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Abstract: The images captured using UAVs during inspection often contain a great deal of small
targets related to transmission lines. These vulnerable elements are critical for ensuring the safe
operation of these lines. However, due to various factors such as the small size of the targets, low
resolution, complex background, and potential target aggregation, achieving accurate and real-time
detection becomes challenging. To address these issues, this paper proposes a detection algorithm
called P2-ECA-EIOU-YOLOv5 (P2E-YOLOv5). Firstly, to tackle the challenges posed by the issues
of complex background and environmental interference impacting small targets, an ECA attention
module is integrated into the network. The module effectively enhances the network’s focus on
small targets, while concurrently mitigating the influence of environmental interference. Secondly,
considering the characteristics of small target size and low resolution, a new high-resolution detection
head is introduced, making the network more sensitive to small targets. Lastly, the network utilizes
the EIOU_Loss as the regression loss function to improve the positioning accuracy of small targets,
especially when they tend to aggregate. Experimental results demonstrate that the proposed P2E-
YOLOv5 detection algorithm achieves an accuracy P (precision) of 96.0% and an average accuracy
(mAP) of 97.0% for small-target detection in transmission lines.

Keywords: power line inspection; object detection; small targets; attention mechanisms; loss function

1. Introduction

The images captured using UAVs contain numerous small targets related to power
transmission lines. These small objects, such as bolts, insulators, and various fittings,
are often critical and vulnerable components that ensure the safe operation of power
transmission and distribution lines. There are two ways of defining small targets in power
line images. One approach is the relative size definition, where targets with an area less
than 0.12% of the total image area are considered to be small targets (assuming a default
input image size of 640 × 640). The other approach is the absolute size definition. For
instance, in COCO data, targets smaller than 32 × 32 pixels are considered small targets [1].
Small targets are typically objects that are relatively small compared to the original image
size. In these transmission line images, there are many small components, such as insulators
capable of withstanding voltage and mechanical stress, as well as bolts used for fastening
and connecting major components [2]. These components, found in the acquired power line
images, exhibit characteristics such as small proportion, low resolution, easy aggregation,
and indistinct features, categorizing them as small target objects. Additionally, power
transmission lines are usually installed in complex natural environments, resulting in
complex backgrounds in UVA-captured power transmission line images, which greatly
interferes with the detection of small targets on the power lines. Therefore, improving
the resolution of small transmission line targets in the images, enhancing their feature
extraction, filtering complex backgrounds, and achieving high-precision identification and
positioning for real-time and accurate detection pose challenging problems.
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The object detection algorithm based on deep learning has shown great potential in
enhancing object resolution, improving feature extraction, and achieving high-precision
positioning in images. As a result, it has gained wide application in the domain of small-
target detection in transmission lines. This algorithm can be broadly categorized into two
main types:

(1) Two-stage detection algorithms, which are mainly represented by R-CNN [3], Fast
-RCNN [4], Faster R-CNN [5], etc. Such algorithms usually generate target candidate
regions and then extract features through convolution neural networks to achieve
classification and localization predictions for target objects. In the literature [6],
based on Faster R-CNN, a feature pyramid network (FPN) was proposed as a way of
replacing the original RPN and fusing high-level features, rich in semantic information,
with lower-level features, rich in positional information, in order to generate feature
maps of different scales. Then, the target of the corresponding scale is predicted based
on the feature map of different scales.

(2) Single-stage detection algorithms, which are mainly represented by SSD [7], YOLO [8–11]
series, etc. Such algorithms can achieve target classification and positioning prediction
by directly extracting features through convolution neural networks. Redmon et al.
proposed a YOLO [8] detection algorithm that divides the image into s × s grids and
directly predicts category probability and regression position information based on
the surrounding box, which corresponds to each grid. This method does not generate
candidate regions and improves the prediction speed. In the same year, Liu et al. [7]
put forward the SSD algorithm, which draws on the idea of the YOLO algorithm and
uses multi-scale learning to detect smaller targets on shallow-feature maps and larger
targets on deeper-feature maps. Then, Ultralytics, a particle physics and artificial
intelligence startup, proposed a single-stage object detection algorithm, YOLOv5 [11].
It uses a deep residual network to extract target features and combines the feature
pyramid network FPN and perceptual adversarial network (PAN) [12] to efficiently
fuse rich low-level and high-level feature information. It realizes multi-scale learning
and effectively improves the detection performance of small targets.

