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Abstract: For the emerging autonomous swarm technology, from the perspective of systems science
and Systems Engineering (SE), there must be novel methodologies and elements to aggregate multiple
systems into a group, which distinguish the general components with specific functions. Here, we
expect to provide a presentation of their existence in swarm development processes. The inspiration
for our approach originates from the integration of swarm ontology, multiparadigm modeling,
multiagent systems, cyber-physical systems, etc. Therefore, we chose the model-driven architecture
as a framework to provide a method of model representation across the multiple levels of abstraction
and composition. The autonomous strategic mechanism was defined and formed in parallel with
Concept of Operations (ConOps) analysis and systems design, so as to effectively solve the cognitive
problem of emergence caused by nonlinear causation among individual and whole behaviors. Our
approach highlights the use of model-based processes and their artifacts in the swarm mechanism to
integrate operational and functional models, which means connecting the macro- and micro-aspects
in formalism to synthesize a whole with its expected goals, and then to verify and validate within an
L-V-C simulation environment.

Keywords: swarm ontology; autonomous system; model-driven; multiparadigm modeling; model-
based systems engineering

1. Introduction

The current trends in the development of unmanned systems are evolving to add
the characteristics of autonomy, adaptability, and intelligence; furthermore, completely
heterogeneous unmanned systems can be aggregated into a swarm to address various types
of missions, making them more complex. The development of swarm is a field of AI that
focuses on the architecture of swarm mechanisms to enable a large number of individual
autonomous systems to act in a coordinated way, with decentralized control, automatic
interactions, and self-organization, even in real time, resulting in the emergence of swarm
across multiple levels of causation. When we think of a swarm as a complex system or a
System of Systems (SoS), it is difficult to comprehend and analyze, and traditional engineers
cannot use closed-form analysis or prediction techniques to fulfill the development of the
ConOps of swarm and the design of individual system units. The basic concept of a
modeling framework for such complex systems is based on the description of dynamic
systems and defined as a formal ontology in a logic-based language [1]. On the other
hand, in the emerging field of autonomous swarm technology, the design elements and
the overarching architecture used to aggregate multiple unmanned systems into a group
are always vague, even lacking or ignored. A proposed swarm Unmanned Aerial System
(UAS) mission taxonomy is designed to provide building blocks for an overall top–down
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design methodology, and further, a decentralized control architecture and layered approach
to be integrated as design elements for developing swarm UAS technology [2].

However, today, the application of digital technologies in swarm seems to be very
significant for the evolution of digital engineering for mission, specification, design, inte-
gration, verification, and validation in complex systems. The mission-based architecture
for swarm intends to integrate the mission doctrine, utilize composable elements, demon-
strate modularity across missions, and be intuitive to the human operator [3]. Compared
with traditional systems with transparent use cases and exact functions, the development
of complex systems such as a swarm will intensely depend on the utilization of Mod-
eling and Simulation (M&S), which may be the sole appropriate approach throughout
the development of a swarm. In experimental platforms, the different simulation results
are organized to group them depending on the missions or behaviors carried out by the
swarm. Some behaviors, such as aggregation and collective movement, are quite basic to
constitute more complex and high-level swarm tasks [4]. Although swarm technology is
based on unmanned systems, artificial intelligence, etc., its application is still in the early
stage. The enhanced capabilities of swarm systems can bring about obvious advantages for
the achievement of mission tasks, such as distributed delivery and deployment, remote
communication and command, persistent surveillance and reconnaissance, multi-sensor
data collection and transmission, multitarget search and target, etc. [5].

In the traditional design of swarm systems, most designers are restricted to their
respective engineering expertise, mainly focusing on communication networking, vehicle
platforms, controls, sensors, individual autonomous agents, etc. Due to the scarceness
in the background of system engineering, some significant challenges are faced from the
perspective of mission conceptualization and operational contextualization. Therefore, we
should rely on the general principles and processes of Model Based Systems Engineering
(MBSE) to establish a new swarm-oriented technology application paradigm. To create
and evolve a mission-effective swarm, traditional engineers must collaborate with system
architects to consider the methodology of operation, design, and test when developing an
autonomous unmanned swarm [3].

Here, we focus on a domain-specific application of a swarm and aim to be able to
meet the expected mission efficiency and the requirements of the autonomous unmanned
system within a single context of the development framework. We explore the ConOps
of autonomous swarm and derive the design specifications of the Autonomous System
(AS), both in a common architecture of viewpoints and views, as well as build a coherent
lifecycle process to capture and track them.

The rest of the paper is organized as follows: Section 2 reviews some related concepts,
methodologies, and research works along our research roadmap; Section 3 describes the
architecture framework of M&S based on swarm ontology; Section 4 discusses some
different methods of M&S and their applications in our approach; and Section 5 concludes
the paper.

