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Abstract: Today, as PHP application technology is becoming increasingly mature, the functions of
modern multi-layer web applications are becoming more and more complete, and the complexity is
also gradually increasing. While providing developers with various business functions and interfaces,
multi-tier Web applications also successfully cover the details of application development. This type
of web application adopts a unified entrance, many object-oriented codes are used, and features
such as encapsulation, inheritance, and polymorphism bring challenges to vulnerability mining
from the perspective of static analysis. A large amount of object-oriented code makes it impossible
for a simple function name-matching method to build a complete call graph (CG), resulting in the
inability to perform a comprehensive interprocedural analysis. At the same time, the encapsulation
feature of the class makes the data hidden in the object attribute, and the vulnerability path cannot
be obtained through the general data-flow analysis. In response to the above issues, we propose a
vulnerability detection method that supports vulnerability detection for multi-layer web applications
based on MVC (Model-View-Control) architecture. First, we improve the construction of the call
graph and Code Property Graph (CPG). Then, based on the enhanced Code Property Graph, we
propose a technique to support vulnerability detection for multi-layer web applications. Based on
this approach, we implemented a prototype of VulPathsFinder, a security analysis tool extended
from the PHP security analyzer Joern-PHP. Then, we select ten MVC based and ten non-MVC-based
applications to form a test dataset and validate the effectiveness of VulPathsFinder based on this
dataset. Experimental results show that, compared with currently available tools, VulPathsFinder can
handle framework applications more effectively, build a complete code property map, and detect
vulnerabilities in framework applications that existing tools cannot detect.

Keywords: call graph; Code Property Graph; taint analysis; alias analysis; PHPtoTAC; object oriented;
graph traversal

1. Introduction

We frequently use static analysis to detect security vulnerabilities in programs, which
has the advantage of analyzing code without executing programs. A series of security
analysis tools, such as Pixy [1], RIPS [2], ooPixy [3], PHPSAFE [4], Weverca [5], and
Joern-PHP [6], are commonly used to detect the loophole. However, with the increasing
complexity of PHP applications, current tools and methods face additional challenges.
Multi-layer web applications (such as MVC architecture) adopt a unified entry point and
extensively apply object-oriented code, making it impossible for simple function name-
matching methods to construct a complete call graph, resulting in the inability to perform
comprehensive interprocedural analysis. At the same time, programming techniques such
as encapsulation, routing, and global configuration are applied to hide vulnerabilities in
complex data flows that cannot be accessed by universal data flow analysis [7].
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Existing methods cannot effectively perform static analysis on modern multi-layer
web applications, and the false positive rate is elevated [8,9]. Although some methods
attempt to address this issue through dynamic analysis and automated vulnerability
verification [7,10–14], these methods rely on static analysis. Existing static analysis tech-
niques cannot effectively handle multi-layer web applications, leading to false positives
and limiting dynamic analysis. To alleviate the above issues, we have incorporated the
alias analysis procedure into the construction of the Code Property Graph. We use alias
analysis techniques to infer object types, construct method call edges, and improve the
call graph to perform complete context-sensitive inter-process data flow analysis. In addi-
tion, we propose a taint analysis approach to generate vulnerability data flow paths via
variable propagation paths to improve the efficiency of graph traversal in constructing
vulnerability paths.

Based on the proposed method, we have implemented a new static analysis tool,
VulPathsFinder. Based on the Joern-PHP analyzer, it adds capabilities for alias analysis and
the construction of variable access paths, enhancing the analysis capabilities of modern
multi-layer PHP applications. We divide the workflow of VulPathsFinder into three phases.
First, we convert the PHP source code into an intermediate representation, P-TAC [1],
similar to the traditional three-address code [15]. Then, we construct a code attribute graph
based on the abstract syntax tree and perform alias analysis [16] and context-sensitive data
flow analysis [17] on this basis to construct a complete call graph and variable access paths.
We mainly improve the original Code Property Graph in the following ways: (1) Collect
variable alias information and track variable access paths; (2) Utilize alias information
and type inference to improve the call graph; (3) Mark user input (sources) and security-
sensitive calls (sinks) nodes based on the attack dictionary. Finally, we construct vulnerable
data flow paths based on node labels and variable access paths.

The main contributions of this paper are summarized as follows:

• Design and Implementation of the VulPathsFinder tool: We developed a static analysis
tool named VulPathsFinder, specifically designed to address the security analysis
challenges in modern multi-layer PHP applications. Based on Joern-PHP, this tool
extends the capabilities of alias and taint analysis to enhance its analytical power for
complex applications.

• Improved Construction of Code Property Graphs: We redesigned the construction
process of Code Property Graphs. We can generate a more accurate and comprehensive
call graph by collecting variable alias information, tracking variable data propagation
paths, and inferring type information for class instance variables.

• New Methods for Alias Analysis and Taint Analysis: We designed an alias analysis
process based on comment parsing after constructing the control flow graph. We also
marked user input and security-sensitive function nodes with taints. These improve-
ments increased the accuracy of the tool’s detection and reduced false positives.

• A Novel Method for Security Vulnerability Path Finding: We proposed a data flow
analysis method based on graph traversal techniques that can effectively excavate ap-
plication vulnerability paths. This method allows for an efficient backtracking analysis
of security-sensitive functions in procedural and object-oriented programming.

Through experiments, we confirmed that these improvements significantly enhance
the effectiveness of static analysis in complex applications. We believe that VulPathsFinder,
along with the other contributions of this research, can provide new perspectives and
methods for future security analysis of PHP applications.

The organization of this research is as follows. Section 2 discusses related work. Section 3
introduces the technical background, discusses the challenges that MVC architecture-based
applications pose for security analysis using a running example, and briefly outlines
the solutions implemented by VulPathsFinder to address these challenges. Section 4
describes the details of the improved CPG and vulnerability path construction algorithm.
Section 5 discusses the experimental evaluation of VulPathsFinder. Finally, Section 6
includes the conclusion.
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2. Related Works

Over the past decade, detecting security vulnerabilities in PHP code has been a focal
point of research.