In conclusion, the two-stage detection algorithm is capable of identifying and cate-
gorizing small targets using deep features. However, it fails to adequately capture the
rich detailed characteristics of small targets present in shallow features. Moreover, deep
features are obtained through multiple down-sampling, which often results in the loss of
the fine details and spatial features of the small target, making it challenging to accurately
determine their locations. On the other hand, the single-stage detection algorithm employs
multi-scale feature fusion, which addresses the multi-scale issue. Nevertheless, in multi-
scale feature fusion, the fusion of shallow features and deep features is not sufficient, which
leads to the unsatisfactory detection accuracy of small targets. Additionally, small targets
are often subject to complex backgrounds and susceptible to noise interference, limiting
the algorithm’s ability to eliminate such complex background interference. Taking into
account the shortcomings and deficiencies of the existing methods, an improved method
called P2E-YOLOv5 (P2-ECA-EIOU-YOLOv5) is proposed in this paper. This method not
only fulfills the requirements of real-time detection but also achieves the highly precise
detection of small targets in transmission lines. The specific implementation of this method
is as follows:

1. To address the challenge of complex backgrounds and susceptibility to environmental
interference in small targets, we enhance the network of capability to focus on these
targets and mitigate environmental disturbances by incorporating the ECA (Efficient
Channel Attention) [13] module. This addition improves the network’s attention
toward small targets, while simultaneously reducing the impact of environmental in-
terference;

2. To cater to the imaging characteristics of small size and lower-solution targets, a high-
resolution P2 detection head is integrated into the network to enhance the detection
ability for small targets;
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3. Considering that small target features are not always obvious and tend to aggregate,
we use the EIOU_Loss [14] as the regression loss function of the network to improve
the accurate identification and positioning of small targets.

In order to compare the characteristics of existing target detection algorithms and
the proposed method more concisely, we have drawn a detailed research motivation
diagram, as shown in Figure 1. Among them, the existing method uses Faster-RCNN [5]
as the representative network framework, and the method adopted in this paper uses the
improved YOLOv5 (P2E-YOLOv5) as the network framework. By randomly selecting four
small target images of transmission lines for testing, the expected detection results are
shown in Figure 1.
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Figure 1. In the Figure, the presence of blue circles denotes the presence of diminutive undetected
targets that eluded the grasp of the detection algorithm. Upon juxtaposing the anticipated outcomes
of these two methodologies, it becomes conspicuously apparent that the suggested approach exhibits
superior performance.

Furthermore, the proposed P2E-YOLOv5 detection algorithm in this study significantly
enhances the resolution of small target feature maps of transmission lines. It effectively
extracts relevant features of small targets and reduces the influence of environmental factors,
making it highly suitable for small-target detection in transmission lines. Moreover, this
algorithm demonstrates excellent detection performance when applied to other domains,
such as facial defect detection and aerial images.

2. Related Work

Transmission line small-target detection is a challenging problem in the field of target
detection, and it has gradually become a research hotspot both domestically and interna-
tionally in recent years.

Wu et al. [15] proposed a method for detecting small-target defects of transmission
lines based on the Cascade R-CNN algorithm. Specifically, they used the ResNet101
(Residual Network) [16] network to extract target features and employed a multi-hierarchy
detector to identify and classify small targets of transmission lines. Experimental results
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demonstrate that this algorithm significantly improves the detection accuracy of small-
target defects in transmission lines. Huang et al. [17] and others proposed an improved SSD
small-target detection algorithm, named PA-SSD. They integrated deconvolution fusion
units into the PAN algorithm to fuse feature maps of different scales, enhancing multi-scale
feature fusion. Additionally, they established a new feature pyramid model by replacing
feature maps in the original SSD algorithm. Experimental results show that the improved
algorithm can extract feature maps with higher resolution, enhance feature extraction for
small targets, and significantly improve the detection accuracy of power components in
transmission lines while maintaining satisfactory detection speed.

Zou et al. [18] proposed an effective approach to expand the foreign body data set of
transmission lines using scene enhancement, mix-up, and noise simulation. This method
reduces the problem of limited pictures in the data set and enhances the diversity of the
data set, leading to improved detection performance of the network on small targets.
Li et al. [19] proposed a perceptive GAN method specifically designed for small-target
detection. Their approach uses generators and discriminators to learn high-resolution
feature representations of small targets from each other. Liu et al. [20] enhanced the feature
extraction capability of the SSD network by replacing the original VGG network with
the more powerful ResNet network. Furthermore, they integrated FPN into the network
structure to achieve information fusion between upper and lower feature layers. The
experimental results demonstrate significantly improved accuracy in detecting small and
medium-scale targets in transmission line images compared to the original SSD algorithm.
Li et al. [21] proposed an object detection algorithm based on the improved CenterNet.
They built a multi-channel feature enhancement structure and introduced underlying
details to improve the low detection accuracy caused by using a single feature in CenterNet.
The research results show that the proposed algorithm achieves good detection results for
power components and abnormal targets of transmission lines.