2. Related Works

The elements of our methodology were mainly from the heuristics of the ontology of
knowledge representation and artificial intelligence, such as the following: Cyber-Physical
System (CPS) with hybrid-networked computational and engineered physical elements,
behavior-based system modeled by the Discrete Events Systems Specification (DEVS), agent-
based model for an adaptive system, Multi-Paradigm Modeling (MPM) as the foundation
for CPS engineering, digital twins applied in a Live–Virtual–Constructive (L-V-C) platform,
the architectural framework models of the lifecycle of a complex swarm system, from
conceptualization to contextualization on MBSE, etc. These elements represent a common
approach for design and operation in order to meet the capabilities and requirements for
any intended swarm missions.
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2.1. Swarm Ontology

An ontology is a system of concepts to represent an explicit specification of a conceptu-
alization of a complex system, which is borrowed from philosophy, which is the systematic
study of existence (being) in general. Ontology is a top-level abstraction in the field of
AI and is applied in a formal declarative modeling method of logic-based statements. In
the context of our research, ontology is regarded as a knowledge representation approach
reflecting concepts with their properties and relationships in specific domains, and also
constraints and rules governing those properties and relationships. For an autonomous
swarm, it could combine intelligence and other characteristics expected in humans with
technical characteristics such as cognition, behavior, perception, and execution in the form
of formal models and structural frameworks. In the context of AI, we can define a set of
concepts (such as an object, relationship, interaction, function, or other) in a knowledge
domain to describe the ontology of the system, in which human-understandable terms and
axioms help to explain its meaning, and also well-formed constraints exist among these
terms to support machine reasoning.

Because an autonomous system swarm has the characteristics that individuals follow
simple behavior or logic rules and can stimulate collective behavior with a decentralized
coordination mechanism, M&S might be the most potential approach to solve problems of
such complex systems. However, from the perspective of M&S, the relationship between
the emergence behavior embodied by the swarm as a whole and the simple behavior of
the individual needs to be effectively represented in the swarm ontology, which is not only
the highest level of abstract form, but also the most basic theoretical foundation of this
study [1].

With the growing complexity of the collaboration between multiple autonomous
systems as well as humans and robots, the IEEE-RAS (Robotics and Automation Society)
Robotics and Automation Ontology working group formed a standard ontology and associ-
ated methodology for knowledge representation and reasoning in robotics and automation,
together with the representation of concepts in an initial set of application domains. In order
to cover the domain of robotics and automation, the working group developed a bottom–up
and top–down approach with four subgroups: Upper Ontology/Methodology (UpOM),
Autonomous Robots (AuRs), Service Robots (SeRs), and Industrial Robots (InRs). The focus
of the AuR subgroup is future unmanned systems working in teams with other unmanned
vehicles to share situational awareness and coordinate activities, such as Unmanned Aerial
Vehicle (UAV), Unmanned Ground Vehicle (UGV), and Autonomous Underwater Vehicle
(AUV). For the level of an individual system, the ontology provides help to enable the
decision making, control strategies, sensing abilities, mapping, environment perception,
motion planning, communication, autonomous behaviors, etc. [6].

2.2. Model-Based Paradigm

Model-based paradigms have become a powerful driver for systems engineering
and the launching of system thinking, in which processes and activities of the system life
cycle shape the context of systems engineering practice, and M&S constitutes the core
mechanism and is beneficial to helping connect the stages of MBSE [7]. The essence of the
transformation of MBSE is a continuous shift to a system development process supported
by the continuity and traceability of models. When referring to models, we highly advocate
executable models for simulation in an Experimental Frame (EF). Therefore, advanced
M&S technologies and methods have become the key enabler driving the life cycle of
systems engineering.

MBSE relies on the trend of adopting a unified formal model throughout the system’s
life cycle process activities, and has been struggling to seek an appropriate means to connect
the blueprint models that describe the system architecture in an iterative and incremental
way, and then be used to validate these stakeholders and verify by its specifications, even
early in prototyping development. In order to support the multidisciplinary practice in SE,
the communities in systems engineering have been adopting many modeling approaches
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and tools, which range from mission or business analysis to requirement definition, system
structure, and interfaces, and even to system behavior, and so on. We need a formal
modeling language to combine visual graphics for human communication and a metamodel
with constructs and rules needed to build specific models within a domain of interest, and
a specification to be exchanged spanning diverse modeling paradigms and tools. The
Unified Architecture Framework (UAF) for SoS, System Modeling Language (SysML)
for systems, and its collections of visual diagrams, which are derived from the Unified
Modeling Language (UML), have been standardized and continuously updated by the
Object Management Group (OMG) and International Council on Systems Engineering
(INCOSE) at the initiative of MBSE.

Furthermore, from the perspective of system paradigm evolution, a CPS is defined as
an autonomous, adaptive, and intelligent system in which Communication, Computing,
and Control (C3) components dominate physical behavior. M&S will involve multiple
levels of concept, specification, and operation in CPS Engineering (CPSE) to use formal
methods to express basic concepts (such as structures, states, events, concurrency, etc.)
and their relationships, to represent the system studies (problem) in the real world as a
model, and to verify the implementation of system behaviors and functions (solution) by
executing various simulation instructions through a simulation engine [8]. Therefore, a CPS
is an advanced hybrid form of system and can be modeled in some very distinctive ways,
such as computational elements for discrete modeling; physical elements for continuous
modeling; communication networking for probabilistic scenarios; and even game theory
for operations research to support planning and decision making [9].