2.1. Static Analysis

In 2006, Xie and Aiken [18] addressed the issue of statically identifying SQL injection
vulnerabilities in PHP applications. Meanwhile, Jovanovic et al. introduced a PHP static
taint analysis tool, PIXY [1]. Their focus was cross-site scripting errors in PHP applica-
tions. They analyzed a total of six different open-source PHP projects. In these tests,
they rediscovered 36 known vulnerabilities (with 27 false positives) and an additional
15 previously unknown defects (with 16 false positives). Wasserman and Su introduced
two works focusing on statically finding SQL injections and cross-site scripting [19,20].
Jovanovic et al. [21] extended their method to SQL injection as a follow-up to the Pixy work.
Although all these tools are pioneers in the field of automatic discovery of vulnerabilities
in PHP applications, they only focus on very specific types of defects, namely, cross-site
scripting and SQL injection.

Dahse and Holz [2] proposed RIPS. RIPS builds a control flow graph and then creates
block and function summaries by simulating the data flow of each basic block, thereby per-
forming precise taint analysis. In the process, the authors discovered previously unknown
defects in osCommerce, HotCRP, and PHPBB2. Dahse and Holz continued their work
by detecting second-order vulnerabilities (e.g., persistent cross-site scripting), identifying
over 150 vulnerabilities in six different applications [22]. In 2015, Olivo et al. [23] dis-
cussed the static analysis of second-order denial of service vulnerabilities. They analyzed
six applications, some of which overlapped with those analyzed in previous work, and
found 37 vulnerabilities, accompanied by 18 false positives. David Hauzar et al. present
WeVerca [5], a framework that allows one to define static analyses for PHP applications. It
supports a type system, method calls, data structures, etc. The framework addresses the
problem of implementation is either imprecise or overly complex by defining the end-user
analysis independently of the value and heap analysis necessary to resolve these features.
Zhao Jingling et al. [8] propose a framework for detecting vulnerabilities in PHP web appli-
cations. The framework combines static and dynamic analysis to improve the efficiency of
detection. Paulo A.L.D. Nunes et al. [4] propose phpSAFE, a static analyzer that identifies
vulnerabilities in PHP web applications developed using Object-Oriented Programming
(OOP). The paper evaluates phpSAFE against two well-known tools and 35 widely used
CMS plugins. The results show that phpSAFE clearly outperforms other tools. Michael
Backes et al. [6] were the first to apply Code Property Graphs to mining vulnerabilities
in PHP applications and implemented a method for discovering vulnerabilities in PHP
applications based on Code Property Graphs. Our work is based on their implementation,
and we further improved the call graph and data flow graph by collecting summary infor-
mation of functions, methods, and instantiation statements to complete the call edges. At
the same time, using summary information, attack dictionaries were combined to mark
user input and security-sensitive operation nodes. Eventually, we constructed vulnerability
paths using graph traversal techniques. Other work in this field concerns the correctness of
sanitization programs [4,11,24].

2.2. Exploit Generation

Abeer Alhuzali et al. [25] present Chainsaw, a tool that improves the state-of-the-
art in injection vulnerability identification and exploit generation for web applications.
Chainsaw was used to analyze nine open-source applications and generated over 199 first-
and second-order exploits combined, outperforming several related approaches. The next
year, Alhuzali et al. presented NAVEX [7], a tool combining dynamic and static analysis
techniques to identify vulnerabilities and build working automatic exploits in large multi-
tier web applications. They all apply static symbolic execution to model the inter-state
dependencies, which can produce seeds to guide the dynamic scanner to find vulnerabilities
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hidden deeply in code. Lee et al. [10] propose a penetration testing tool, FUSE, designed to
discover UFU and UEFU vulnerabilities in server-side PHP web applications. FUSE aims
to generate upload requests; each request becomes an exploit payload that triggers a UFU
or UEFU vulnerability. FUSE discovered 30 previously unreported UEFU vulnerabilities,
including 15 CVEs from 33 real-world web applications, thereby demonstrating its efficacy
in finding code execution bugs via file uploads. Park et al. [12] present FUGIO, the first
AEG tool for POI vulnerabilities. The authors proposed a series of static analysis, dynamic
analysis, and fuzzing techniques to compute POP chains and generate exploits. FUGIO
reported 68 exploit objects from known POI vulnerabilities in 30 real PHP applications.
FUGIO also reports two previously unknown POI vulnerabilities and generates exploitable
objects, demonstrating the effectiveness of FUGIO in significantly alleviating the burden of
laborious property-oriented programming.

In summary, static taint vulnerability detection techniques have become increasingly
complete concerning data structures, from checking security-sensitive functions to control
flow graphs and then to Code Property Graphs. At its core, it checks user inputs and
traces data streams to trigger sensitive operations by detecting whether user inputs reach
security-sensitive functions. However, due to the extensive use of object-oriented code,
encapsulation, and dynamic features, modern multi-layer web applications make it difficult
for these methods to accurately obtain the path of taint propagation or perform a complete
inter-procedural analysis. While dynamic analysis or a hybrid approach of dynamic and
static analysis can avoid the above issues, it cannot achieve fully automated detection due to
the need for code-running environments and the lengthy time required for dynamic testing.
We build on the Code Property Graph prototype Michael Backes et al. implemented and
add method call edges to the call graph through alias analysis. We propose constructing the
taint propagation path via the variable propagation path to generate the vulnerability path.
On the one hand, we have constructed a complete call graph, allowing security analysts to
conduct a more accurate analysis of the inter-process data flow based on this code attribute
graph. On the other hand, we have addressed the problem of not accurately obtaining the
path of taint propagation due to encapsulation.

3. Background and Motivation

In this section, we first introduce the basic knowledge of Code Property Graphs (CPGs).
Subsequently, using several examples, we demonstrate the deficiencies in the prototype
implementation of the existing CPG for vulnerability detection in modern PHP applications,
inspiring us to redesign our solution.

3.1. Overview of Joern-PHP

Our research is based on the concept of a Code Property Graph, an integrated repre-
sentation of the syntax, control flow, and data flow of a program. This concept was first
introduced by Yamaguchi et al. and applied to detecting vulnerabilities in C code [26]. The
key idea of this method is to incorporate traditional program representations into a Code
Property Graph, thus enabling code pattern mining through graph traversal techniques.
Abstract Syntax Trees (AST) clearly exhibit the nested structure of a program, while Control
Flow Graphs (CFG) allow for the reasoning of interactions between statements, especially
their execution order, and Program Dependence Graphs (PDG) reveal dependencies be-
tween statements and predicates. These dependencies enable static data flow analysis
within a program, particularly the propagation of attacker-controllable data. Although
the combination of AST, CFG, and PDG in a Code Property Graph provides a powerful
structure for analyzing program control and data flows, CFG and PDG are limited to the
function level. Incorporating call graphs into the Code Property Graph allows us to perform
control and data flow analysis at the inter-procedural level.