Additionally, Han et al. [22] proposed an insulator detection and defect identification
algorithm based on YOLOv4. The enhanced algorithm utilizes feature multiplexing to
improve the residual edge of the residual structure, significantly reducing the number of
parameters and computational complexity of the model. The SA-Net (Random Attention
Neural Network) [23] attention model is integrated into the feature fusion network to
strengthen the focus on the target features and enhance their significance. Moreover,
multiple outputs are added to the output layer to improve the model’s capability to identify
small, damaged insulator targets. Experimental results demonstrate that the enhanced
algorithm significantly reduces the number of parameters while greatly improving the
accuracy of insulators and defects detection.

Recently, Su et al. [24] aimed to achieve high-precision identification and detection of
small tower targets in remote sensing images. They conducted integrated modeling based
on YOLOv5s and YOLOv5x algorithms and introduced the weighted boxes fusion (WBF)
reasoning mechanism for model training and testing using a high-resolution remote sensing
tower image data set. Additionally, they applied test-time augmentation (TTA) to the data
set. Experimental results indicate that the integrated YOLOv5 model outperforms single
model recognition in terms of accuracy. The model demonstrates excellent recognition
capabilities and robustness even under complex backgrounds.

At present, Cao et al. [25] have proposed an automatic detection method for infrared
small targets under complex backgrounds and conducted extensive experiments on the
public data sets NUDT-SIRST and NUAA-SIRST. The results show that the proposed
detection method exhibits excellent performance.

In summary, it is evident that the aforementioned research fails to achieve a balance be-
tween detection accuracy and detection speed, which is essential for small-target detection
in transformation lines. The YOLOv5 detection model is widely used in small object detec-
tion tasks due to its high detection accuracy and fast detection speed. Therefore, this article
aims to improve the YOLOv5 detection model and proposes the P2E-YOLOv5 detection
method, which achieves high detection accuracy while maintaining real-time detection.
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3. Introduction to the P2E-YOLOv5 Network

To achieve accurate and efficient detection of small targets in transmission lines, this
paper proposes the adoption of the YOLOv5s network model with a simplified architecture.
The P2E-YOLOv5 network, as depicted in Figure 2, represents the overall fundamental
structure of our proposed approach. The main network structure of the P2E-YOLOv5
network is shown in Figure 3.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 21 
 

At present, Cao et al. [25] have proposed an automatic detection method for infrared 
small targets under complex backgrounds and conducted extensive experiments on the 
public data sets NUDT-SIRST and NUAA-SIRST. The results show that the proposed 
detection method exhibits excellent performance. 

In summary, it is evident that the aforementioned research fails to achieve a balance 
between detection accuracy and detection speed, which is essential for small-target 
detection in transformation lines. The YOLOv5 detection model is widely used in small 
object detection tasks due to its high detection accuracy and fast detection speed. 
Therefore, this article aims to improve the YOLOv5 detection model and proposes the 
P2E-YOLOv5 detection method, which achieves high detection accuracy while 
maintaining real-time detection. 

3. Introduction to the P2E-YOLOv5 Network 
To achieve accurate and efficient detection of small targets in transmission lines, this 

paper proposes the adoption of the YOLOv5s network model with a simplified 
architecture. The P2E-YOLOv5 network, as depicted in Figure 2, represents the overall 
fundamental structure of our proposed approach. The main network structure of the P2E-
YOLOv5 network is shown in Figure 3. 

 
Figure 2. The architectural framework of P2E-YOLOv5 encompasses several crucial components, 
namely Input, Backbone (comprising the backbone network), Neck (housing the neck network), 
Head (incorporating the detection head), Prediction, and Output. Notably, this paper introduces 
certain modifications denoted by a red rectangular dotted line box. 