2.3. Multiparadigm Modeling

The essential part of our research is the application of M&S throughout the swarm
life cycle to initiate MBSE; thereby, it needs to collaborate on various models at various
levels and stages of concepts, specification, and operation, etc. Hereby, we should select
Multi-Paradigm Modeling (MPM) as an underlying approach to synthesize many different
modeling techniques for a swarm to achieve the integration of modeling paradigms, model
transformation techniques, and compositional modeling methods. MPM is a key method
that provides a solid foundation for the design process for a CPS.

The most critical issue is the distinction between modeling patterns, which requires us
to analyze the respective characteristics of exploratory and constructive modes and the way
they are combined. The two modeling modes adopt different properties in order to reach
their respective goals, because of the originations from different schools of thought with
different goals. For example, exploratory modeling grows from the bottom–up and focuses
on describing an open world; constructive modeling is a perspective from the top–down
that focuses on proposing a closed-form solution. However, it is the intrinsic differences
between the two modeling patterns that form the necessary complementarity. Exploratory
modeling aims to explain domain concepts by describing them, usually in the form of
classification, and typically uses modeling languages such as Web Ontology Language
(OWL) to specify taxonomy and Description Logic (DL) for reasoning. On the contrary, the
purpose of constructive modeling is to establish a domain solution by prescribing nominal
types for all elements of the domain, and is supported by modeling languages, i.e., SysML
and first-order logic via constraint languages such as Object Constraint Language (OCL),
understanding instances of all types through instantiation relationships [10].

Given the goal of hierarchical swarm modeling, different models are actually required
at different levels of abstraction. However, we can exquisitely apply the same modeling
language to simultaneously solve the challenges of cross-abstraction-level semantic as-
sociation and executable model continuous transformation. For example, exploring the
concept of swarm operation is still an open domain of knowledge, which means that a
swarm ontology will benefit the advantages of exploratory modeling; for the development
of autonomous unmanned systems, we hope to guide the rapid configuration of a system
based on a metamodel to specify other models and its instances across multiple domains.
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At this point, the metamodel will become the model template for system construction. The
most intuitive way to solve the semantic connection between the two modeling methods is
to use the same modeling language, such as SysML.

2.4. Behavior-Based System for Autonomy

The concept of a swarm derives from biology and refers to a group of a large number
of biological individuals working together to accomplish some collective behaviors, where
a single individual or any uncooperative individuals cannot perform such useful tasks
without the help of the rest of the swarm, such as the flocking of birds and schooling of
fish, colonies of bees, and so on.

A reasonable way to develop and evaluate intelligence is to understand the ability
of natural organisms to handle real-world complexity. The main goal of behavior-based
systems is to solve the control problems and applications of single or multiple robots
(autonomous systems). The concept of basic behaviors has an explicit modular nature, and
behavior-based systems can be presented as building blocks with the properties of func-
tional decomposition and sequential interdependencies to enable the autonomous system to
reason in a complex challenging environment and grant it adaptive behavior [11]. A swarm
ontology creates a common conceptualization that can be shared in model transformation
and association by all those involved in an engineering development process [12].

In line with the tendency of the top–down methodology in MBSE, the high-level func-
tional models should be specified before decomposing to lower-level functions. Especially
supported by SysML, we make use of the diagrams of use case, activity, sequence, and state
machine to model system behaviors in a consistent and coherent way successively through-
out the behavior abstraction level of a black box in a larger environment, business flow
with several functional divisions, interactions between a group of elements, and a specific
state and events in an element unit. Our approach first focuses on behaviors in a high-level
swarm and then decomposes them into the distributed system by developing modular,
scalable, reusable, and tailored behaviors that execute the intended swarm operation [13].

We refer to the autonomous strategic mechanism of an autonomous system as the
process of decision making by taking information about the environment via sensors,
which also is a computational architecture on the level of an individual. To effectively
apply the State Analysis method in the context of complex control systems, [14] provides an
ontological definition of the concepts and relations to map State Analysis onto a practical
extension of SysML.

The DEVS in an M&S-driven paradigm should be implemented by integrating a swarm
ontology to offer life cycle control according to scenarios, and it becomes particularly
important to predict and test the behaviors of both swarm and individuals. DEVS is
a popular model-based approach to perform modeling and simulation to connect the
activities of MBSE, and combines discrete, continuous, and hybrid models in a formal
way. The block-based unit is modeled to build a modular and hierarchical structure, which
can be interconnected through input or output ports with self-contained behavior [15]. A
model transformation approach is proposed to simulate hybrid SysML models under a
DEVS framework and to depict hybrid models, and simulation-related metamodels with
discrete and continuous properties are extracted from SysML diagrams, which refer to a
Block Definition Diagram (BDD), Internal Block Diagram (IBD), State Machine Diagram
(SMD), and Parameter Diagram (PAR). Following the OMG’s Meta Object Facility (MOF),
DEVS metamodels are constructed based on the definition of DEVS formalism, including
discrete, hybrid, and coupled models. Such an approach may facilitate the modelers to use
a DEVS-based simulator to confirm complex systems models [16].

