiment aimed to monitor the mechanical, physical and chemical properties
of chemical-resistant clothing meeting the criteria of the EN and ISO standards to protect
firefighters against harmful occupational conditions. All tests were performed on a suit that
had been reused multiple times in exercises. It was not contaminated with any chemical
substance, but had been mechanically stressed during repeated donning, decontamination,
drying and storage. A control sample was collected from this protective clothing. The
firefighters’ protective clothing was decommissioned and was provided to the Occupational
Safety Research Institute by an unnamed firefighting unit from the Žilina region of Slovakia.
The protective clothing was used in tactical exercises and had never been used in an
intervention. The samples that were cut from the suit were observed for changes.

2.1. Preparation of Chemical-Resistant Garment Samples for Chemical Application

The protective clothing tested was cut into squares measuring approximately 13 × 13 cm.
For testing, the most common chemicals that firefighters come into contact with were chosen.
These chemicals were selected after consultation with the clothing provider and with regard
to the most probable chemicals used in the given location during interventions. Subsequently,
on one square, part of the suit was exposed to H2SO4 (sulfuric acid) 96%; on another square,
HNO3 (nitric acid) 65% was dropped. Hydrogen peroxide (H2O2) (30%) and dimethyl
sulfoxide (C2H6OS, p.a.) were added to parts of the garment. Subsequently, another part of
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the suit was exposed to UV radiation and long-term (18 h) temperature elevation. Petri dishes
were not used for tests. The areas of the garment were straight and taut.

For exposure of protective clothing to the effects of the selected chemicals, adding the
inorganic and organic chemicals to the individual samples was completed in accordance
with the mock-up presented in Figure 1.
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Figure 1. Mock-up of dropping of the selected chemicals onto protective clothing.

The first substance dropped onto the test protective clothing was sulfuric acid (H2SO4).
The droplets spread over the suit and their color changed from brown to black, as shown in
Figure 2a. The second chemical dropped was the inorganic compound nitric acid (HNO3).
After application, the drops spread over the clothing and created patterns of various shapes
and change color to black. The edges of the figures were dark black, and the interior of
the figures were a faint shade of black, as shown in Figure 2b. The third substance used
was hydrogen peroxide (H2O2). The droplets spread but did not cause any staining of
the garment and no changes were visible, as shown in Figure 2c. The last substance used
was the organic chemical dimethyl sulfoxide (C2H6OS). In this case, the drops also spread
but did not cause any coloration of the garment and no changes were visible, as shown in
Figure 2d.

All chemicals were left on the samples for 60 min. After this time, they were rinsed:
each inorganic chemical sample was rinsed with 50 mL of distilled water, and each organic
chemical sample was first rinsed with 10 mL of ethanol and then with 50 mL of distilled water.

The rinsed samples were placed in a MEMMERT ULE 400 electric drying oven with
the temperature set at 35 ◦C. The samples were left in the oven for 2 h. All samples were
completely dried in that time. The parts of the protective clothing to which sulfuric acid
was applied were still wet and could not be dried completely.
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2.2. Preparation of Samples for Exposure of Protective Clothing to UV Radiation and Prolonged
Exposure to Elevated Temperature

The protective suit was exposed to UV radiation at temperatures of up to 100 ◦C for
approximately 20 min. Visually, no mechanical or other damage could be observed (see
Figure 3).
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In cases of intervention by firefighters, the protective suit is often exposed to elevated
temperatures. Therefore, the testing also focused on the influence of increased temperature
for a certain period of time. For 24 h, the suit was placed in a dryer where the temperature
was 65 ◦C. After removal, no damage could be observed.

TGA (thermogravimetric analysis, thermogravimetry) and DSC (differential scanning
calorimetry) were performed on the protective clothing samples that were exposed to UV
radiation and to prolonged elevated temperature.

2.3. Testing Methodology

The specimens prepared as described were tested in accordance with the standard for
static and mechanical tensile testing for plastics: CSN EN ISO 527 Plastics—Determination
of tensile properties. The specimens were supplemented with a control specimen (C) to
which neither chemical nor physical influences were applied.

For the tests, a tearing machine was used, which is a testing machine for the determi-
nation of the strength of materials, manufactured by VEB TIW (Thüringer Industriewerk)
Rauenstein, mechanical type, year of manufacture 1987; the machine meets the require-
ments of EN OSO 7500-1 for accuracy class 1. The distance between the upper and lower
jaws of the tearing machine was set to a distance of 40 mm.