Figure 2. The architectural framework of P2E-YOLOv5 encompasses several crucial components,
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To address the challenges posed by the complex background and vulnerability to
environmental factors of small targets in transmission lines, this paper introduces the use
of an ECA (Efficient Channel Attention) mechanism. The CBES module is constructed
by incorporating an ECA attention module after the BN (Batch Normalization) layer
of the CBS module, which is widely distributed in the backbone and neck parts (see
Figure 5). This integration encourages the network to focus more on the small target area,
reducing interference from complex backgrounds and enhancing the network’s ability to
extract features relevant to small targets. Considering the characteristics of small targets in
transmission lines, such as their small size and low resolution, a P2 detection head is added
to the Head part. This head has a high resolution of 160 × 160 pixels and facilitates the
effective fusion of rich low-level features and deep semantic information. It is generated
by low-level and high-resolution feature maps, making it highly sensitive to the detection
of small targets. To address the challenge of small targets being indistinct and prone
to aggregation, the EIOU_Loss is considered as the loss function of network regression
in the prediction part. This choice effectively enhances the regression accuracy of the
bounding box, thereby improving the precise positioning and identification of small targets
by the network.
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3.1. High-Resolution Small-Target Detection Head

To address the challenges posed by the small target size and low resolution of the
transmission line, this paper proposes the addition of a high-resolution P2 detection head to
the Head part of YOLOv5. This enhancement aims to strengthen the feature fusion between
shallow features of small targets and deep semantic information, thereby improving the
feature extraction ability for small targets.

In the original YOLOv5 network model, the backbone network obtains 5-layer (P1,
P2, P3, P4, P5) feature expressions after 5 down-sampling operations, with Pj indicating
a resolution of 1/2j of the input image. In the Neck part of the network, top-down FPN
and bottom-up PAN structures are used to achieve feature fusion at different scales, and
object detection is performed using the detection head on the three-level feature map P3,
P4, and P5.

However, when dealing with the small-target data set in transmission lines, the
pixel scale of these targets is often less than 32 × 32. As a result, after multiple down-
sampling operations, most of the detailed features and spatial information are lost, making
it challenging for the higher resolution P3 layer detection head to effectively detect these
small targets.

To achieve the detection of the aforementioned small targets, a new detection head
is introduced in the P2 layer feature map of the YOLOv5 network model, as illustrated in
Figure 4.

Firstly, the detection head has a high resolution of 160 × 160 pixels, enabling it to
detect tiny targets as small as 8 × 8 pixels. This high resolution makes it highly sensitive to
smaller targets, enhancing the ability to detect them accurately. The new high-resolution
P2 detection head only requires two down-sampling operations on the backbone network,
retaining extremely rich shallow feature information of small targets.

Secondly, in the Neck part, the top-down features of the P2 layer are merged with the
same-scale features of the backbone network, allowing for the fusion of shallow features
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and deep semantic features. This fusion process results in output features that effectively
combine multiple input features.

Lastly, the integration of the P2 layer detection head with the original three detection
heads effectively addresses the issue of scale variance. The P2 layer detection head is
derived from low-level, high-resolution feature maps, which contain abundant detail
features and semantic information related to small targets.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 21 
 

bottom-up PAN structures are used to achieve feature fusion at different scales, and object 
detection is performed using the detection head on the three-level feature map P3, P4, and 
P5. 

However, when dealing with the small-target data set in transmission lines, the pixel 
scale of these targets is often less than 32 × 32. As a result, after multiple down-sampling 
operations, most of the detailed features and spatial information are lost, making it 
challenging for the higher resolution P3 layer detection head to effectively detect these 
small targets. 

To achieve the detection of the aforementioned small targets, a new detection head 
is introduced in the P2 layer feature map of the YOLOv5 network model, as illustrated in 
Figure 4. 

 
Figure 4. By leveraging the three detection heads derived from the initial P3, P4, and P5 layer feature 
maps, a novel detection head with an elevated resolution of 160 × 160 pixels is extracted from the P2 
layer feature map. 

Firstly, the detection head has a high resolution of 160 × 160 pixels, enabling it to 
detect tiny targets as small as 8 × 8 pixels. This high resolution makes it highly sensitive 
to smaller targets, enhancing the ability to detect them accurately. The new high-
resolution P2 detection head only requires two down-sampling operations on the 
backbone network, retaining extremely rich shallow feature information of small targets. 

Secondly, in the Neck part, the top-down features of the P2 layer are merged with 
the same-scale features of the backbone network, allowing for the fusion of shallow 
features and deep semantic features. This fusion process results in output features that 
effectively combine multiple input features. 

Lastly, the integration of the P2 layer detection head with the original three detection 
heads effectively addresses the issue of scale variance. The P2 layer detection head is 
derived from low-level, high-resolution feature maps, which contain abundant detail 
features and semantic information related to small targets. 