2.5. Digital Twins in an L-V-C Platform

An autonomous CPS must have learning capabilities to adapt to external environments,
so it is also an agent-based system. The subject of agent-based development and testing
platforms makes a clear connection between an intelligent, adaptive, and autonomous CPS
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and its Digital Twin (DT) in the form of intelligent software agents within a situated virtual
context that replicates the nature of the physical environment [8].

Through the digital twin of a system, we have the possibility to analyze and test various
operational scenarios on a complex swarm before its physical implementation. A digital
twin is a virtual representation which is based on the digitalization of physical systems to
allow modeling the state of a physical entity or system, and it is created by digitalizing
data collected from physical entities through sensors, so various predictions could be made
by understanding the behavior of the physical entity [17]. A digital twin consists of three
essential components: a physical product, a virtual representation of that product, and the
bidirectional data connections that feed data from the physical to the virtual representation,
as well as information and processes from the virtual representation to the physical [18].
Although a DT deeply relies on its current simulation, it has some significant distinctions
from simulations, such as DTs dedicated to whole-life-cycle operational processes rather
than some detailed design and testing, and behaving in the real world by obtaining real-
time data from a physical product, not just for virtual training.

In an M&S environment supported by MPM, we go beyond the limitations of tra-
ditional computational models to acquire the full capability needed to investigate the
emergent behavior of complex systems, known as an L-V-C simulation, including a live
simulation where the model involves humans interacting; a virtual simulation where the
model is simulated by a hybrid of humans and computer-generated experiences; and
constructive simulations where the model is entirely implemented in a digital computer
and even has a high level of abstraction [7].

Throughout the system’s lifecycle in MBSE, one of the primary tenets is to reuse the
concept of a system. The digital twin in an L-V-C simulation as an analytics framework
provides new opportunities to operationalize early investments in system models to per-
form analysis before the physical asset is fielded. Additionally, by leveraging early efforts
to define the DT, analytic processes are used to verify and validate [19].

In order to establish a substantial and permanent linkage between physical products
and virtual representations, we adopt a Unified Repository (UR) to include various sensor
reports, simulation data, control parameters, etc. Virtual development tools and physical
collection tools populate a Unified Repository of data to achieve two-way connectivity
between virtual representations and physical products, thereby forming a virtual/real
hybrid simulation environment platform that covers the interaction of real and virtual
spaces [20].

2.6. The Taxonomy of the Methodologies/Methods

We would like to review the relative research works coming from the references
(see Table 1) mainly according to the taxonomy of the methodologies/methods of swarm
ontology, modeling and simulation for cyber-physical systems, model-driven engineering,
behavioral simulations, and virtual/real hybrid simulation environments, which inspire
our approach to build a comprehensive modeling and simulation framework to combine
models for swarm ontology, which present complex operational concepts and system
specifications, represent the dynamic structure and behavior of autonomous systems, and
incorporate decentralized communication, distributed control, and adaptive planning to
design elements of cyber-physical systems.
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Table 1. The taxonomy of related methodologies/methods.

No. Methodologies/Methods Key Ideas and Its Usage Refs.

1

Swarm ontology

Ontology: A set of concepts of the problem or knowledge and the
relationships between them, which is suitable for describing some domain
of interest.
The aim here was to define a swarm ontology in terms of basic types of the
elements in specific domains and their properties connected to each other by
a formal language, such as SysML.

[1,5,6,12,14]

2

Generic swarm architecture: An integrated swarm framework with a
composable model abstraction of various specific properties depending on
individual autonomous units or agents.
The aim here was to develop a method to design a swarm architecture from
an initial mission and then various models to be iterated and verified to
achieve the desired behavior of the swarm.

[2–4]

3

M&S for a CPS

CPS design paradigm: A new design technique to encompass physical and
cyber components to embrace the most appropriate M&S at the component
level and at the overall abstraction level in which the system can address the
general mission or specific problem.
The aim here was to use appropriate M&S to facilitate all the phases of the
CPS design in MBSE processes, ranging from the conception to the hardware
and software design, and then conduct a massive deployment evaluation in
a simulation or virtual/real environment.

[7–10,21]

4

Multi-Paradigm Modeling (MPM): A key approach for CPS design processes
to support the coordination of different modeling paradigms, model
transformation, and compositional modeling approaches to form the system
from specification to verification and validation.
The aim here was to associate the conventional methods with model-based
designs, in which the specification and design solution are executed and
implemented as a domain-specific modeling.

[10]

5

Behavioral simulation

Behavior-based system: an AI-based system which forms as a result of the
individual behavior of a set of physical components and/or cyber
components (e.g., agents) and their interaction in a dynamic context.
The aim here was to develop a behavior-based system at a variety of
abstraction levels with semantical enrichment, to facilitate the top–down
sharing of a set of common concepts and properties from an ontological
model and the bottom–up incremental construction of the coupling of
sensing and action through behaviors.