In 2017, Michael et al. introduced this into the detection of vulnerabilities in PHP
applications and used call graphs to enrich the Code Property Graph [6]. They developed
Joern-PHP, a prototype tool for constructing Code Property Graphs for PHP applications,
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and demonstrated how to use graph traversal techniques for inter-procedural vulnerability
analysis. Although Michael et al. introduced the call graph into the prototype implementa-
tion of the Code Property Graph, the edges for method calls were incomplete. For dynamic
method calls, an edge from the call node to the corresponding method declaration was only
constructed when the method’s name was unique in the project. Without type inference, the
mapping relationship between dynamic method calls and class methods could not be ob-
tained, rendering the tool unsuitable for vulnerability detection in modern applications that
extensively use encapsulation and method calls. Therefore, we have further enriched this
structure by using alias analysis, adding method call edges to the call graph, and tracking
data propagation between variables or fields to facilitate inter-procedural analysis better.

3.2. Alias Analysis

As the foundation of static analysis, pointer analysis primarily examines all possible
objects a pointer might refer to [27–29]. Object-oriented languages are mainly used to
ascertain the potential objects a variable or field might point to. Pointer analysis plays a
crucial role in the program analysis of object-oriented programming, with results commonly
represented as points-to relations between pointers and memory locations or as sets of pos-
sible target objects for each pointer. It provides essential data flow information within the
program. Recognized as one of the most fundamental static analysis techniques, research
on pointer analysis has a history of over forty years, primarily focusing on languages like
Java and C/C++ [30–32]. Pointer analysis is a static code analysis technique determining
the objects a pointer or reference variable in a program might point to. This analysis is
indispensable in many advanced program analysis tasks such as program slicing, data flow
analysis, program understanding, etc.

Alias analysis [33] is an important branch of pointer analysis that focuses on determin-
ing two or more pointer variables that might refer to the same memory location during
program execution, also known as aliases. This problem exists in many programming
languages, especially those allowing explicit pointer operations like C and C++. The sig-
nificance of alias analysis stems from its multiple application scenarios. For example, a
compiler can use alias information to optimize a program, rearrange instructions more
freely when no alias conflict is confirmed, and improve program execution efficiency.
Furthermore, alias analysis is the foundation for many advanced program analyses and
transformations, such as program slicing, data flow analysis, thread analysis, etc.

One of the challenges faced by alias analysis is that the problems it needs to solve are
undecidable, meaning no algorithm can precisely determine all alias relationships in all
circumstances. Therefore, existing alias analysis techniques often need to balance precision
and efficiency. Common strategies [28,31] in practice include:

• Flow-sensitive analysis: This type of alias analysis considers the execution order of the
program, providing more precise results but with higher computational complexity.

• Flow-insensitive analysis: Contrary to flow-sensitive analysis, this type of alias anal-
ysis disregards the execution order of the program, yielding less precise results but
with lower computational complexity.

• Context-sensitive analysis: This type of alias analysis considers the context of func-
tion calls, capable of handling alias relationships between functions but with higher
computational complexity.

• Context-insensitive analysis: In contrast to context-sensitive analysis, this type of alias
analysis ignores the context of function calls, resulting in less precise outcomes but
with lower computational complexity.

Despite the numerous challenges faced by alias analysis, it can still be a highly useful
tool by selecting strategies suitable for specific application requirements.



Appl. Sci. 2023, 13, 9240 6 of 21

3.3. Taint Analysis

Taint analysis [34] is a technique that tracks and analyzes the flow of tainted infor-
mation within a program. In vulnerability analysis, taint analysis is used to mark data of
interest (sources, e.g., untrusted user-supplied data) as tainted data. Vulnerabilities can
be discovered by tracking the flow of tainted data and examining whether it influences
critical program operations (sinks). This transforms the problem of identifying program
vulnerabilities into determining whether tainted information reaches sink points where
critical operations are performed.

Taint analysis typically involves the following components:

• Identification of sources where tainted information is generated and marking the
tainted data.

• Tracing and analyzing the propagation of tainted information through specific rules.
• Detection at sink points whether critical operations are affected by tainted information.

Tainted information can propagate not only through data dependencies but also
through control dependencies. We refer to information flow via data dependencies as
explicit information flow and information flow via control dependencies as implicit infor-
mation flow.

• Data flow-based taint analysis treats taint analysis as data flow analysis focused on
tainted data without considering implicit information flow. It involves tracking tainted
information according to taint propagation rules or marking variables along the path of
contamination and checking whether tainted information affects sensitive operations.

• Dependency-based taint analysis considers implicit information flow. The analysis
process checks whether sensitive operations at sink points depend on operations
that receive tainted information at source points based on dependencies between
statements or instructions in the program.

Static taint analysis systems [2,4,6,7,35] first parse the program code to obtain an
intermediate representation. They perform auxiliary analyses such as control flow analysis
to obtain control flow graphs, call graphs, and other necessary information. During the
auxiliary analysis, the system can employ taint analysis rules to identify source points and
sink points in the intermediate representation. Finally, the detection system utilizes static
taint analysis based on the taint analysis rules to check for vulnerabilities of taint-related
types in the program.

3.4. Running Example

For statements that create class instances using new ones, obtaining the class type
of the instantiated variables is relatively easy. Nowadays, an increasing number of PHP
applications are developed based on frameworks. These frameworks encapsulate common
business functionalities using classes and extensively utilize dynamic arrays and reflection
features. This makes it challenging to obtain type information through static analysis. Static
analysis cannot retrieve the class methods corresponding to method calls, resulting in
incomplete call graphs and difficulty in conducting interprocedural data flow analysis.