As a result, this detection head becomes highly sensitive to detecting small targets in 
transmission lines. Although incorporating this detection head increases the 

Figure 4. By leveraging the three detection heads derived from the initial P3, P4, and P5 layer feature
maps, a novel detection head with an elevated resolution of 160 × 160 pixels is extracted from the P2
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As a result, this detection head becomes highly sensitive to detecting small targets in
transmission lines. Although incorporating this detection head increases the computational
complexity and memory requirements of the model, the substantial enhancement it brings
to the detection accuracy of small targets justifies its inclusion.

3.2. ECA Attention Mechanism

In the case of small target images of transmission lines with complex environmental
backgrounds, such as insulators and bolts, there are challenges like inconspicuous features
and high susceptibility to environmental interference. These factors make it difficult for the
detection model to accurately identify them. To address these issues, this paper introduces
the ECA attention mechanism, as depicted in Figure 5, to effectively mitigate the impact
of environmental factors and improve the network’s ability to focus on small target areas,
thus enhancing the accuracy of detection.

By incorporating the ECA attention module after the BN layer of the CBS module, the
interference of environmental factors on small targets can be significantly reduced. This
allows the model to effectively identify obstructed small targets and strengthen its focus
on the small target area. Furthermore, the CBES module composed of the ECA attention
module can be added to both the backbone network and neck network. This enhancement
strengthens the network model’s feature extraction capability for small targets, ultimately
leading to improved detection performance.
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The ECA attention module is a lightweight module that can be seamlessly integrated
into the CNN architecture. It employs a local cross-channel interaction strategy without
dimension reduction, effectively preventing any negative impact on channel attention
learning caused by dimension reduction. This proper cross-channel interaction allows for a
significant reduction in model complexity while preserving performance. The structure of
the ECA module is illustrated in Figure 6:
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The ECA attention module is described in detail as follows:

(1) The first input is an H × W × C dimensional feature graph;
(2) The input feature map undergoes spatial feature compression: in the spatial dimen-

sion, a feature map of 1 × 1 × C is obtained by using global average pooling;
(3) Channel features are learned for the compressed feature graph: the importance of

different channels is learned through 1 × 1 convolution, and the output dimension
remains 1 × 1 × C. Among them,

k = ψ(C) =
∣∣∣∣ log 2C

γ
+

b
γ

∣∣∣∣
odd

. (1)

Formula: the size of k can be obtained adaptive, where C represents the channel
dimension, |t|odd represents the odd number closest to t, where γ = 2, b = 1.

(4) Finally, the channel attention is combined, and the feature map of channel attention
1 × 1 × C is multiplied channel by channel with the original input feature map
H × W × C to generate a feature map with channel attention.

3.3. Optimize the Loss Function

In order to address the challenges posed by the indistinct and aggregated character-
istics of small targets on transmission lines, this paper proposes the use of EIOU_Loss as
the loss function for network regression. This approach aims to improve the regression
accuracy of bounding boxes, enhancing the network’s ability to accurately identify and
localize small targets.

Small-target images of transmission lines captured using UAV, such as insulators and
bolts, constitute a very small proportion of the entire image, and their low resolution result in
limited visual information, making it challenging to extract clear and distinct features. These
characteristics pose difficulties for detection models in accurately locating and identifying these
small targets. Additionally, when small targets are densely clustered, they may merge into
a single point in the deep feature map after multiple down-sampling, causing the detection
model to fail to distinguish them. Furthermore, when small targets are too close to each other,
the non-maximum suppression operation in post-processing may filter out a significant number
of correct predictional bounding boxes, resulting in missed detections.

The original YOLOv5 network used CIOU_Loss [24] as the loss function for network
regression. Although CIOU_Loss considered the overlap area, center point distance, and
aspect ratio of bounding box regression, it only accounted for the aspect ratio difference in
bounding boxes and did not consider the actual differences between width and height and
their confidence. Additionally, when the aspect ratio of the predicted box changes proportion-
ally, the aspect ratio penalty in CIOU_Loss loses its effectiveness, making it challenging to
accurately locate and recognize small targets. To address these issues, this paper adopts the
EIOU_Loss function as the regression loss function for the P2E-YOLOv5 model. EIOU_Loss
resolves the ambiguity in the definition of aspect ratio and the proportional change of aspect
ratio that affects the penalty in CIOU_Loss. By doing so, the EIOU_Loss effectively improves
the detection model’s precise positioning of small targets such as insulators and bolts. This
enhancement leads to improved convergence and significantly reduces the model’s omission
rate for these small targets.