[5,11]

6

Discrete Events System Specification: A mathematical formalism to describe
hybrid systems including discrete and continuous behaviors, such as a CPS,
which combine discrete events, discrete time, and continuous dynamics in a
mathematically sound way.
The aim here was to provide a model mapping rule to transform discrete and
continuous behaviors into general systems models based on the state
machine and constraint diagrams of SysML.

[11,15,16]

7

Multi-Agent-based Simulation (MAS): An emerging simulation technique to
address very different individual models ranging from simple (reactive
agents) to more complex (cognitive agents) within the unified
conceptual framework.
The aim here was to develop an autonomous CPS computation model to
integrate intelligence by communicating/computing from cyber components
and a real-time adaptation via the distributed control of
physical components.

[22,23]
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Table 1. Cont.

No. Methodologies/Methods Key Ideas and Its Usage Refs.

8

Model-driven
engineering

Model Based Systems Engineering: The formalized application of modeling
to support system requirements, design, analysis, verification, and
validation activities throughout system life cycle phases.
The aim here was to introduce a top–down, hierarchical approach within an
overarching ConOps to decompose into requirement, structure, behavior,
and even agent algorithms.

[3,13,24–26]

9

Formal modeling with SysML: With formal logic and within a formal
method, SysML can be used to maintain consistency as a design evolvement
to provide formal semantics and enable engineers to reason in the
model-based development process.
The aim here was to apply a single formal modeling language throughout
the whole process of MBSE from concept, requirements, architectures,
high-level design, V&V, etc., and SysML was extended upward to ontology
definition and downward to the definition of opaque behavior and equation
of agents; also, the aim was to build a single source of truth to avoid the
ambiguity of model semantics.

[12,16,27]

10

Virtual/real hybrid
simulation environment

Digital Twin: A virtual representation to model the states of a physical
system by collecting information/data from the physical system or
components through sensors, so one can experiment or predict the behavior
of the physical system in a real environment.
The aim here was to construct a swarm digital twin model to support swarm
experiments ranging from the concept of operations to integrating
verification in an enhanced M&S environment.

[17–20]

11

Live–Virtual–Constructive simulation: A broadly used taxonomy for
classifying M&S. A Live simulation involves humans interacting (play
acting, etc.) with real systems; a Virtual simulation is a fusion of human and
computer-generated experiences; and a Constructive simulation is entirely
implemented in a digital computer and may have high levels of abstraction.
The aim here was to incorporate Live–Virtual–Constructive simulations into
a single M&S environment to leverage the best features of each
domain-specific modeling technique to effectively present swarm
emergencies and evolve operational capabilities.

[8]

3. The Architecture Framework for Swarm M&S Based on Swarm Ontology

The point of beginning this research was to apply state-of-the-art formal system
modeling language to a swarm ontology and effectively solve the problem of executable
representation in swarm systems. From the viewpoints of various stakeholders, the purpose
of the ConOps is to facilitate a common understanding of a future complex system to help
develop operational capabilities to address some emerging problems, which contains the
top-level functional thread (i.e., the Functional Flow Block Diagram or Activity Diagram) in
the proposed situation and also the operational architecture to bridge the system capabilities
and the specific technical requirements needing to be achieved. Therefore, we introduced
the ConOps of swarm in a specific domain, and then embedded some semantics into the
abstract models and transferred specific design features to the development process of
unmanned systems in MBSE. Further, we were able to build a codesign and co-simulation
architecture framework which integrated the macrosystem model of the swarm and the
micro-individual agent-based run-time model, and supported virtual and real hybrid
patterns, thus developing a technical path for the conceptualization development and
contextualization evaluation of the autonomous system swarm.

The overall research blueprint of this study is shown in Figure 1; it is very useful to
bridge the gap between the operational level of planning and the design solution level of
autonomous system units. The content and work of this article mainly lie in the following
four aspects:
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• Firstly, at the beginning of framing the problems in the complex context, the innova-
tive ConOps of swarm and its novel capability requirements should be derived and
deducted, and currently, we give full play to the integrated application advantages
of Model-Driven Engineering (MDE) and Multi-Paradigm Modeling (MPM) to break
through the traditional feature-based modeling function of Web Ontology Language
(OWL) technology and Protégé 5.6.1 software to define a swarm ontology in a concep-
tual model based on System Modeling Language (SysML), which is more formal and
executable. The swarm ontology with a descriptive form should support hierarchical
model refinement and translation. From the top–down levels of abstraction, the macro-
behavior presents the model of a swarm population, the meso-behavior presents the
model of a group of individuals, and the micro-behaviors present the model of an
individual. The meso-model is in between the individual and population levels [21].
To achieve explicit knowledge representation and logical reasoning throughout the
three levels of macro–meso–micro, it will support the linkage of transition from the
swarm overall characteristics to the system design features in the way of decomposi-
tion and breakdown, and then convey and map the component specifications in the
development of unmanned systems.

