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Abstract: The accurate detection and recognition of human actions play a pivotal role in aerial surveil-
lance, enabling the identification of potential threats and suspicious behavior. Several approaches
have been presented to address this problem, but the limitation still remains in devising an accurate
and robust solution. To this end, this paper presents an effective action recognition framework for
aerial surveillance, employing the YOLOv8-Pose keypoints extraction algorithm and a customized
sequential ConvLSTM (Convolutional Long Short-Term Memory) model for classifying the action.
We performed a detailed experimental evaluation and comparison on the publicly available Drone
Action dataset. The evaluation and comparison of the proposed framework with several existing
approaches on the publicly available Drone Action dataset demonstrate its effectiveness, achieving a
very encouraging performance. The overall accuracy of the framework on three provided dataset
splits is 74%, 80%, and 70%, with a mean accuracy of 74.67%. Indeed, the proposed system effectively
captures the spatial and temporal dynamics of human actions, providing a robust solution for aerial
action recognition.

Keywords: deep neural network; convolutional LSTM; action recognition; body pose keypoints;
aerial surveillance

1. Introduction

Action recognition involves automatically identifying and categorizing human actions
in video sequences, which is highly beneficial and needed for surveillance applications [1–3].
Action recognition is, indeed, a challenging task due to the presence of various challenges,
particularly background clutter occlusions and camera viewpoint [4–6]. Conventional ac-
tion recognition methods involved hand-crafted feature extraction [7,8], based on manually
representing actions, such as motion, shape, or appearance descriptors. The limitations
of this approach lie in the fact that hand-crafted features may not be able to effectively
capture complex temporal relationships or variations in different action scenarios. Indeed,
designing effective features could be challenging; plus, they may not generalize well to
different datasets or action classes.

The 3D CNNs extend the concept of traditional 2D CNNs [9,10] to incorporate tempo-
ral information by processing video frames as 3D volumes. They, however, require a large
amount of training data and computational resources. Additionally, they may struggle
with long-term temporal dependencies or capturing fine-grained motion details. Moreover,
the training of 3D CNNs from scratch can be challenging due to the limited availability of
annotated video datasets.

Recurrent neural networks (RNNs), gated recurrent unit (GRU), or LSTM [11,12] model
temporal dependencies by maintaining internal memory states. However, RNNs may
struggle with modeling long-term dependencies or capturing complex spatial dynamics.
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They could be sensitive to the order and timing of actions within sequences. RNNs are
computationally intensive, especially for longer sequences.

Two-stream networks [13,14] consist of the spatial stream (CNN for appearance) as
well as the temporal stream (CNN or RNN for motion). They require synchronized and
aligned RGB and optical flow inputs, which could be challenging to obtain in practice.
Combining the information from two streams can introduce additional complexity and
potential performance degradation.

Graph convolutional networks (GCNs) [15,16] represent actions as graphs and exploit
graph convolution operations to capture spatial and temporal relationships between body
joints or keypoints. However, GCNs rely heavily on accurate and reliable detection and the
tracking of skeletal keypoints and also have limitations when dealing with occlusions or
missing keypoints in complex action scenarios. Designing appropriate graph structures
and defining graph convolution operations are, inevitably, challenging.

The recent introduction of vision transformers has proved to be more efficient in
accuracy. There are approaches that utilize transformers for action recognition [13,17,18] in
complex scenarios; however, they are generally computationally more resource-consuming.

Aerial videos provide a comprehensive view [5] of the scene, enabling surveillance
operators to monitor larger areas and detect events that may otherwise be overlooked.
Action recognition from aerial scenarios, however, requires reliable detection of the target
in complex backgrounds, with varying camera angle altitudes for an accurate classification
of the action [19–22].

Malik et al. [23] proposed a method that relied on extracting 2D skeletal data using
OpenPose that are then fed into LSTM for training and testing. Their framework was,
however, validated in an indoor multi-view scenario and may not be directly deployable
for aerial videos.

Another limitation in human action recognition is that the trained models generally
misclassify when provided with unannotated data from new users [24], even after being
trained on a large amount of data. This challenge arises as it is impractical to collect
data for every new user. Yang et al. [25] aimed to address this problem by presenting
a semi-supervised learning action recognition method for training on labeled as well as
unlabeled data but not primarily for the aerial camera settings that are under consideration
in this paper.