The EIOU_Loss function used in this paper consists of three components: overlap loss
LIOU, center distance loss Ldis, and width and height loss Lasp. The first two parts retain the
benefits of the CIOU method, while the width and height loss divides the aspect ratio loss
term into the difference between the predicted width and height and the minimum width
and height of the enclosing box. This modification is applied to the penalty term of CIOU to
expedite model convergence and enhance regression accuracy. The calculation formula for
EIOU_Loss is as follows:
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LEIOU = LIOU + Ldis + Lasp = 1 − IOU +
ρ2( b, bgt)

C2 +
ρ2(ω, ωgt)

C2
ω

+
ρ2( h, hgt)

C2
h

(2)

where: IOU represents the intersection over union ratio between the prediction box and
the ground truth box, b and bgt represent the center points of the prediction box and
ground truth box, ρ(b,bgt) represents the Euclidean distance between the center point of
the prediction box and the ground truth box, C represents the diagonal distance of the
smallest enclosing rectangle of prediction box and ground truth box, andωgt and hgt are
respectively the width and height of the ground truth box. Ω and h are the width and
height of the prediction box, respectively, while Cω and Ch are the width and height of the
minimum bounding box that includes the ground truth box and prediction box.

4. Experimental Results and Analysis

The hardware and software platform configurations used in this experiment are as
follows: Intel(R)Core (TM)i7-6700 CPU @ 3.40Ghz, NVIDIA TITAN X(Pascal); Operating
system: Windows10 64-bit operating system; CUDA version is 11.0, the python version is
3.7 and the deep learning framework is Pytorch 1.7.1.

4.1. Evaluation Indicators and Data Set Preparation

The following metrics were utilized in this study: Accuracy (P); Recall (R); Average
Precision (AP); Mean Average Precision (mAP), and frames per second (FPS). These met-
rics were employed to evaluate the model from different perspectives. The calculation
expressions of P, R, AP, and mAP are presented in Table 1.

Table 1. In this Table, NTP, NFP, and NFN represent the number of samples predicted correctly, the
number of samples predicted incorrectly, and the number of samples not recognized, and N denotes
the total number of categories specified by the model.

P R AP mAP

P = NTP
NTP+NFP

R = NTP
NTP+NFN

AP =
∫ 1

0 P(R)dR mAP = (
N
∑
i

APi)/N

The original data used in this experiment is sourced from a power grid company in
Yunnan, which provides a small-target data set of transmission lines. This data set contains
various small targets of transmission lines, such as insulators and bolts. To augment the
data, random horizontal flips, rotation transformations, brightness adjustments, and other
data expansion techniques were applied to the original set of 1076 images, resulting in a
new data set containing 3200 images. The new data set was annotated using image labeling
software labeling and split into the training, validation, and test sets with an 8:1:1 ratio.
For training, 300 epochs were used with an initial learning rate of 0.01 and a weight decay
coefficient of 0.0005. The same data set, namely the small-target data set of transmission
lines, was utilized for both training and testing in this experiment.

4.2. Experiment

In this experiment, the small-target data set of transmission lines was subjected to data
processing, and the analysis is presented in Figure 7.

In Figure 7, the darker the blue area, the greater the concentration of small targets. The
left figure displays the distribution of the center coordinates for small target objects in the
transmission line’s small-target data set. The coordinates are relative coordinates, which
are relative to the coordinates of the whole transmission line small target image, and its
size range is mapped to (0, 1). The central coordinates of the small target are observed to be
mainly concentrated in the range (0.4~0.6, 0.0~1.0). The right figure displays the height
and width distribution of small target objects relative to the whole image. It is evident that
the small target objects are significantly smaller compared to the entire image. In fact, a
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majority of small target objects account for less than 0.12% of the whole image area (the
definition of relative size for small targets is elaborated in the introduction Section 1). This
indicates that most of the targets in this data set are indeed small targets.
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Subsequently, training experiments were conducted on the small-target data set of
transmission lines, and the original YOLOv5 training results were compared with the
improved P2E-YOLOv5 training results:

The test results before the algorithm improvement are shown in Figure 8:

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 21 
 

in the transmission line’s small-target data set. The coordinates are relative coordinates, 
which are relative to the coordinates of the whole transmission line small target image, 
and its size range is mapped to (0, 1). The central coordinates of the small target are 
observed to be mainly concentrated in the range (0.4~0.6, 0.0~1.0). The right figure 
displays the height and width distribution of small target objects relative to the whole 
image. It is evident that the small target objects are significantly smaller compared to the 
entire image. In fact, a majority of small target objects account for less than 0.12% of the 
whole image area (the definition of relative size for small targets is elaborated in the 
introduction Section 1). This indicates that most of the targets in this data set are indeed 
small targets. 