• With the application of the process and method of MBSE and the flexible extension
mechanism in a system model based on SysML, we are particularly interested in the
dominant features of intelligence, adaptability, and autonomy within heterogeneous
unmanned systems in multiple domains (such as space, air, ground, sea, etc.) and
dedicated to establishing a metamodel framework and its corresponding metamod-
eling process for those systems. Therefore, focusing on the functional and logical
model (mainly by SysML) and the mathematical–physical model (mainly by Mod-
elica), our approach further enhances the pattern of the domain-specific modeling
language (DSML) and its integration framework (via the SysML Extension for Physical
Interaction and Signal Flow Simulation, SysPhS for short, the specification from OMG)
of general unmanned systems to define, develop, integrate, and verify the implemen-
tation under the use cases of vehicle maneuvers, autonomous control, information
interconnection, mission coordination, and so on.

• For the application of the “Real” and “Virtual” nodes in a hybrid pattern to simulate
a typical complex swarm scenario, we define the format of a Unified Repository
(UR) for both the digital model (digital twin) and the physical entity in a common
representation model of an unmanned system. In the current mature spatiotemporal
information system, it embeds agent-based mathematical models and collects data
about the movement, navigation, command and control, communication, etc., of the
physical entity. We built a codesign and co-simulation environment which supports
virtual/real mixing operations to visualize the overall and global swarm application
and to verify and validate the conceptualization of autonomous unmanned swarm.

• And finally, considering the swarm ontology technology of autonomous unmanned
systems as the main thread in our research, and across the conceptual ontological
model–functional and logical model–mathematical physical model, we develop the
technology of the integration environment of a multilevel and multiparadigm col-
laborative model and simulation, which will become a technical evolution platform
of the experimental frame to support the development and evaluation of complex
behaviors [24], such as swarm environment awareness and cognition, collaborative
task planning and decision making, information interaction and autonomous control,
and others. We take a hierarchical, composable approach to swarm development and
the experimental framework is mainly composed of ConOps, capabilities, architecture,
and parameters.
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4. Modeling and Simulation Methods and Their Applications

The M&S and its applications in the autonomous swarm framework involve the
following four levels: the definition of swarm ontology, the system development with the
metamodel and metamodeling, multiagent M&S for an autonomous CPS, and V&V in a
virtual/real hybrid integration environment.

4.1. Descriptive Modeling for Swarm Ontology

This section serves as the basic theoretical and top-level guidance for our methodology
and emphasizes a complete description of system conceptualization and contextualiza-
tion from the loop of Conceive–Design–Implementation–Operation (CDIO) to make the
ontology a fundamental approach to addressing swarm complexity, thereby also reflecting
the basic key drivers and processes of MBSE and the innovation of specific engineering
applications. Therefore, in the context of complex operations, the architecture framework
is placed at the intersection of the above four CDIO domains of a complex system. It is
highlighted that the functionality and characteristics of the systems and elements within
the overall framework should be considered during the mission concept, which requires
establishing a top-level framework for analysis and synthesis, concentrating on the archi-
tecture model of the swarm ontology. The goal of the work is to entirely model a problem
in business terms without refining the solution or its implementation, which relates to the
Computation-Independent Model (CIM) of Model-Driven Architecture (MDA) [25].

For our study and other AI systems, what “exists” is that which can be represented in
models. For the research of complex systems such as swarm, the formal representation of
autonomous systems based on ontology is currently one of the research hotspots, while
modeling and simulation are regarded as the most effective solution. Our aim in the
research is to provide a comprehensive modeling and simulation framework for future
applications of swarm ontology that enables us to leverage the advances in graphical
modeling languages (such as SysML) and the process of MBSE, while further enabling us
to perform formal analyses of consistency and correctness with respect to the ontology of
the domain of swarm.

The ontology is traditionally defined in OWL2 with open-source ontology tools, such
as Protégé [10]. In order to reason about the properties of the concept model and particularly
facilitate the simplification of the model-to-model transformation from one domain into
another in MBSE, SysML has the same abilities as OWL2 to map the domain concepts into
SysML entities or relations without affecting the concepts. In SysML, the Block Definition
Diagram (BDD) has enough expressiveness to represent a detailed design. When we
suitably restrict SysML’s BDD, it can be transformed into OWL2 to achieve the equivalent
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effect. A SysML BDD is a kind of first-order equational logic and provides an abstract
syntax for the kind of terms in which logical axioms are expressed using equality, instances,
and subclass relations between terms. The knowledge presentation of a system of concepts
is suitable for representing designs which will have distinct “has a part of” properties,
with domains and range classes that represent the graph structure of the BDD, and with
a cardinality restriction on these properties to depict the number of instances of the class
during implementation [27].