To explain the research questions and motivation, we extracted relevant code from two
real-world applications and combined them into sample code snippets [36,37], as shown in
Listings 1 and 2:
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Listing 1. The first section of the simple code snippets from a MVC application.

keywordskeywords
1 <?php
2 $DB = new DB();
3 class Push extends Controller{ // This is a Controller of the MVC -based

Application
4 function index(){
5 $cf_name = $this ->request.post(’cf_name ’); // Handle user input ,

and mark $cf_name as tainted source
6 $SQL = new SQL();
7 $_t1=’( blog_name LIKE \’%’ . $cf_name . ’%\’’;
8 $SQL.WHERE_and($_t1); // $SQL ->where is tainted
9 $_t2=$SQL.get(); // $_t2 is tainted

10 $blogs_Results = new Results($_t2); //$Result ->sql is tainted
11 $blogs_Results.run_query ();
12 }
13 }
14 class Controller{
15 /**
16 * @var \think\Request
17 */
18 var $request;
19 function __construct($app = null){
20 $this ->app = Container ::get(’app’);
21 $this ->request = $this ->app[’request ’];
22 }
23 }
24 class Results{
25 function __construct($sql = null){
26 $this ->sql = $sql;
27 }
28 function run_query (){
29 global $DB;
30 $this ->rows = $DB.query($this ->sql);
31 }
32 }

Listing 1 defines a controller class named Push, which extends the Controller class
(lines 3–13). In the index() method of the Push class, the class property request is invoked
with the post() method, and its return value is assigned to the variable $cf_name. The
request property originates from the parent class Controller. Listing 2 shows that the post()
method retrieves user input from the global variable $_POST array.

In Listing 1, the property $this->request in the Push class is initialized in its par-
ent class Controller. In the Controller class, $this->request is initialized as an instance of
\think\Request through dynamic array assignment in the constructor. We cannot obtain the
class type of $this->request through static or alias analysis. However, we notice that we can
infer from the annotation of the requested property (lines 15–17) that it is an instance of the
\think\Request class. Apart from instance creation statements, standardized development
practices provide us with additional static information. We can obtain type information for
corresponding parameters or class fields through annotation parsing.

Listing 2. The second section of the simple code snippets from a MVC application.

keywordskeywords
1 class Request{
2 function post($name = ’’){
3 return $_POST[$name ];
4 }
5 }
6 class DB{
7 var $dbhandle;
8 function __construct (){
9 $this ->dbhandle = new mysqli ();

10 }
11 function query($query_SQL){
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12 $this ->result = $this ->dbhandle.query($query_SQL); // native sink
13 return $this ->result;
14 }
15 }
16 class SQL{
17 var $where = ’’;
18 function get(){
19 return $this ->where;
20 }
21 function WHERE_and($where_and){
22 $this ->where .= ’(’ . $where_and . ’)’;
23 }
24 }
25 ?>

In Listing 1 (lines 6–8), $cf_name is concatenated directly into the SQL statement and
utilized as a parameter in the non-static method invocation, $SQL->WHERE_and(). On
line 10, the instantiation of $blogs_Results is performed by calling the constructor of the
Results class. Subsequently, on line 11, the run_query method of the Results class is called
$blogs_Results. An examination of the Results class definition (Listing 1, lines 24–32) reveals
that, within the class method run_query() (Listing 1, lines 28–31), the class attribute $this->sql
is transferred as a parameter to the non-static method, $DB->query(). According to Listing 1,
line 2, $DB, a global variable, is an instance of the DB class (Listing 2, lines 6–15).

In Listing 2, the query method (lines 11–14) conveys the $query_SQL parameter to the
non-static method invocation $this->dbhandle.query() (Listing 2, line 12). As inferred from
the DB class’s constructor (__construct()), $this->dbhandle is an instance of the mysqli class,
making $this->dbhandle.query() a raw, security-sensitive method call.

Finally, $this->request.post() extracts user input data from global variables. The resultant
value is assigned to the variable $cf_name, which is then incorporated into the SQL statement
and transferred via $SQL->WHERE_and() to the SQL class attribute $this->where. Then,
$SQL->get() directs the value of $this->where as a parameter to the $blogs_Results instance
attribute $sql. $blogs_Results executes the SQL statement containing user input by invoking
the security-sensitive method, Mysqli->query(), through the run_query() method.

3.5. Motivation

To summarize the provided instance, the dynamic characteristics present in object-
encapsulated applications make the direct retrieval of an instance object’s class challenging.
However, these applications, characterized by a unified architecture and relatively standard
language conventions, enable us to indirectly ascertain their corresponding classes by parsing
the variable or class field declaration type from annotations, thereby constructing method call
edges. Moreover, such applications encapsulate data through instance attributes, obscuring
potential vulnerabilities from detection through data flow graph traversal.

Given the example, we have synthesized the existing challenges and proposed solu-
tions for static analysis in detecting vulnerabilities in contemporary web applications.

To uncover the aforementioned SQL injection vulnerability, we must:

• Implement inter-procedural data flow tracking as many critical method calls transpire
across multiple call points, creating an accurate call graph.

• Ensure the analysis maps field variables and context temporary variables within the
control flow graph to the same object or value (e.g., $SQL->sql==$_t2).

• Incorporate program dependence graphs with inter-procedural taint analysis to trace
the variable access paths.

In summary, modern multilayer web applications heavily use object-oriented code and
its encapsulated, dynamic, and additional features, leaving object types unclear, resulting
in the need for existing tools to help build complete call graphs based on method calls and
perform comprehensive inter-procedural analysis. The tainted information is encapsulated
in a large amount of class code, resulting in false positives due to the inability of traditional
data flow analysis to discover hidden vulnerable data flows. The existing implementation
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of a Code Property Graph aims to construct a complete graph structure that represents
code syntax and semantics and performs inter-procedural data flow analysis through graph
traversal techniques. However, constructing the Code Property Graph does not infer the
object type, making it impossible to perform a complete inter-procedural analysis. Graph
traversal techniques use the Code Property Graph to construct vulnerability paths based
on a generic taint tracking method that fails to discover the taint information encapsulated
in object attributes and can lead to false positives. Moreover, such graph traversal methods
based on security-sensitive node backtracking data flow graphs are prone to path explosion
and low efficiency. Therefore, it is necessary to improve the existing Code Property Graph
construction process and optimize the graph traversal algorithm to alleviate the problems
of false positives and low vulnerability detection efficiency in existing static analysis tools.
Specifically, we identify the following challenges:

3.6. Challenges

Object Oriented. Multi-layer Web applications extensively adopt object-oriented
programming (OOP), executing features via method invocations. Particularly, non-static
methods are invoked through variables instantiated from corresponding classes. We must
identify the specific types of these instantiated variables to construct a comprehensive call
graph within the Code Property Graph. However, many applications rely heavily on object-
oriented programming and dynamic features, revealing specific types only at runtime. As
illustrated in Listing 1 (lines 20–21), it is clearly challenging to directly obtain these types
through static analysis. On the other hand, the encapsulation feature of object-oriented
programming obscures data dependencies, making it difficult for us to discover defects by
retracing the data flow.