Subsequently, training experiments were conducted on the small-target data set of 
transmission lines, and the original YOLOv5 training results were compared with the 
improved P2E-YOLOv5 training results: 

The test results before the algorithm improvement are shown in Figure 8: 

 
Figure 8. The test results prior to enhancement depict (a,b) as a pair of randomly selected images 
for the purpose of evaluation. 

The improved model test results are shown in Figure 9: 

Figure 8. The test results prior to enhancement depict (a,b) as a pair of randomly selected images for
the purpose of evaluation.



Appl. Sci. 2023, 13, 9386 12 of 20

The improved model test results are shown in Figure 9:
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From the above comparison results, it is evident that the improved P2E-YOLOv5
outperforms the original YOLOv5 in terms of accuracy, recall rate, average accuracy, and
loss index. The improved model shows a significant enhancement in detecting objects with
low resolution and small sizes in images.

4.3. Comparative Experiment

To demonstrate the effectiveness of the proposed model, we conducted a comparative
experiment using the existing small-target data set of transmission lines. We selected
Faster-RCNN, RetinaNet, SSD, YOLOv3_spp, YOLOX, and YOLOv5 as the comparison
network model. The experimental results are presented in Table 2.

Table 2. Comparison of experimental results of different network models. Additionally, mAP_0.5
represents the mean precision at an intersection ratio of 0.5.

Model mAP_0.5 (%) FPS (Frames)

Faster-RCNN 87.2 3.968
RetinaNet 78.3 12.531

SSD 53.5 76.335
YOLOv3_spp 79.8 49.261

YOLOX 90.4 25.031
YOLOv5 93.7 101.010

P2E-YOLOv5 (Ours) 97.0 87.719

Table 2 clearly shows that the Mean Average Precision (mAP), which reflects the
model’s detection performance, exhibits significant improvements with the optimized P2E-
YOLOv5 when compared to various other methods. Specifically, compared to Fast RCNN,
P2E-YOLOv5 shows a 9.8% improvement in mAP. The improvement over RetinaNet is
18.7%, and over SSD, it is 43.5%. In comparison to the YOLOv3_spp, P2E-YOLOv5 achieves
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a 17.2% higher mAP. Additionally, compared to YOLOX, P2E-YOLOv5 demonstrates a
6.6% mAP improvement after optimization. Even when compared to the original YOLOv5,
P2E-YOLOv5 still shows an overall mAP improvement of 3.3%. These results indicate that
the proposed P2E-YOLOv5 detection method in this paper outperforms other detection
algorithms significantly in terms of detection accuracy.

Furthermore, in terms of model detection speed, the optimized P2E-YOLOv5 achieved
an impressive 87.719 frames per second, second only to the detection speed of the original
YOLOv5. The slight decrease in detection speed compared to the original YOLOv5 is
primarily due to the additional computation introduced by the newly added P2 detection
head, which slightly increases the model’s reasoning time. Nevertheless, when compared
to other detection methods, P2E-YOLOv5 maintains a significant advantage, meeting the
requirements of real-time detection.

Additionally, to demonstrate the effectiveness of the proposed method in this paper, we
compared it with the latest infrared small object detection method [25] through comparative
experiments on the same public data sets, NUDT-SIRST and NUAA-SIRST.

The experimental results demonstrate that compared to the infrared small object
detection method, the proposed method improves the recall rate (R) by 1.2% and 2% on
NUST-SIRST and NUAA-SIRST, respectively. In addition, the method achieves an increase
of 42.493 frames per second (FPS) on NUAA-SIRST, indicating a faster detection speed.

In conclusion, the P2E-YOLOv5 algorithm proposed in this paper outperforms other
target detection algorithms in all aspects. It effectively addresses the challenge of achieving
high detection accuracy for small-target detection in transmission lines and fulfills the need
for real-time detection.

4.4. Ablation Experiment

The enhancement effect of each new or improved module on the overall model was
explored through an ablation experiment using the transmission line small-target data set.
Starting with the original YOLOv5, each module was successively added for experiments
until the final model, P2E-YOLOv5, was obtained. The experimental results are presented
in Table 3.

Table 3. Influences of different new modules on the model.