Dai et al. [26] introduced a dual-stream attention-based LSTM containing a visual
attention mechanism that enables selectively focusing on key elements in the image frames
by applying varying levels of attention to each individual deep feature map’s output. The
deep feature correlation layer embedded in their framework is, indeed, relevant to our
work, and it contributes towards enhancing the robustness of the action recognition. The
validation in [26] was, however, in experimental scenarios, different from that considered
in this work.

Unlike the existing related methods reviewed above, the proposed research combines
the robust pose detection ability of YOLOv8 with temporal sequencing ability of the
ConvLSTM to propose an effective and efficient approach aimed specifically at aerial action
recognition. In fact, the proposed framework offers a reliable recognition of human actions
from an aerial perspective by utilizing the convolutional LSTM’s capacity to parse temporal
sequences. Specifically, the proposed method extracts the body pose keypoints from the
frames and classifies actions at the frame level utilizing the customized convolutional
LSTM network model. The reason behind relying on the extraction of the target body
pose or keypoints is the lower computational cost as compared to the spatial features.
Moreover, we use the LSTM network due to its demonstrated effectiveness for sequential
data classification [23,24,27,28]; plus, it is not well explored in the literature for the problem
under consideration. We showed the effectiveness of the proposed method in terms of
encouraging performance accuracy and computational cost when compared on a public
dataset (containing a wide range of action types) with several existing related approaches.
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The organization of the paper is as follows. The proposed method for action recogni-
tion is described in Section 2. Section 3 provides details of the experimental results and
analysis, which is followed by the conclusions in Section 4.

2. Proposed Action Recognition Method

We employed the YOLOv8 pose detection model for the extraction of 17 body key-
points. The extracted keypoints are then passed to the second stage, which is ConvLSTM,
to extract spatiotemporal features across the sequence. The sequence length of 30 frames,
chosen empirically, is set for the extraction of temporal information. The intuition behind
incorporating the body pose with ConvLSTM is a selection of suitable features that are
keypoints and performing the memory-based sequence classification using LSTM. Figure 1
illustrates the proposed human action recognition system.
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Figure 1. Block diagram illustrating different steps involved in the proposed action system.

The architecture in Figure 1 is designed to process raw keypoints for the analysis of
both spatial and temporal aspects. The ConvLSTM architecture shown in Figure 1 is made
up of multiple hidden layers that work together to collect spatial and temporal features
from frames. For an accurate classification of actions, this extracted feature set is essential.
These characteristics ultimately influence how the recognized action is predicted, enabling
the system to efficiently analyze actions occurring in successive frames.

Convolutional layers are used in the context indicated above to extract significant
features from the body pose keypoints. Convolutional layers apply filters to the key-
points in order to capture significant spatial characteristics, such as the placement of
body parts and their interactions. These filters help in finding patterns and correlations
among the keypoints.

The network can automatically learn hierarchical representations of the body positions
using convolutional layers. The network’s capacity to recognize and accurately classify
various activities within the video sequences is greatly aided by the extracted characteristics.

To accurately capture the temporal dynamics of activities throughout a series of frames,
the use of LSTM is crucial. LSTMs effectively capture patterns and changes that emerge
over time by processing the retrieved features or representations from each frame. LSTMs
give the network the ability to comprehend how actions develop and classify by keeping
track of past frames and taking into account how they affected the current frame.
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2.1. Pose Extraction

The YOLOv8 pose extractor is a popular deep learning-based algorithm for keypoint
detection. There are several other approaches that can be utilized for this purpose, but the
latest YOLOv8 is known to be more efficient in accuracy as well as computationally [29].
Figure 2 shows the output of the pose extractor.
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The keypoint coordinates for a given video can be represented as a (F, Kp), where
Kp represents the keypoints of the image and F represents the number of sequential frames
or sequence length, which, in our case, is set to 30. The extracted keypoints are made to be
aligned with the input of the next stage.