The general principle is to map the swarm ontology into SysML to define the onto-
logical concepts and relationships as SysML constructs that can be applied to appropriate
modeling entities: concepts to blocks, and relationships to a semantically compatible
SysML relationship. See Figure 2 for an example of an autonomous swarm ontology model
for a specific mission. The macro-behavior corresponds to the swarm tasks; that is, the
autonomous swarm needs to possess top-level capabilities to achieve its mission. The
meso-behavior to corresponds to a teaming strategy, which refers to the collective behavior
of an autonomous system to be negotiated in interaction with the outside world. The micro
behavior corresponds to atomic actions, which are various operations that autonomous-
system individuals should possess.
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4.2. Metamodel and Metamodeling Supporting an Autonomous System

Modeling languages such as SysML provide particularly useful graphical syntax
for human understanding. However, because they only contain abstract semantics, it is
necessary to add concrete semantics related to domain knowledge for domain-specific
applications. The essence of a metamodel is to create an intermediate layer between a
common abstract modeling language and specific implementation instances to represent
domain knowledge. Its key role lies in achieving business knowledge extraction and model
reuse. The process of creating a metamodel, which we call metamodeling methods, has
also become a core activity in implementing specific practices of the MBSE methodology.
In order to overcome the learning curve of modeling languages, methods, and tools,
metamodels and metamodeling will become key enablers for promoting the transformation
of traditional systems engineering processes into methods of MBSE.

Model-driven architecture is a process that focuses on models and is driven by model
mapping. The system development approach in the MDA environment aims to accurately
describe different problem spaces by creating various models during development activities
and using model transformations to drive the entire development process, including
analysis, design, and implementation. The Platform-Independent Model (PIM) is then built
by specializing the run-time properties in SysML diagrams, such as the unmanned adaptive
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control units and their dynamic evolution, which reflect the structures and behaviors of the
design components.

This section mainly introduces metamodels with unified semantic interpretation for a
behavior model of artificial intelligence systems, which can be used as a reference to guide
the specification and implementation of various autonomous unmanned systems across
many domains in the MBSE process, such as Unmanned Aerial Vehicle (UAV), Unmanned
Ground Vehicle (UGV), Unmanned Underwater Vehicle (UUV), etc.

From the viewpoint of Command, Control, and Communication (C3), the interop-
erability allows information interactions between an unmanned system and others and
information sharing and task allocation between different command levels and different
units, e.g., STANAG 4586—Standard Interfaces of UAV Control System (UCS) for NATO
UAV Interoperability, which defines data formats, interface requirements, communication
protocols, etc. [28]. Meanwhile, from another viewpoint of Open System Architecture
(OSA), we should consider a common/open architecture, modular component, test verifi-
cation, and data integration for unmanned systems. As another example, the SAE standard
Joint Architecture for Unmanned Systems emphasizes capturing and categorizing com-
mon interfaces and services to enable the continued growth of standard sets and robotic
technology [29].

The primary paradigm of Artificial Intelligence (AI) is mainly knowledge-based sys-
tems, in which the knowledge related to application domains, the external environment,
and the decision making process are defined and presented via symbolic models. On the
other hand, MBSE advocates for the specification, analysis, design, verification, and valida-
tion of systems using formal models. Therefore, from the perspective of the development of
modern AI systems, our first choice is the representation language of symbolic knowledge
and the automatic reasoning mechanism based on logical language.

With the V-model, it depicts the development activities that go through the ConOps to
the integration and the V&V that helps identify errors early in the life cycle. However, the
V-model has the drawback of being rigid and less flexible. However, the walking skeleton
model is a lean approach for incremental development, popularly used in software design,
and especially suitable for a systems approach to AI implementation to rapidly adjust the
scope of a system. It focuses on creating a skeleton framework and looks like a metamodel,
which will become the heart of the model-based approach, and the architecture can be
configured and optimized to ensure that the system is enhanced [26].

Different from the traditional application of a V-model, working toward complex
development and simulation processes such as swarm, we should have a digital system
prototype at the beginning to connect the development of the top-level SoS and the de-
sign of the underlying multidisciplinary components of unmanned systems. We should
incrementally create and deploy a coherent and consistent Digital System Model (DSM)
integrating specific models as a source of digital twins of system specification, design,
analysis, verification, and validation. The system architecture represents the structure,
behavior, and constraints of complex systems to deliver an effective solution satisfying the
needs of stakeholders. Therefore, the metamodel is the initial prototype for the system
architecture, which will serve as the starting point for system development and support
the system’s evolution in a M&S environment.

The process to develop a metamodel is also a micro-cyclic iterative development
process within the whole framework. Following the idea of the Model-Based System
Architecture Process (MBSAP) [13] to connect or transform an SoS mission architecture to a
system architecture, the first mapping converts capabilities to Operational Viewpoint (OV);
the next mapping transforms the OV into Logical/Functional Viewpoint (LV), where the
refinement of system elements, services, functions, interactions, and behaviors is carried
out. Then, the development of physical specifications is accomplished by mapping the
LV to Physical Viewpoint (PV). Synchronously, digital system models of autonomous
systems support the M&S of complex dynamic systems, particularly swarm, and allow
engineers to continuously express new solutions and conduct L-V-C online testing before
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implementation. See Figures 3–8 for examples of SysML models and Modelica models
as the metamodels for Unmanned Aerial System (UAS) with the typical composition
and synthesis.
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In our methodology, we firstly clarify and explain the aforementioned conceptual
models in swarm ontology for the stakeholders and/or team members, which include the
whole iterative context of the system definition and the engineering process of autonomous
vehicles, and then apply the approach of the metamodel to capture and specify the technical
information needing to be developed for the DSM in communication and computation,
command and control, motion planning, perception, other knowledge representations
about the problem description, and the solution specification to support decision making
within MBSE.