Model P (%) R (%) mAP_0.5 (%) FPS (Frames)

YOLOv5s 95.7 91.2 94.7 101.010
YOLOv5s + P2 95.5 94.7 96.9 86.207
YOLOv5s + P2 + ECA 95.9 95.0 96.9 88.495
YOLOv5s + P2 + ECA + EIOU 96.0 94.7 97.0 87.719

As shown in Table 3, the addition of a small-target detection head result in a slight
decrease in the model’s accuracy (P), but it significantly improved the recall rate (R) and
mean average accuracy (mAP) by 3.5% and 2.2%, respectively. It indicates that the inclusion
of the P2 layer small-target detection head greatly enhances the model’s performance,
effectively improving its ability to detect small targets. Subsequently, the ECA attention
module was added on top of the small-target detection heads. While the mean average
accuracy remained relatively unchanged, the accuracy (P) and recall rate (R) of the model
increased by 0.4% and 0.3%, respectively. This demonstrates that the ECA attention module
effectively enhances the network’s focus on small target objects and improves the model’s
feature extraction capability for small targets. Finally, the EIOU_Loss function was added on
top of the small-target detection head and ECA attention module. Although the recall rate
(R) of the model decreased, both the accuracy (P) and mean average accuracy (mAP) were
improved. This indicates that the EIOU_Loss effectively enhances the model’s detection
accuracy for small targets.

Furthermore, in terms of detection aging, the inference detection speed of the model
decreased due to the increased computational load caused by the large detection layer scale.
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However, after the addition of the ECA attention module and EIOU_Loss function, there
was a noticeable increase in the detection speed.

The data analysis results mentioned above align well with the theoretical analysis,
providing further validation of the algorithm’s rationality and effectiveness proposed in
this paper. The approach not only meets the requirements of real-time detection but also
significantly improves the detection accuracy of small targets.

4.5. Detection Effect

To validate the effectiveness of the P2E-YOLOv5 model for small-target detection in
transmission lines, we utilized the trained model on the augmented small-target data set to
detect images from the test set. Furthermore, we randomly selected three transmission line
images captured in different scenes for detection. The test results are depicted in Figure 14.

In Figure 14, the test results of each algorithm are shown with rectangle boxes marking
the successfully detected small targets. Additionally, blue circles indicate small missed
targets that were missed by the detection algorithm.

Upon observation, the Faster-RCNN and YOLOX detection algorithms demonstrate
high detection accuracy, accurately identifying most small target objects. However, for some
small targets with subtle features, some cases are missed. RetinaNet, SSD, and YOLOv3_spp
can detect most small targets, but with low accuracy and numerous omissions. The YOLOv5
detection algorithm shows high detection accuracy and can detect most small targets, yet
some cases are still missed.
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Figure 14. This figure presents a detailed comparison of the detection performance of various
algorithms, including Faster-RCNN, RetinaNet, SSD, YOLOv3_spp, YOLOX, YOLOv5, and P2E-
YOLOv5, on small targets in transmission line images captured in different scenes.

Comparing the six detection algorithms, the P2E-YOLOv5 algorithm stands out for
accurately identifying small targets in different scenes with higher detection accuracy and
the lowest missing rate. Several factors contribute to this success. Firstly, the added ECA
attention module significantly enhances the network’s focus on small targets and reduces
the impact of environmental interference. Secondly, the newly introduced high-resolution
P2 detection header significantly improves the network’s ability to detect small targets.
Lastly, employing EIOU_Loss is used as the regression loss function to enhance the precise
identification and positioning of small targets. Consequently, the P2E-YOLOv5 detection
algorithm outperforms the other six detection algorithms on a small-target detection data
set of transmission lines.

5. Conclusions

In response to the challenging task of accurately and efficiently detecting small targets
in transmission lines, this paper proposes a novel detection method called P2E-YOLOv5.
This method incorporates the ECA attention mechanism into the network, introduces high-
resolution detection heads that exhibit higher sensitivity to small targets, and optimizes
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the regression loss function using EIOU_Loss. These improvements significantly enhance
the detection efficiency and capability of small targets amidst complex backgrounds. We
evaluate the performance of our algorithm on a data set specially designed for small-target
detection in power lines, and our findings demonstrate that the proposed method outper-
forms other detection algorithms, showcasing superior detection performance. Despite a
slight increase in memory usage due to the addition of high-resolution detection heads, the
method maintains a high level of detection accuracy. Considering the trade-off between
detection accuracy and speed, our P2E-YOLOv5 detection method proves to be the optimal
choice. For future work, our goal is to further reduce the computational costs associated
with P2 detection heads while maintaining comparable detection accuracy. Additionally, we
aim to continue improving the network’s detection speed to enhance overall performance.
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