To extract spatiotemporal features from the video sequence, we stack the keypoint
tensors for a given person over time. Let Kpt be the keypoint tensor for the person at time
t and let Kp1, Kp2, . . ., Kpt be the keypoint tensors for the person over T frames of the
video sequence. We stack these tensors along the time dimension to obtain a tensor P with
dimensions (F,Kpt):

P = [Kp1, Kp2, Kp3, . . . ., KpT ] (1)

The YOLOv8 algorithm uses a fully convolutional neural network (FCN) to predict a
heat map for each keypoint, which can be used to estimate the pose of the person in the
video. The resulting output yields 17 keypoint coordinates for each detected person at the
frame level across the video sequence.

2.2. Custimized Convolutional LSTM Model

We used the LSTM model for action classification in aerial videos. The LSTM model is
a type of RNN that can effectively encapsulate the dependencies of the sequential data. In
the proposed approach, we first extract the temporal features from the aerial videos using
the YOLOv8 pose extractor and then use the LSTM model to classify the actions based on
these features. The tensor P in Equation (1) represents the spatiotemporal features of the
person over time.

The LSTM model contains a memory cell and three gates, including an input gate,
output gate, and forget gate [30–32], defined as follows:

Input gate:
it = σ(Wixt + Uiht−1 + bi) (2)

Forget gate:
ft = σ

(
W f xt + U f ht−1 + b f

)
(3)
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Output gate:
ot = σ(Woxt + Uoht−1 + bo) (4)

Memory cell:
Ct = ft.ct−1 + it·tanh (Wcxt + Ucht−1 + bc) (5)

Output:
ht = ot· tanh(ct) (6)

where xt ht , and ct denote the input, the output, and the cell state t, respectively. it, ft,
and ot are the input, the forget, and the output gates, respectively. Wi, W f , Wo, and Wc
refer to the collection of weight matrices used to transform the input data at each time step,
whereas Ui, U f , Uo, and Uc are the weight matrices to transform the hidden state from the
previous time step. bi, b f , bo, and b f represent the bias terms.

The output H is a sequence of hidden states that captures the temporal dependencies
in the spatiotemporal features. We can then use the final hidden state of the LSTM as input
to a fully connected layer with softmax activation to obtain the probability distribution
across the different action classes:

P = So f tmax(Wh H + b) (7)

We designed the custom sequential LSTM model by stacking three ConvLSTM 1D
layers, such that each layer is followed by a batch normalization layer, with decreasing filter
sizes of 128, 32, and 16, respectively. We added a dropout layer after the third ConvLSTM1D
layer to prevent overfitting. Next, we flattened the output and added two fully connected
layers with ReLU activation and a dropout layer after each. Finally, we added a dense
output layer with the softmax activation function. The LSTM model applied in this research
is convolutional LSTM (Figure 3), which combines convolutional layers with LSTM to
model spatiotemporal data.
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3. Experimental Results and Analysis

This section first describes the dataset in Section 3.1, which is followed by an evaluation
of the results in Section 3.2 and performance comparisons with existing related approaches
in Section 3.3.

3.1. Dataset

We used the publicly available Drone Action dataset for evaluation [22]. This dataset
comprises 240 videos that run for a total duration of approximately 44.6 min, embodying



Appl. Sci. 2023, 13, 9384 6 of 13

66,919 frames and containing 13 distinct human action classes. The videos were captured
from a low-altitude and slow-moving drone to ensure the details of body pose were reliably
extracted. The complexity of this dataset is augmented by the diversity in body size, camera
motion, varying target speed, and background clutter, making it a suitable benchmark for
human action recognition studies. Figure 4 shows representative frames from the dataset
for each action class [22].
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Figure 4. Representative frames from each class of the Drone Action dataset [22]: (a) walking
front_back, (b) walking side, (c) jogging front_back, (d) jogging side, (e) running front_back,
(f) running side, (g) hitting with bottle, (h) hitting with stick, (i) stabbing, (j) punching, (k) kicking,
(l) clapping, (m) waving hands.

3.2. Evaluation of Results

The proposed action recognition framework for aerial videos demonstrates an im-
proved accuracy and robustness. Indeed, the combination of the YOLOv8-Pose algorithm
and customized sequential convolutional LSTM model effectively captures the spatial and
temporal information of actions, leading to an encouraging action recognition performance.
The proposed model is trained and tested separately on the three dataset splits, as provided
by the original paper [22]. In each split, 70% data are used for training and 30% for testing.
The training was caried out for 200 epochs (chosen empirically), and network parameters
were kept the same for training and testing for each split of the data. Table 1 lists the corre-
sponding values for the validation loss and accuracy on all three splits. A representative
graphical representation of the validation loss and validation accuracy is shown in Figure 5
for Split 1.