Performance. In many contemporary applications, numerous features necessitate a
series of interdependent steps, typically completed using distinct modules. If a security-
sensitive function resides deep within these modules, the crossing of intermediate data
flow nodes can generate many data flow paths. Additionally, to accurately identify the
data flow path from user input to a security-sensitive function/method, it is essential to
recognize the name of the security-sensitive method and analyze the instantiation of the
variable calling it. Directly integrating these tasks into the vulnerability path discovery
algorithm would inevitably amplify its complexity and diminish its efficiency.

Scalability. Besides utilizing security-sensitive functions, modern applications also
encapsulate security-sensitive methods, as exemplified by the $this->dbhandle attribute
of the DB class in Listing 2. Designing specific data flow path-finding algorithms for
all security-sensitive functions/methods presents a challenge. To maintain scalability,
we categorize security-sensitive operations according to their existing forms into security-
sensitive functions and methods and design a unified vulnerability path traversal algorithm
for them. By introducing an attack dictionary, users can configure corresponding security-
sensitive functions or methods according to the type of vulnerability without changing
the algorithm. For instance, we can set the query() method of the DB class in Listing 2 as a
security-sensitive method and perform traversal.

4. Implementation Overview

We aim to design and implement a unified, scalable, and efficient vulnerability path
discovery method based on an enhanced Code Property Graph for modern multilayered
web applications, considering their object-oriented encapsulation characteristics.

Based on this method, we have developed a tool—VulPathsFinder. To address the
issue of scalability, our tool is divided into three steps: (1) conversion from source code to
three-address code; (2) construction of an enhanced Code Property Graph; (3) identification
of vulnerability paths. The architecture of VulPathsFinder is shown in Figure 1.
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Figure 1. The architecture of VulPathsFinder. The components with gray represent modifications or
additions to the original architecture of Joern-PHP.

The first step takes the source code of the given application as input, parses it into an
Abstract Syntax Tree (AST), and then uses the PHPToTAC tool to transform the AST into
source code in three-address code form while maintaining the directory structure of the
original project files.

The second step involves constructing an enhanced Code Property Graph. This stage
processes the code files in three-address code form, parsing the statements within the
files to construct control flow graphs and program dependence graphs. To tackle the
challenges of object orientation, we perform type inference based on the control flow graph
to obtain type information of instance objects and variable access paths. We then add the call
relationships from call points to method definitions to the call graph, facilitating subsequent
inter-procedural analysis. Additionally, during the type inference process, we establish data
dependency edges (USE-DEF relationships) between function or method return values and
call points, thus refining the program dependence graph. We introduce an attack dictionary
that includes information about security-sensitive functions and mapping from recognized
security-sensitive methods to classes to address performance issues and scalability. During
the type inference process, we use the attack dictionary to mark security-sensitive functions
and method call nodes and user input nodes, thereby avoiding querying the Code Property
Graph for security-sensitive operations and user input nodes.

The third step involves constructing the vulnerability path. By taking the security-
sensitive function/method nodes as starting points for data flow backtracking and perform-
ing taint analysis, we can trace the propagation paths of taints through marked user input
nodes and variable access paths, thereby identifying vulnerability paths from security-
sensitive nodes to user inputs.

4.1. PHP Parser

To analyze the latest version of PHP, we use PHP-Parser [38] as a library to generate
parse trees from PHP source code. This library updates continuously with each PHP
version, making subsequent updates and maintenance convenient. The parser can be used
for static analysis, code manipulation, and any other application that programmatically
handles code. The parser constructs an Abstract Syntax Tree (AST) of the code, enabling it
to be handled abstractly and robustly.

There are other methods for handling source code. One natively supported by PHP
is using tokens generated by ‘token_get_all’. The token stream is much lower-level than
the AST and therefore has different applications: it also allows for the analysis of the exact
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format of a file. On the other hand, token streams are more difficult to handle for more
complex analyses. For instance, the AST abstracts out the fact that in PHP, variables can be
written as $foo, $$bar, ${’foobar’}, or even ${!${”}=barfoo()}. You do not have to worry about
identifying all the different syntaxes from the token stream.

In addition to the parser itself, this package also bundles support for several other
related functionalities:

• Pretty-printing support, which is the action of transforming the AST into PHP code;
• Support for serializing and deserializing node trees to JSON;
• Support for dumping node trees in a human-readable form;
• Basic infrastructure for traversing and modifying the AST (node traversers and node

visitors);
• Node visitors for parsing namespace names.

4.2. PHPtoTAC

In addition to introducing a new PHP parser, we have modified the intermediate
model’s construction to accommodate object-oriented features and alias analysis. As we
have introduced a new PHP parser to construct the Abstract Syntax Tree (AST), we leverage
the node traversal functionality of PHP-Parser based on this AST to inspect each node.
This module [39] tracks various types of expressions (assignments, function calls, method
calls, actual parameters, formal parameters, etc.) and monitors function definitions, class
definitions, object references, method definitions, variables, namespaces, and interfaces.
PHP-Parser transforms these expressions and statement nodes into a three-address code
format through traversal tracking, which allows us to perform alias analysis and variable
data tracking on the transformed code. Consequently, we can perform inter-procedural
data flow analysis when conducting taint analysis.

4.3. Code Property Graph

After transforming the PHP source code into a three-address code format based on
PHP-Parser, we use it as the source code input for Joern-PHP to construct the Code Property
Graph (CPG). First, we parse the transformed three-address code into an AST, and then
each file in the AST is traversed to construct the control flow graph. This control flow graph
is then traversed to analyze alias to obtain variable alias information. Based on comments
and instance creation statements, we infer instance types of variables, parse method call
points, and create method call edges to improve the call graph.