The principle of the mechanical test used in the measurement is the short-term loading
of the test specimen with a defined load. The behavior of individual elastic materials
in the small strain region can be described by Hooke’s law, which defines a directly
proportional relationship between stress and strain. From the obtained values of F and
∆l using mathematical relations, the mechanical stress (1), the relative strain (2), and the
tensile modulus (3) were calculated.

σ = F/S (1)

σ—Mechanical stress (MPa);
F—Power (N);
S—Area (m2).

ε = ∆l/l (2)

ε—Relative deformation (−);
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∆l—Length increment after loading (m);
l—Length increment before loading (m).

E = σ/ε (3)

E—Tensile modulus of elasticity, also Young’s modulus (MPa);
σ—Mechanical stress (MPa);
ε—Stress-induced deformation (−).

The main evaluation criterion is the change in the modulus of elasticity (E) after
chemical exposure and physicochemical action.

To test the influence of physical conditions on the samples, UV radiation was used.
For the long-term exposure and elevated temperature, a MEMMERT ULE 400 electric
dryer was used. The samples thus exposed were also subjected to DTA and DSC. A
METTLER TOLEDO TGA/DSC 2 HT/1600/101 was used for this analysis. The samples
were weighed to an accuracy of 1 µg. The temperature range for organic compounds was
set to 25–750 ◦C with a heating rate, i.e., temperature rise, of 20 K/min. The volume of the
cup was 70 microliters, and the composition of the cup was alumina (AlO3). Data logging
was performed at 1 s intervals. The air flow rate was 50 l/min. The measurement was
carried out in an atmosphere of 80% nitrogen and 20% oxygen. For subsequent analysis,
the results were evaluated in the appropriate software.

The tests were performed on a small scale. Before measurement, the test materials
were placed in a climate chamber for two days, in which the temperature was set at 23 ◦C
and the humidity at 60%.

3. Results and Discussion

The measured values from the experiments (averages of five measurements) are
shown in Figures 4–6 for the chemical loading of the suit samples and in Figures 7–9 for
the physical loading of the suit samples.
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As shown in Figure 8, the biggest decrease in mechanical stress was observed for
sulfuric acid; it reached −23.17 MPa, which was 42.61%. More moderate decreases of
−27.05 and −25.70 MPa were recorded for nitric acid and hydrogen peroxide, which were
equivalent to 14.71 and 13.98%, respectively. The smallest decrease in mechanical stress was
recorded for dimethyl sulfoxide (−19.86 MPa), which was equivalent to 10.80%. All the
applied chemicals caused a decrease in mechanical stress, but not to the same extent [29,30].
As was expected, the greatest decrease in mechanical stress was caused by sulfuric acid.
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In the deformation evaluation, the applied chemicals caused different changes [31,32].
If, in the previous evaluation criterion, the measured values of mechanical stress were
observed to decrease in all cases, for deformation, we observe a decrease (not statistically
significant) of only −0.01, which amounts to 4.2%; for the other chemicals, we observe
an increase in deformation. For nitric acid, an equally small increase of +0.01 (4.2%) was
observed. Moreover, for hydrogen peroxide, an increase of +0.08, which amounts to 37.5%,
was reported. An increase of +0.02, which amounts to 8.33%, was observed for dimethyl
sulfoxide (see Figure 5).

For the tensile modulus of elasticity, as for the mechanical stress, a decrease was
observed for all the studied chemicals, but it did not follow the same order or have the same
values [32,33]. As can be seen from Figure 9, a decrease of −90.58 MPa in tensile modulus
was recorded for sulfuric acid, which was 39.52%. A milder decrease was recorded for
nitric acid, of −68.12 MPa, which was 29.71%. For hydrogen peroxide, the largest decrease
of −107.56 MPa was recorded, which was 46.92%. For dimethyl sulfoxide, a decrease of
−75.1 MPa was observed, which was 32.76%. All the applied chemicals caused a decrease
in mechanical stress, but not to the same extent [34]. As we expected, the greatest decrease
in mechanical stress was caused by sulfuric acid, because sulfuric acid is a strong inorganic
acid with hygroscopic and oxidizing properties.
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The physical effect on the chemical-resistant suit material was measured using the
same evaluation criteria and then expressed in terms of changes in mechanical stress, strain
and tensile modulus of elasticity [35,36].

When evaluating the change in mechanical stress, a decrease in the values for both
physical effects compared to the control sample was observed. For UV exposure, the
decrease was 14.74 MPa, which was 27.1%, and for conditions of 65 ◦C for 24 h, the decrease
was 7.2 MPa, which was 13.24% (see Figure 7).