Table 1. Training details for the 3 splits.

Dataset Epochs Validation Loss Validation Accuracy

Split 1 200 2.75–0.25 0.05–0.88
Split 2 200 2.55–1.00 0.13–0.83
Split 3 200 2.58–1.00 0.12–0.82
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The overall accuracies achieved on Split 1, Split 2, and Split 3 are 74%, 80%, and
70%, respectively. The corresponding confusion matrices are provided in Figures 6–8,
respectively. The class-wise results on each split are given in Tables 2–4, respectively, based
on the standard well-known evaluation measures, which are precision, recall, and F1-score.

Analyzing the results in more detail, we observe that some actions had consistently
high precision, recall, and F1-score values across all dataset splits. For instance, the actions
“Clap”, “Kick”, “Walk_fb”, “Walk_side”, and “Wave_hands” achieved high scores on all
three splits. This suggests that the proposed framework is highly effective in recognizing
these actions, even when presented with variations in the data. The high accuracy in
these classes can be attributed to the combination of YOLO-Pose and the custom-designed
ConvLSTM network, which allows for an efficient extraction of spatial and temporal
information in video frames.

Table 2. Performance evaluation of the proposed method on all action types based on precision,
recall, and F1-score on Split 1.

Action Precision Recall F1-Score

Clap 1.00 1.00 1.00
Hit_botl 0.19 0.14 0.16
Hit_stick 0.65 0.64 0.65
Jogging 0.73 0.88 0.80
Jog_side 0.91 0.89 0.90

Kick 0.99 1.00 0.99
Punch 0.91 0.99 0.95
Run_fb 0.50 0.40 0.44

Run_side 0.86 0.89 0.87
Stab 0.29 0.40 0.34

Walk_fb 1.00 0.90 0.95
Walk_side 1.00 1.00 1.00

Wave_hands 0.98 1.00 0.99
Average 0.77 0.78 0.77

Table 3. Performance evaluation of the proposed method on all action types based on precision,
recall, and F1-score on Split 2.

Action Precision Recall F1-Score

Clap 1.00 1.00 1.00
Hit_botl 0.50 0.36 0.42
Hit_stick 0.72 0.78 0.75

Jog_fb 0.83 0.91 0.87
Jog_side 0.86 0.98 0.91
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Table 3. Cont.

Action Precision Recall F1-Score

Kick 0.99 0.92 1.00
Punch 0.76 0.99 0.83
Run_fb 0.73 0.53 0.62

Run_side 1.00 0.76 0.86
Stab 0.40 0.55 0.46

Walk_fb 1.00 1.00 1.00
Walk_side 0.98 0.98 0.98

Wave_hands 0.97 1.00 0.99
Average 0.83 0.83 0.82

Table 4. Performance evaluation of the proposed method on all action types based on precision,
recall, and F1-score on Split 3.

Action Precision Recall F1-Score

Clap 1.00 0.89 0.94
Hit_botl 0.33 0.29 0.31
Hit_stick 0.59 0.68 0.64

Jog_fb 0.67 0.61 0.63
Jog_side 0.85 0.58 0.69

Kick 0.99 0.85 0.92
Punch 0.83 0.95 0.84
Run_fb 0.28 0.33 0.30

Run_side 0.45 0.77 0.57
Stab 0.37 0.39 0.38

Walk_fb 0.91 0.95 0.93
Walk_side 0.96 1.00 0.98

Wave_hands 1.00 1.00 1.00
Average 0.71 0.71 0.70
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On the other hand, some actions demonstrated lower precision, recall, and F1-score
values. For example, the “Hit_botl” action achieved lower scores on all the three splits,
with the lowest F1-score being 0.16 on Split 1. Similarly, the “Stab” action had an F1-score
of 0.34 on Split 1, 0.46 on Split 2, and 0.38 on Split 3.