On top of Joern-PHP, we add alias analysis and variable instance type inference to
create method call edges. The pseudocode of this process is shown in Algorithms 1 and 2:

Algorithms 1 and 2 show the process of type inference and call graph construction
that we added based on Joern-PHP.

In Algorithm 1, the process of traversing is called the Abstract Syntax Tree (AST)
(line 4). Lines 5–22 in Algorithm 1 show the process of traversing the control flow graph
to perform context-sensitive alias analysis. This procedure traverses the control flow
graph and parses the statement’s assignment, store, and load operations. By this parsing
procedure, on the one hand, we can infer the directional information of the variables, which
is the type information. On the other hand, we can construct access paths for variables.
Line 23 in Algorithm 1 shows the process of building the call graph based on the results of
the first two steps.
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Algorithm 1 Type inference and call graph construction (1)

Input:
1: AST: Abstract Syntax Tree; CFG: Control Flow Graph

Output:
2: pts: Point-to information; CG: Call Graph
3: methodCalls = [], instanceVars = []
4: parseAST(AST)
5: for f unction in CFG. f unctions do
6: Statements = f unction.getVertices()
7: for stmt in statements do
8: context = dispatch(stmt)
9: Var = parseVar(stmt)

10: if context : var in instanceVars then
11: if stmt is var. f = y then
12: AddEdge(context : y, context : var. f )
13: end if
14: if stmt is y = var. f then
15: AddEdge(context : var. f , context : y)
16: end if
17: end if
18: if stmt is x = y then
19: AddEdge(context : y, context : x)
20: end if
21: end for
22: end for
23: ProcessCalls(methodCalls)

The detail of parseAST is shown in Algorithm 2 (lines 3–21). It mainly parses instance
creation statements (Algorithm 2, lines 5–9), method calls (Algorithm 2, lines 10–15),
and Global statements (Algorithm 2, lines 16–19). Global statements reflect the scope of
variables, which affects our type inference for the corresponding variables. The process
ProcessCalls (Algorithm 2, lines 28–39) first parses the instance variable and method in
the method call, then obtains the class corresponding to the instance variable from the
variable direction information through the instance variable name and then connects the
call statement with the corresponding method definition node with a call edge. In addition,
we establish a data dependency edge between the actual argument variable of the call point
and the formal parameter of the corresponding method (Algorithm 2, lines 34–36). If the
method has a return value, a data dependency edge is also established between the return
value node and the left value of the call statement (Algorithm 2, line 37).

It is essential to note that Algorithms 1–3 have some functions for which the specific
code is not shown. These functions are functional and represent a process. We describe
their functionality by adding comments at the corresponding locations of the algorithm.

After applying the above process to the example code, we obtain the improved Code
Property Graph and the variable access paths, as shown in Figure 2:
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Algorithm 2 Type inference and call graph construction (2)

Input:
1: AST: Abstract Syntax Tree; CFG: Control Flow Graph

Output:
2: pts: Point-to information; CG: Call Graph
3: function PARSEAST(AST)
4: for node in AST.nodes do
5: if node is Assign and node.right is New then
6: context = dispatch(node) // Get the context information of the node
7: var, class = parseNew(node)// Get the variable name and the class
8: Add < context : var, [class] > to instanceVars
9: end if

10: if node is Global then
11: context = dispatch(node)
12: Var = parseGlobal(node)// Get the variable name of the global declaration
13: Classes = Get objects f rom instanceVars
14: Add < context : var, classes > to instanceVars
15: end if
16: if node is MethodCall then
17: context = dispatch(node)
18: Add < context : var, [methodCall] > to methodCalls
19: end if
20: end for
21: end function
22: function ADDEDGE(s, t)
23: if s→ t not in pts then
24: Add s→ t to pts
25: instanceVars(s) ∪ = instanceVars(t)
26: end if
27: end function
28: function PROCESSCALLS(methodCalls)
29: for methodCall in methodCalls do
30: Context, method = dispatch(methodCall)
31: objectVar = parseVar(methodCall)// Parse the object from the method call
32: class ← get class f rom instanceVars based on the objectVar)
33: add < methodCall → class : method > to CG
34: for parameter pi o f m do
35: AddEdge(context : ai, pi)
36: end for
37: AddEdge(context : mret, context : r)
38: end for
39: end function

As shown in Figure 2, we have improved the call graph by constructing call edges
between the call sites and methods through type inference and perfected the Program
Dependency Graph (PDG) [6] by establishing data dependencies between the method
return value and the left value of the call point. Meanwhile, we construct the right-hand
side variable access path graph by obtaining the type information of the instance and the
data propagation path between variables during type inference. It includes the following
elements: user input tag nodes, USE-DEF relations between variables, inter-procedural
data propagation, and security-sensitive call tags. Furthermore, we use dotted lines to
connect data field nodes representing the same instance encapsulation. Although they
are in different contexts or processes, they represent the same data and there is truly no
USE-DEF-defined program dependence between them. Hence, we use the dotted line to
connect them. In this way, we obtain a complete variable access path, which can guide us
to construct a complete vulnerability path.
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Figure 2. The Code Property Graph of the code example.

4.4. Graph Traversal

When constructing the Code Property Graph, we label user inputs and security-
sensitive calls based on the attack dictionary. In this way, we avoid checking user inputs
and querying safety-sensitive calls based on graph traversal during graph traversal. Since
graph traversal techniques based on security-sensitive calls are prone to path explosion in
recursive backtracking data flows, we modify the procedure for constructing vulnerable
paths through recursive backtracking. The updated algorithm is shown in Algorithm 3:

Algorithm 3 Taint analysis based on propagation paths and graph traversal

1: Sinks = GetSinks()// Get the sink nodes from CPG
2: AllPaths = []
3: for sink in sinks do
4: paths = sink.loop().in(”REACHES”).loop(node.maker! = ”source”) // Traverse

the variable access paths
5: stmt_paths← retrieve(paths) //Retrieve statement node from the variable access

path
6: AllPaths.addAll(stmt_paths)
7: end for

Algorithm 3 is based on variable access paths and sink markers for vulnerability path
construction, which is still a graph traversal process, but no longer based on data flow
backtracking in the program dependency graph. First, we query the sink markers from the
Code Property Graph to obtain the sink nodes (line 1). Based on the obtained sinks, we
obtain the tainted variables, locate the variable nodes in the variable access paths, and then
backtrack on the variable access paths with the sink as the starting node. If we encounter
a user input marker, we stop backtracking (lines 3–4). At this point, we have extracted
the variable access path from user input to safety-sensitive calls. Finally, we restore the
variable nodes in these variable access paths to the statement nodes in the corresponding
CPG, thus obtaining the vulnerability path (lines 5–6). Compared with the graph traversal
algorithm of Joern-PHP’s vulnerability path discovery, Algorithm 3 dramatically simplifies
the graph traversal process. Still, it does not mean that our tool simplifies the entire
process of vulnerability path discovery. As shown in Figure 2, we construct variable access
paths, mark user input nodes, and mark security-sensitive operations while traversing the
control flow graph. Since traversing the control flow graph is necessary, we perform some
additional operations during this process to simplify the final graph traversal process.
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5. Evaluation
5.1. Dataset

We evaluate VulPathsFinder on ten applications developed based on open-source
frameworks or MVC structures, as shown in Table 1. Our selection criteria for the applica-
tions were as follows: (1) we evaluated popular, large-scale applications with unified frame-
work structures, regardless of whether they were independently developed or complex
applications developed based on open-source frameworks, and the most recent versions
with reported vulnerabilities were included; (2) we compared the same test applications
used by tools for static vulnerability detection.

Table 1. The list of MVC-Based and Non-MVC projects.

Categories Projects/Version

MVC-Based

osTicket v1.11
Open Web Analytics v1.73
PrestaShop v8.0.4
LimeSurvey v3.17.13
WebSvn v2.6.0
piwigo v11.3.0
b2evolution v7.2.2
lansuite v2.1.0
qdPM v9.1
impresscms v1.4.2

Non-MVC

pfBlockerNG v2.1.4
SPIP v3.1.1
Bus Pass Management System v1.0
elFinder v2.1.47
DomainMod v4.13
60CycleCMS 2.5.2
Webtareas v2.0
SPIP v4.2.0
SQLiteManager 1.2.0
Webutler v3.2

5.2. Setup

We implemented PHPtoTAC [39] to convert the source code into three address code
formats with PHP-Parser [38] and implemented the static analysis tool VulPathsFinder
based on Joern-PHP [40]. We deployed VulPathsFinder on Ubuntu 22.04.2 LTS with 4-cores
of 2.6 GHz each and 50 GB RAM. To evaluate VulPathsFinder, we compared its precision
and recall with four PHP static analysis tools: Joern-PHP [6], ooPIXY [3], and RIPS [2]. We
conducted experiments using real-world open-source PHP applications. A comparison
between VulPathsFinder and Joern-PHP was performed to assess the improvement brought
by the Joern-PHP-based enhancement. As RIPS and ooPixy support OOP features, the
comparison with VulPathsFinder provides significant insights into OOP support. How-
ever, the latest version of RIPS is commercial, non-open source, and does not provide an
academic license. Therefore, the most recent open-source version, 0.55, was employed in
our evaluation.

Throughout the entire evaluation process, we used the following definitions: pre-
cision (P), recall (R), and Fmeasure (F) [3]. Precision is the ratio of the number of true



Appl. Sci. 2023, 13, 9240 16 of 21

positives (TP) to the number of reported errors, including both reported true positives and
false positives (FP):

P =
TP

TP + FP
. (1)

Recall is the ratio of the number of true positives to the actual number of errors, which
includes both reported true positives and false negatives (FN, those we failed to detect).

R =
TP

TP + FN
. (2)

Fmeasure provides a comprehensive measurement standard combining precision and
recall. The Fmeasure ranges between 0 and 1 for a given tool. We will use P, R and Fmeasure to
provide accuracy rankings for the tools studied.

Fmeasure =
(2 ∗ P ∗ R)

P + R
. (3)

5.3. Summary of Results

We selected 10 MVC architecture-based applications from the dataset as the test set to
evaluate the differences between VulPathsFinder and Joern PHP regarding building Code
Property Graphs, mainly in two respects: (1) the changes in the types of nodes and edges in
the Code Property Graph before and after improvement; (2) the time efficiency comparison
between the two in constructing the Code Property Graph.

As shown in Table 2, we made comparisons on the same dataset, which includes ten
projects and a total of 1,336,649 lines of code. First, we can see that the number of AST
nodes and edges and the number of CFG edges are consistent between the two, as we
used php-ast to parse the same dataset in the same way. The main difference lies in the
number of calls and program dependence edges. Then, the number of call edges is larger
in VulPathsFinder than in Joern-PHP since we have added method call edges to the call
graph. In addition, the number of program dependence edges also increases compared
to Joern-PHP because, when processing method calls, we simultaneously processed the
USE-DEF relations for the return values of functions and methods with left values at the
call point, thus increasing the number of program dependence edges.

Table 2. Dataset and graph sizes.

Items Joern-PHP VulPathsFinder
# of projects 10 10
# of php files 6923 6923
# of LOC 1,336,649 1,336,649
# of AST nodes 3,936,057 3,936,057
# of AST edges 3,880,479 3,880,479
# of CFG edges 611,351 611,351
# of PDG edges 25,946 291,881
# of call edges 5328 6459
# of times 12 13

The last row in Table 2 shows the time consumed by the two tools to construct the
Code Property Graph on the same dataset. It follows that the times are the same for both.
This is mainly because the time consumed in the whole process is due to traversing the
AST nodes and the control flow graph, neither of which is changed. Moreover, adding
program dependence edges and call edges only increases the computational load by a
constant amount with respect to the entire AST and CFG traversal process, so they do not
significantly affect the final total runtime.
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In addition to the dataset composed of modern applications using the frameworks de-
scribed in Table 2, we have collected another dataset composed of popular applications that
do not use a unified framework. This dataset is used to compare the impact of vulnerability
detection by VulPathsFinder and Joern-PHP on non-framework and framework-based
modern applications. The experimental results are as shown in Table 3.