In terms of physical effects, UV radiation had no effect on the deformation, with the
same average value measured as for the control sample [37–39]. In addition, the exposure
to heat at 65 ◦C for 24 h had very little effect for the change; it increased the deformation by
only +0.02, which was 8.33% (see Figure 8).

When evaluating the change in tensile modulus, a decrease in values compared to
the control sample was observed for both physical effects. For UV exposure, the decrease
was 59.32 MPa, which was 25.88%, and for exposure to 65 ◦C for 24 h, the decrease was
43.47 MPa, which was 18.96% (see Figure 9).

During the study, the following question emerged: would there be a change in thermal
stability in comparison to the original material? The sample was exposed to 65 ◦C for 24 h
in a drying oven or 2 h of UV irradiation equivalent to the level of “mountain sun”. TGA
and DSC were performed. The weight decay occurred at about 240 ◦C and was associated
with a mild exoeffect, which peaked and was terminated by an intense exoeffect with a
maximum at 560 ◦C. It is important to test protective materials to meet safety requirements
in companies [40].

Civil protection focuses on the prevention of crisis phenomena, the preparedness for
crisis phenomena, the response to crisis phenomena and the return to the original state
after the crisis [41]. Every organization tries to prevent the occurrence of a negative event
through prevention [42,43]. Despite this, it is not possible to completely eliminate the risk of
a crisis phenomenon, which is why it is necessary to pay sufficient attention to preparedness
for possible crisis phenomena [44,45]. This will enable a more effective response and a
smoother return to the pre-crisis state [46,47]. In the case of an event where a dangerous
substance is leaked, it is necessary for the responding firefighters or civil protection units
to have clothing that provides the necessary protection. After an intervention involving a
hazardous substance, protective clothing must be decontamination, cleaned, dried and then
stored [46]. A previously used suit may have lower durability and protection even though
the expected lifespan has not passed [48,49]. Some authors have investigated the properties
of protective clothing used by firefighters based on available data and evaluations [50]. In
the case of firefighters’ protective clothing, the focus of testing is mainly related to the effect
of heat on the protective clothing [51]. The studies focus on the resistance of the material in
the case of prolonged exposure to a certain factor and on the duration of damage to the
material. Protective clothing may come into contact with various physical and chemical
factors during use. Individual factors affect the properties of the garment and will damage
it to a certain extent when they act on it. Within this study, we wanted to indicate the need
to focus on this issue by taking these influences into account. Based on the results, it is
possible to assess the extent to which the protective suit may be degraded and subsequently
become unsuitable for further use. In the case of underestimating these factors, the health
or life of the person involved could be endangered during an intervention with the used
protective suit [52]. The importance of examining external influences on the quality of
protective clothing is also emphasized in the research of He et al. (2023) [53]. As part of
our studies, we focused on certain types of influences with which it was assumed that the
interventionist might come into contact. In the event that, in some areas, the responding
units come into contact with other substances, a similar study should be carried out that
performs these same procedures but with substances that are typical or expected for the
given environment.
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4. Conclusions

The results of tests on the chemical-resistant garment samples show that exposure to
chemicals (sulfuric acid, nitric acid, dimethyl sulfoxide, hydrogen peroxide), UV radiation
and elevated temperature (~65 ◦C), in all cases, was associated with a decrease in the
modulus of elasticity. The highest decrease was reported in the sample with hydrogen
peroxide and the smallest in the sample exposed to long-term thermal load.

Nevertheless, the TGA and DSC curves were identical for the original garment sample
and for the samples exposed to UV radiation and long-term thermal stress. Protective
clothing decomposes at or above a temperature of 240 ◦C with a slightly elongated ex-
oeffect, which changes to the main exoeffect at 560 ◦C. The values obtained from the
measurements can be used by fire protection units in practice during interventions. It will
also serve as useful information for the International Organization for Standardization,
the European Committee for Standardization, the National Fire Protection Association
of the USA and the National Standards Body in Poland, which ensures the protection of
life, health, environment and work safety, demonstrating that the suit meets their criteria
and protects firefighters’ health. The importance of this issue is also emphasized in the
European environment because, in the case of serious accidents associated with the release
of hazardous substances, intervention by firefighters or civil protection units is necessary.
Therefore, it is necessary that their clothing meets all requirements and is not damaged
by hazardous substances. This is important because a safety culture should include the
knowledge of all risks that may occur.
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