The lower performance for these actions (Hit_botl, Stab) could be attributed to the
higher complexity of the movements and the similarity of these actions with each other and
some other classes, making it challenging for the proposed framework to differentiate them
from others. Moreover, factors, such as background clutter and variation in viewpoint,
could further hinder the recognition of these actions.

It is worth mentioning that there is performance variation for some actions across
different splits. For instance, the “Hit_stick” action had an F1-score of 0.65 on Split 1, which
increased to 0.75 on Split 2 and then decreased slightly to 0.64 in Split 3. This observation
suggests that the performance of the proposed framework is sensitive to the choice of
training and testing data.

We also calculated the computational performance of the proposed method. The
evaluation was performed in terms of the number of network parameters (in millions) and
the number of floating-point operations (FLOPS) (in millions) and the classification time for
the proposed customized ConvLSTM network. We practically implemented this model on
Intel(R) Core(TM) i5-8250U CPU @ 1.80 GHz with 8.00 GB RAM. The total number of FLOPS
was 36.79 million, with 1.03 million trainable parameters. The classification time for the
612 test sequences with 30 frames each on Split 1 was 3.58 s. The per sequence classification
time was 5.457 milliseconds. This suggests that the proposed method is lightweight in
terms of computational complexity and could be deployable in real-world applications.
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3.3. Performance Comparison with Related Approaches

We also compared the performance of the proposed action recognition framework
with two existing approaches, as reported in the benchmark paper [22] (see Table 5). The
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benchmark paper provides an analysis of the classification accuracy of two methods,
including the high-level pose features (HLPFs) method and the pose-based convolutional
neural networks (P-CNNs) method. The high-level pose features (HLPFs) method uses
skeletal information from human poses to represent actions. In P-CNN, at each frame of a
video, descriptors are extracted from the body regions. These descriptors encode relevant
information, such as motion flow patterns and visual characteristics of the regions, leading
to two-streamed information. Over time, these descriptors are aggregated, combining the
information from multiple frames, to form a video descriptor. The proposed method shows
better or comparable performance as compared to these existing methods (Table 5), owing
to its capability to efficiently model temporal information and long-term dependencies in
action sequences.
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Table 5. Comparison of the proposed method with existing approaches on Drone Action dataset.

Method Accuracy
(Split 1)

Accuracy
(Split 2)

Accuracy
(Split 3) Mean Accuracy

HLPF 63.89% 68.09% 61.11% 64.36%
P-CNN 72.22% 81.94% 73.61% 75.92%

Pose+ LSTM 74.00% 80.00% 70.00% 74.67%

For a more detailed performance comparison of the proposed approach with other
models, we investigated several state-of-the-art deep learning models, such as Action
Transformer, ResNet18, ResNet101, 3D ResNet, and ST-GCN. Action Transformer [33]
has recently been employed for human action recognition. For evaluation, we set the
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corresponding parameters as follows, heads: 1, layers: 4, embedding dimensions: 64,
MLP: 256, and encoder layers: 5. The reason to keep the parameters at a minimum is to
reduce the computational complexity of the model for the application at hand. ResNet
is a specific configuration of the architecture that consists of 101 layers in the case of
ResNet101 and 18 layers in ResNet18. The network includes residual blocks, which are
designed to learn residual mappings that help mitigate the vanishing gradient issue. Each
residual block contains multiple convolutional layers and shortcut connections that allow
information to flow more effectively through the network. ResNet networks have been
widely used for several computer vision tasks [34]. Further, 3D ResNet is an extension of
the ResNet architecture designed to tackle video action recognition tasks by considering
both spatial and temporal features in videos [28]. It adds a temporal dimension to the
standard ResNet architecture, making it well suited for analyzing sequences of frames in
videos. Thus, 3D ResNet takes advantage of this temporal aspect by incorporating 3D
convolutional layers. These layers consider the spatial relationships within each frame
as well as the temporal relationships between consecutive frames, enabling the network
to capture motion patterns and changes over time. Finally, the Spatio-Temporal Graph
Convolutional Network (ST-GCN) [35] is also a useful architecture used in video action
detection applications, especially for addressing the spatial and temporal features present
in films. In order to capture both spatial correlations within individual frames and temporal
dependencies between successive frames, ST-GCN uses graph convolutional procedures.
For evaluation, we replaced the proposed ConvLSTM with each of the above-mentioned
models and accordingly trained and tested them on the same lines for all the three splits
of the dataset. Figure 9 presents the performance comparison of the proposed approach
with these models in terms of the mean accuracy across the three splits. It is clear that
the proposed method outperforms all these related approaches, which further validates
its effectiveness.
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4. Conclusions