In contrast to OOPixy and RIPS, PHPAudit and Joern-PHP can detect most vulnera-
bilities. OOPixy is a tool developed based on Pixy to adapt to the object-oriented nature
of PHP. It only supports the detection of SQLi and XSS vulnerabilities, and the adapted
PHP version is shallow (PHP 5). We did not obtain efficient output results when running
this tool for vulnerability detection. When debugging, we commonly encounter syntax
errors when parsing PHP code to generate intermediate code, such as access modifiers
for classes, due to the inability to parse some code. In addition, this tool performs taint
analysis by identifying user input and security-sensitive functions based on control flow
graphs. Encapsulating user input and security-sensitive functions prevent a complete
inter-procedural analysis. The above issues caused OOPixy not to output valid detection
results. RIPS detects additional vulnerabilities to OOPixy and is currently maintained as a
commercial project. Its open-source version is only 5.5. While it models numerous built-in
functions in PHP and constructs vulnerability information flow paths based on control
flow graphs, it does not support object-oriented code analysis and takes too long to process
complex encapsulated applications, resulting in an inability to output effective results. We
focus on the vulnerability detection performance of VulPathsFinder and Joern PHP on
two datasets.

As shown in Table 3, there is a slight difference in the vulnerability detection results
between Joern-PHP and VulPathsFinder for non-MVC applications. The vulnerability
detection logic is slightly different between the two. The main difference is that we per-
form a three-address code conversion on the source code input, eliminating loop logic
and dramatically reducing the number of paths traversed by the graph. Furthermore, we
improve the vulnerability detection algorithm based on graph traversal. VulPathsFinder
uses tags and access paths for vulnerability detection, which also plays a role in pruning
graph traversal and alleviating the low-efficiency problem in graph traversal techniques.
The column Geometric Mean displays the geometric mean of the application vulnerability
detection results based on the MVC architecture. We can see from the values in this column
that VulPathsFinder performs better than Joern-PHP regarding accuracy and time consump-
tion in vulnerability detection for MVC-based applications. For MVC-based applications,
VulPathsFinder adds variable type inference, which adds additional method call edges to
the call graph by inferring object types. It also improves the program dependence graph
and alleviates the problem of incomplete inter-procedural analysis in the Code Property
Graph. At the same time, it also maintains the original scalability of Joern-PHP. Based
on the above improvements, VulPathsFinder and Joern-PHP compare their vulnerability
detection performance for MVC-based applications. Joern-PHP significantly improves
accuracy and reduces the time spent on vulnerability detection.
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Table 3. The experimental results of vulnerability. T denotes the running time (s); TF, FP, P, R, and F are the same as described in Section 5.2; a dash means the tool
does not support the detection of the vulnerability.

Category Subject #Projects
VulPathsFinder OOPixy RIPS Joern-PHP

TP FP P R F T TP FP P R F T TP FP P R F T TP FP P R F T

Non-MVC

SQL Injection 4 4 3 0.56 1.00 0.72 138 0 0 0.00 0.00 - 3 0 0 0.00 0.00 - 30 4 3 0.57 1.00 0.73 201
Command Injection 1 1 2 0.33 1.00 0.50 17 0 0 0.00 0.00 - 1 0 0 0.00 0.00 - 23 1 2 0.33 1.00 0.50 38

Cross-Site Script 1 1 3 0.25 1.00 0.40 24 0 0 0.00 0.00 - 2 0 0 0.00 0.00 - 38 1 3 0.25 1.00 0.40 50
File Read 1 1 0 1.00 1.00 1.00 51 - - - - - 1 0 0 0.00 0.00 - 67 1 0 1.00 1.00 1.00 97

File Upload 1 1 0 1.00 1.00 1.00 50 - - - - - 1 0 0 0.00 0.00 - 65 1 0 1.00 1.00 1.00 85
Code Execution 2 2 0 1.00 1.00 1.00 29 0 0 0.00 0.00 - 3 0 0 0.00 0.00 - 25 2 0 1.00 1.00 1.00 53

MVC-Based

SQL Injection 4 4 1 0.80 1.00 0.89 139 0 0 0.00 0.00 - 3 0 0 0.00 0.00 - 42 2 1 0.67 0.50 1.00 172
Command Injection 1 1 1 0.50 1.00 0.67 19 0 0 0.00 0.00 - 1 0 0 0.00 0.00 - 36 0 0 0.00 0.00 - 34

Cross-Site Script 1 1 1 0.50 1.00 0.67 23 0 0 0.00 0.00 - 2 0 0 0.00 0.00 - 47 1 1 0.50 1.00 0.67 39
File Read 1 1 0 1.00 1.00 1.00 51 - - - - - 1 0 0 0.00 0.00 - 73 0 0 0.00 0.00 - 38

File Upload 1 1 0 1.00 1.00 1.00 52 - - - - - 1 0 0 0.00 0.00 - 69 0 0 0.00 0.00 - 37
Code Execution 2 2 0 1.00 1.00 1.00 30 0 0 0.00 0.00 - 2 0 0 0.00 0.00 - 39 0 0 0.00 0.00 - 27

Geometric Mean 0.76 1.00 0.86 40.36 - - 0.00 0.00 - 1.57 - - 0.00 0.00 - 42.99 - - 0.58 0.71 0.94 57.99
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6. Conclusions

The extensive use of object-oriented code in multi-layer modern web applications
poses a challenge for vulnerability mining from a static analysis perspective, with features
such as encapsulation, inheritance, and polymorphism. A large amount of object-oriented
code makes it impossible to construct a complete call graph using simple function name-
matching methods, resulting in the inability to perform a comprehensive inter-procedural
analysis. The encapsulated nature of the class makes the data hidden in the object properties,
making it impossible to obtain the vulnerability path via universal data flow analysis. To
alleviate the above issues, we improve the Code Property Graph by adding alias analysis
capabilities to provide a foundation for full inter-procedural analysis based on the Code
Property Graph. Moreover, to alleviate the efficiency issues of graph traversal techniques,
we propose a vulnerability path construction method based on variable access paths to
improve the efficiency of vulnerability discovery. However, we must admit that the deeply
dynamic nature of modern PHP applications makes static analysis techniques unable to
fully solve the problem of object type inference, and the results generated by VulPathsFinder
still require manual verification. In future work, we will conduct dynamic testing studies
based on the detection results of VulPathsFinder to avoid manual verification and achieve
fully automated vulnerability detection and verification.
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