4.3. Multi-Agent-Based M&S for CPS

The intelligence of an artificial system is due to the emergent properties in a complex
context, such as a swarm, which can be described as results of the interactions between their
components and the environment. There is a reasonable expectation that the intelligence
of a system should not only be formed from an abstract symbolic system in advance of its
operations, such as automatic reasoning based on logic. However, the intelligent behavior
of a system should emerge as a composition of simpler agents structured in a certain way
and exerting their interactions with others and with the environment [7].

A multi-agent-based simulation is an advantageous solution due to its excellent ability
to cope with diverse models, ranging from simple entities—usually called reactive agents—
to more complex cognitive agents. Within the unified conceptual framework, the modelers
can easily handle different levels of representation, for instance, individuals and swarm [22].
Within the framework of artificial intelligence, Multi-Agent System (MAS) are characterized
by offering a potential solution to the development of complex problems with distributed
properties [23]. Due to the nature of hybrid and real-time control in CPSs with a controller
and physical components to sense, control, and operate in a complex physical environment,
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multi-agent-based development will be of great importance in the domains of CPSs such as
unmanned vehicles.

As for the definition of a swarm ontology, it is deemed to be a macro-model to reflect
the overall operational mission tasks. Now, it is necessary to consider the autonomous
teaming strategic mechanism in a swarm as a meso-model, and individual actions as a
micromodel. Now, we choose a multi-agent-based approach to convert the latter two
behaviors into computational models. Among them, the determination of the autonomous
team strategy lies in bionic research on teaming collaboration rules in a creature swarm,
such as the flocking of birds, schooling of fish, or colonies of bees, aiming to achieve the
simulation and verification of social behaviors such as the grouping, following, negotiation,
divisions, and cooperation of an autonomous system. Alternatively, individual behaviors
mainly present activities such as maneuvering, avoidance, detection, communication,
control, and others. Both involve discrete, continuous models or their combination. See
Figures 9–17 for an autonomous teaming strategic model of a swarm and a state machine
model of an individual autonomous system, respectively.
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4.4. V&V in a Hybrid Virtual/Real Integration Environment

A swarm is a dynamic System of Systems (SoS) in which components are autonomous
systems or other related enabling systems, such as legacy regional communication net-
works, supporting infrastructure, etc., which adapt to the current context and mission.
Although involving so many different modeling paradigms, it is necessary to establish
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an overall simulation environment to support the analysis, verification, and validation of
operational concepts.

The application of M&S throughout MBSE needs to integrate structural modeling and
dynamic behavior modeling in the architecture of the DSM, which provides a complete
picture of the swarm. In order to meet the needs of various ConOps, design elements are
effectively integrated (static structure) and use cases at all levels are employed to justify the
requirements and interactions (dynamic behaviors). The characteristics of MBSE ensure
that the architecture can cover all use cases, systems, and components, and drive end-to-end
M&S to verify the attributes and behavior of the models of systems and components [24].

Hybrid virtual/real integration is a digital Experimental Frame (EF) to support the
scenario-based verification and validation of a swarm, where the discrete events of the
swarm are the engine of constructive models to drive the behavior of multiple distributed
autonomous individuals (simulation). According to the logical structure and dynamic
behavior of the autonomous system in a swarm, a run-time computational model of virtual
individuals is implemented as agent-based models. The format of a Unified Repository
(UR) is defined to receive, send, and store data with the real ones in the M&S environment.
This is a comprehensive demonstration of a platform for integrating a swarm ontology in a
concept model, DEVS model, system logical structure and behavior model, and multiagent
model, and collecting data to contribute to the employment and evolution of swarm. See
Figure 18 for an integrated L-V-C modeling and simulation framework for a swarm V&V.
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5. Conclusions

The prominent feature of our proposed approach to swarm ontology is mainly the
suitable levels of abstraction and their coherent integration framework in a single formal
modeling language, which is a swarm mechanism to capture domain-specific knowledge
from problems to solutions within the context of the swarm ConOps, and study the model
specification, domain-specific semantics, and their transformation throughout conceptual,
logical models and agent-based computation. This research also presents the methods
of a metamodel and metamodeling in MBSE development, which aim to develop and
verify a more reasonable architecture of autonomous systems in an evolving environment.
Moreover, with a virtual/real hybrid simulation platform, we intend to establish a compre-
hensive modeling and simulation environment to continuously enhance human–machine
cognitive collaboration and human–autonomy teaming to support MBSE and AI.
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