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Abstract: The study of the changes in stress and deformation of frozen walls during excavation has
always been a hot topic in underground freezing engineering, and the size of the plastic zone is an
important basis for evaluating the stability of frozen walls. In response to the shortcomings in the
current design of horizontal frozen walls, based on the internal excavation unloading conditions of
the frozen wall in artificial ground freezing, an elastoplastic mechanical model for the interaction
between a circular horizontal freezing wall and unfrozen soil mass is established under nonuniform
loads to obtain the corresponding solutions for stress and displacement in the system. In this study,
considering the shear stress of the plastic zone, the method for solving the traditional plastic zone
contour equation is modified; consequently, the modified solution of the contour equation of the
plastic zone for the frozen wall is obtained. Using this theoretical solution, the influence of the external
load p0 and the lateral pressure coefficient λ on the contour line of plastic zone and tensile stress
zone are analyzed by combining the project case, the calculation results show that: the λ = 0.485 is
the critical point where the inner edge of the frozen wall just happens to have tensile stress. When
λ < 0.485, the tensile stress zone is inevitable in the inner edge of the frozen wall vertical direction,
and its range is only related to λ and increases with the decrease of λ. The p0 only affects the
magnitude of tensile stress in the region, but does not affect its range. At this time, the frozen wall
compression plastic zone contour evolves from crescent shaped to ear shaped with the increase
of p0. When 0.485 < λ < 0.61, there will be no tensile stress zone, the frozen wall compression
plastic zone contour also evolves from crescent shaped to ear shaped with the increase of p0. When
λ > 0.61, there will be also no tensile stress zone, with the increase of p0, the compression plastic
zone contour evolves from the crescent shaped in the horizontal direction to the elliptical shaped,
and there is no ear-shaped plastic zone in the whole evolution process. Based on our results, we show
that our method can be used to provide a theoretical basis for the stability evaluation and parameter
(thickness) design calculation of horizontal frozen walls under nonuniform loads.

Keywords: horizontal freezing method construction; circular frozen wall; nonuniform load; unload
model; elastoplastic analysis

1. Introduction

Artificial ground freezing [1–4] is a special construction technology often used in
the construction of underground structures in weak, water-bearing strata, such as shaft
engineering, tunnel construction, and foundation pit excavation. Research on the stress
and deformation of the frozen wall created during the artificial ground freezing process
while performing excavations has always been a topic of interest in the field of under-
ground freezing engineering; herein, the size of the plastic zone of the frozen wall is an
important measure to evaluate the stability of the frozen wall. It should be noted that, in
this paper, plastic zones refer to compression plastic zones. In the literature, in the case of
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both vertical or horizontal frozen walls, research on their plastic zone radius and stress
expression for the case wherein the lateral pressure coefficient λ = 1—i.e., on the elastic or
elastic–plastic characteristics of frozen wall under uniform load—is most common [5–11].
However, numerous measured data indicate that the in situ stress includes a certain degree
of inhomogeneity, i.e., the ratio of horizontal stress to vertical stress (which is referred to as
the lateral pressure coefficient λ) is not equal to 1 [12,13]. This inhomogeneous pressure
plays an important role in the failure of underground structures.

Considering this, worldwide, research has been conducted considering nonuniform
formation pressure on the surrounding rock of roadways [14–19]. Indeed, analytical solu-
tions of models of excavation of circular tunnels in elastic homogeneous materials subject
to nonuniform initial stresses (i.e., the solution known as Kirsch’s solution) [20,21] are
discussed in textbooks of rock mechanics and excavation analysis due to their importance
as basic teaching/learning tools. Nevertheless, the research on the elastoplastic mechan-
ical properties of the frozen wall formed by the artificial ground freezing method under
nonuniform load conditions are still lacking and not explicitly developed [22,23]. In partic-
ular, under nonuniform load, the initial stress field of the frozen stratum is considerably
different from that of the surrounding rock of roadways (as shown in Figures 1 and 2).
In particular, as is clear from Figure 2, it is important to consider the interaction between
the frozen wall and unfrozen soil in the frozen stratum while studying the mechanical
characteristics of the frozen wall before the installation of a lining. However, as shown
in Figure 1, before this installation, the surrounding rock of the roadway is just a single
medium in the stratum; therefore, the latter case only involves an inhomogeneous stress
analysis of a single medium. Therefore, the existing research results of the surrounding
rock of roadways under nonuniform load are not suitable for analyzing the mechanical
characteristics of horizontal frozen walls.
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Figure 1. Initial stress field of the surrounding rock of the roadway.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 21 
 

 
Figure 2. Initial stress field of the frozen stratum. 