In this paper, we presented a convolutional LSTM-based model for human action
recognition, which was built on the extracted target pose information using YOLOv8 to
effectively encode the unique body movements for various action types. The proposed
framework aimed to address the challenges associated with aerial action recognition, such
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as varying viewpoints and background clutter. The study was inspired by the growing
interest in drone applications and the need for robust and efficient action recognition meth-
ods for various applications, including security and surveillance. The comparisons with
numerous existing methods show very encouraging performance through the proposed
method. While the proposed framework can effectively classify the single person action in
low-altitude aerial video sequences, in future work, the framework could be adapted to
classify actions involving multiple objects.

Author Contributions: Conceptualization, S.M.S., H.A. and T.N.; methodology, S.M.S. and T.N.;
software, S.M.S. and H.A.; validation, S.M.S. and H.A.; formal analysis, S.M.S. and H.A.; investigation,
S.M.S. and H.A.; resources, T.N. and H.E.; writing—original draft preparation, S.M.S. and H.A.;
writing—review and editing, T.N., H.E. and U.S.K.; supervision, T.N., H.E. and U.S.K. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the Higher Education Commission of Pakistan and
the National Centre of Robotics and Automation under Grant DF 1009-0031.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kumar, R.; Tripathi, R.; Marchang, N.; Srivastava, G.; Gadekallu, T.R.; Xiong, N.N. A secured distributed detection system based

on IPFS and blockchain for industrial image and video data security. J. Parallel Distrib. Comput. 2021, 152, 128–143. [CrossRef]
2. Shorfuzzaman, M.; Hossain, M.S.; Alhamid, M.F. Towards the sustainable development of smart cities through mass video

surveillance: A response to the COVID-19 pandemic. Sustain. Cities Soc. 2021, 64, 102582. [CrossRef] [PubMed]
3. Kashef, M.; Visvizi, A.; Troisi, O. Smart city as a smart service system: Human-computer interaction and smart city surveillance

systems. Comput. Hum. Behav. 2021, 124, 106923. [CrossRef]
4. Özyer, T.; Ak, D.S.; Alhajj, R. Human action recognition approaches with video datasets—A survey. Knowl.-Based Syst. 2021,

222, 106995. [CrossRef]
5. Sultani, W.; Shah, M. Human Action Recognition in Drone Videos Using a Few Aerial Training Examples. arXiv 2021,

arXiv:1910.10027. Available online: http://arxiv.org/abs/1910.10027 (accessed on 15 June 2023).
6. Wang, X.; Xian, R.; Guan, T.; de Melo, C.M.; Nogar, S.M.; Bera, A.; Manocha, D. AZTR: Aerial Video Action Recognition with

Auto Zoom and Temporal Reasoning. arXiv 2023, arXiv:2303.01589. Available online: http://arxiv.org/abs/2303.01589 (accessed
on 15 June 2023).

7. Hejazi, S.M.; Abhayaratne, C. Handcrafted localized phase features for human action recognition. Image Vis. Comput. 2022,
123, 104465. [CrossRef]

8. El-Ghaish, H.; Hussein, M.; Shoukry, A.; Onai, R. Human Action Recognition Based on Integrating Body Pose, Part Shape, and Motion;
IEEE Access: Piscataway, NJ, USA, 2018; pp. 49040–49055. [CrossRef]

9. Arunnehru, J.; Chamundeeswari, G.; Bharathi, S.P. Human Action Recognition using 3D Convolutional Neural Networks with
3D Motion Cuboids in Surveillance Videos. Procedia Comput. Sci. 2018, 133, 471–477. [CrossRef]

10. Sánchez-Caballero, A.; de López-Diz, S.; Fuentes-Jimenez, D.; Losada-Gutiérrez, C.; Marrón-Romera, M.; Casillas-Pérez, D.;
Sarker, M.I. 3DFCNN: Real-time action recognition using 3D deep neural networks with raw depth information. Multimed Tools
Appl. 2022, 81, 24119–24143. [CrossRef]

11. Sánchez-Caballero, A.; Fuentes-Jiménez, D.; Losada-Gutiérrez, C. Real-time human action recognition using raw depth video-
based recurrent neural networks. Multimed Tools Appl. 2023, 82, 16213–16235. [CrossRef]

12. Muhammad, K.; Mustaqeem; Ullah, A.; Imran, A.S.; Sajjad, M.; Kiran, M.S.; Sannino, G.; de Albuquerque, V.H.C. Human action
recognition using attention based LSTM network with dilated CNN features. Future Gener. Comput. Syst. 2021, 125, 820–830.
[CrossRef]

13. Xiao, S.; Wang, S.; Huang, Z.; Wang, Y.; Jiang, H. Two-stream transformer network for sensor-based human activity recognition.
Neurocomputing 2022, 512, 253–268. [CrossRef]

14. Zhao, Y.; Man, K.L.; Smith, J.; Siddique, K.; Guan, S.-U. Improved two-stream model for human action recognition. EURASIP J.
Image Video Process. 2020, 2020, 24. [CrossRef]

15. Ahmad, T.; Jin, L.; Zhang, X.; Lai, S.; Tang, G.; Lin, L. Graph Convolutional Neural Network for Human Action Recognition: A
Comprehensive Survey. IEEE Trans. Artif. Intell. 2021, 2, 128–145. [CrossRef]

https://doi.org/10.1016/j.jpdc.2021.02.022
https://doi.org/10.1016/j.scs.2020.102582
https://www.ncbi.nlm.nih.gov/pubmed/33178557
https://doi.org/10.1016/j.chb.2021.106923
https://doi.org/10.1016/j.knosys.2021.106995
http://arxiv.org/abs/1910.10027
http://arxiv.org/abs/2303.01589
https://doi.org/10.1016/j.imavis.2022.104465
https://doi.org/10.1109/ACCESS.2018.2868319
https://doi.org/10.1016/j.procs.2018.07.059
https://doi.org/10.1007/s11042-022-12091-z
https://doi.org/10.1007/s11042-022-14075-5
https://doi.org/10.1016/j.future.2021.06.045
https://doi.org/10.1016/j.neucom.2022.09.099
https://doi.org/10.1186/s13640-020-00501-x
https://doi.org/10.1109/TAI.2021.3076974


Appl. Sci. 2023, 13, 9384 13 of 13

16. Feng, L.; Zhao, Y.; Zhao, W.; Tang, J. A comparative review of graph convolutional networks for human skeleton-based action
recognition. Artif. Intell. Rev. 2022, 55, 4275–4305. [CrossRef]

17. Yang, J.; Dong, X.; Liu, L.; Zhang, C.; Shen, J.; Yu, D. Recurring the Transformer for Video Action Recognition. In Proceedings of
the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022;
IEEE: New Orleans, LA, USA, 2022; pp. 14043–14053. [CrossRef]

18. Wang, X.; Zhang, S.; Qing, Z.; Shao, Y.; Zuo, Z.; Gao, C.; Sang, N. OadTR: Online Action Detection with Transformers. In
Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October
2021; IEEE: Montreal, QC, Canada, 2021; pp. 7545–7555. [CrossRef]

19. Barekatain, M.; Martí, M.; Shih, H.-F.; Murray, S.; Nakayama, K.; Matsuo, Y.; Prendinger, H. Okutama-Action: An Aerial View
Video Dataset for Concurrent Human Action Detection. In Proceedings of the 2017 IEEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 2153–2160. [CrossRef]

20. Liu, C.; Szirányi, T. Real-Time Human Detection and Gesture Recognition for On-Board UAV Rescue. Sensors 2021, 21, 2180.
[CrossRef]

21. Mliki, H.; Bouhlel, F.; Hammami, M. Human activity recognition from UAV-captured video sequences. Pattern Recognit. 2020,
100, 107140. [CrossRef]

22. Perera, A.G.; Law, Y.W.; Chahl, J. Drone-Action: An Outdoor Recorded Drone Video Dataset for Action Recognition. Drones 2019,
3, 82. [CrossRef]

23. Malik, N.U.R.; Abu-Bakar, S.A.R.; Sheikh, U.U.; Channa, A.; Popescu, N. Cascading Pose Features with CNN-LSTM for Multiview
Human Action Recognition. Signals 2023, 4, 40–55. [CrossRef]

24. Yang, S.-H.; Baek, D.-G.; Thapa, K. Semi-Supervised Adversarial Learning Using LSTM for Human Activity Recognition. Sensors
2022, 22, 4755. [CrossRef]

25. Kumar, A.; Rawat, Y.S. End-to-End Semi-Supervised Learning for Video Action Detection. In Proceedings of the 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; IEEE: New Orleans,
LA, USA, 2022; pp. 14680–14690. [CrossRef]

26. Dai, C.; Liu, X.; Lai, J. Human action recognition using two-stream attention based LSTM networks. Appl. Soft Comput. 2020,
86, 105820. [CrossRef]

27. Mathew, S.; Subramanian, A.; Pooja, S. Human Activity Recognition Using Deep Learning Approaches: Single Frame CNN and
Convolutional LSTM. arXiv 2023, arXiv:2304.14499.

28. Zhang, J.; Bai, F.; Zhao, J.; Song, Z. Multi-views Action Recognition on 3D ResNet-LSTM Framework. In Proceedings of the 2021
IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), Nanchang,
China, 26–28 March 2021; pp. 289–293. [CrossRef]

29. Reis, D.; Kupec, J.; Hong, J.; Daoudi, A. Real-Time Flying Object Detection with YOLOv8. arXiv 2023, arXiv:2305.09972. Available
online: http://arxiv.org/abs/2305.09972 (accessed on 16 June 2023).

30. Arif, S.; Wang, J.; Ul Hassan, T.; Fei, Z. 3D-CNN-Based Fused Feature Maps with LSTM Applied to Action Recognition. Future
Internet 2019, 11, 42. [CrossRef]

31. Mateus, B.C.; Mendes, M.; Farinha, J.T.; Cardoso, A.M. Anticipating Future Behavior of an Industrial Press Using LSTM Networks.
Appl. Sci. 2021, 11, 6101. [CrossRef]

32. Khan, L.; Amjad, A.; Afaq, K.M.; Chang, H.-T. Deep Sentiment Analysis Using CNN-LSTM Architecture of English and Roman
Urdu Text Shared in Social Media. Appl. Sci. 2022, 12, 2694. [CrossRef]

33. Mazzia, V.; Angarano, S.; Salvetti, F.; Angelini, F.; Chiaberge, M. Action Transformer: A Self-Attention Model for Short-Time
Pose-Based Human Action Recognition. Pattern Recognit. 2022, 124, 108487. [CrossRef]

34. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385. Available online:
http://arxiv.org/abs/1512.03385 (accessed on 19 November 2022).

35. Chen, S.; Xu, K.; Jiang, X.; Sun, T. Pyramid Spatial-Temporal Graph Transformer for Skeleton-Based Action Recognition. Appl. Sci.
2022, 12, 9229. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s10462-021-10107-y
https://doi.org/10.1109/CVPR52688.2022.01367
https://doi.org/10.1109/ICCV48922.2021.00747
https://doi.org/10.1109/CVPRW.2017.267
https://doi.org/10.3390/s21062180
https://doi.org/10.1016/j.patcog.2019.107140
https://doi.org/10.3390/drones3040082
https://doi.org/10.3390/signals4010002
https://doi.org/10.3390/s22134755
https://doi.org/10.1109/CVPR52688.2022.01429
https://doi.org/10.1016/j.asoc.2019.105820
https://doi.org/10.1109/ICBAIE52039.2021.9389913
http://arxiv.org/abs/2305.09972
https://doi.org/10.3390/fi11020042
https://doi.org/10.3390/app11136101
https://doi.org/10.3390/app12052694
https://doi.org/10.1016/j.patcog.2021.108487
http://arxiv.org/abs/1512.03385
https://doi.org/10.3390/app12189229

	Introduction 
	Proposed Action Recognition Method 
	Pose Extraction 
	Custimized Convolutional LSTM Model 

	Experimental Results and Analysis 
	Dataset 
	Evaluation of Results 
	Performance Comparison with Related Approaches 

	Conclusions 
	References