In the design theory of frozen walls, the vertical frozen wall theory has become rela-
tively mature and has formed a relatively complete set of design theories [24]. However, 
the design of the horizontal frozen wall is not yet mature, mainly relying on the calculation 
formula for the vertical frozen wall of the neutral shaft in mining construction and com-
bining the on-site experience method for design [25,26]. In recent years, scholars have fo-
cused on the design and research of horizontal frozen walls, which are still in the fields of 
numerical simulation, model testing, and on-site measurement. They mostly focus on the 
analysis of temperature and displacement fields [27–30]. Theoretical analysis only in-
cludes partial elastic design research, while elastic–plastic analysis has not yet seen rele-
vant theoretical analysis research [6,22]. However, due to the different ground stresses in 
the vertical and horizontal directions, the external loads on the horizontal frozen wall are 
nonuniform, which fundamentally differs from the axisymmetric loads on the vertical fro-
zen wall. Even the optimized design formula for the vertical frozen wall is theoretically 
not applicable to the horizontal frozen wall [23]. In order to gain a detailed understanding 
of the deformation and plastic zone contour characteristics of the horizontal frozen wall, 
and to design the horizontal frozen wall more reasonably, theoretical research on the elas-
tic–plastic design of the horizontal frozen wall urgently needs to be addressed. 

Traditionally, while studying the mechanical properties of frozen walls, the consid-
ered mechanical model was often assumed to be an infinitely long elastoplastic thick-
walled cylinder under confining pressure loading conditions [6,31]. However, because the 
interaction between the frozen walls and surrounding unfrozen soil, as well as the radial 
unloading of the frozen wall, were often neglected, this led to an inaccurate analysis of the 
frozen walls, which consequently led to structural failures. However, in recent years, sev-
eral scholars have used an unloading model to optimize their study of the mechanical 
properties of the frozen wall [8–10,32,33], which has led to suitable results. Nevertheless, 
analyses based on the elastoplastic theory for frozen walls using the excavation unloading 
model and considering the interaction between the frozen wall and unfrozen soil under 
nonuniform load conditions has not been conducted [34]. 

Therefore, in this study, considering the unloading effect of excavation, an elasto-
plastic mechanical model for the interaction between the horizontal frozen wall and sur-
rounding unfrozen soil under nonuniform load conditions is established. In particular, 
the stress, deformation, and plastic zone contours in the elastic zone of the frozen wall are 
theoretically analyzed; in this case, the Mohr–Coulomb yield criterion is used as the plas-
tic yielding criterion for the frozen wall. Based on the Mohr–Coulomb yield criterion and 
considering the shear stress in the plastic zone, the traditional method for calculating the 
plastic zone of the frozen wall is modified, and thus, a modified analytical solution of the 
contour equation for the plastic zone of the frozen wall is obtained. Finally, the distribu-
tion law of stress and displacement is analyzed for construction wherein the horizontal 

0pλ 0pλ

0p

0p

Unfrozen soil

Frozen wall elastic zone
Frozen wall plastic zone

1r
∞r

ρr

0r

Figure 2. Initial stress field of the frozen stratum.



Appl. Sci. 2023, 13, 9398 3 of 19

In the design theory of frozen walls, the vertical frozen wall theory has become rela-
tively mature and has formed a relatively complete set of design theories [24]. However, the
design of the horizontal frozen wall is not yet mature, mainly relying on the calculation for-
mula for the vertical frozen wall of the neutral shaft in mining construction and combining
the on-site experience method for design [25,26]. In recent years, scholars have focused on
the design and research of horizontal frozen walls, which are still in the fields of numerical
simulation, model testing, and on-site measurement. They mostly focus on the analysis
of temperature and displacement fields [27–30]. Theoretical analysis only includes partial
elastic design research, while elastic–plastic analysis has not yet seen relevant theoretical
analysis research [6,22]. However, due to the different ground stresses in the vertical and
horizontal directions, the external loads on the horizontal frozen wall are nonuniform,
which fundamentally differs from the axisymmetric loads on the vertical frozen wall. Even
the optimized design formula for the vertical frozen wall is theoretically not applicable to
the horizontal frozen wall [23]. In order to gain a detailed understanding of the deformation
and plastic zone contour characteristics of the horizontal frozen wall, and to design the
horizontal frozen wall more reasonably, theoretical research on the elastic–plastic design of
the horizontal frozen wall urgently needs to be addressed.

Traditionally, while studying the mechanical properties of frozen walls, the considered
mechanical model was often assumed to be an infinitely long elastoplastic thick-walled
cylinder under confining pressure loading conditions [6,31]. However, because the in-
teraction between the frozen walls and surrounding unfrozen soil, as well as the radial
unloading of the frozen wall, were often neglected, this led to an inaccurate analysis of
the frozen walls, which consequently led to structural failures. However, in recent years,
several scholars have used an unloading model to optimize their study of the mechanical
properties of the frozen wall [8–10,32,33], which has led to suitable results. Nevertheless,
analyses based on the elastoplastic theory for frozen walls using the excavation unloading
model and considering the interaction between the frozen wall and unfrozen soil under
nonuniform load conditions has not been conducted [34].

Therefore, in this study, considering the unloading effect of excavation, an elastoplastic
mechanical model for the interaction between the horizontal frozen wall and surrounding
unfrozen soil under nonuniform load conditions is established. In particular, the stress,
deformation, and plastic zone contours in the elastic zone of the frozen wall are theoretically
analyzed; in this case, the Mohr–Coulomb yield criterion is used as the plastic yielding
criterion for the frozen wall. Based on the Mohr–Coulomb yield criterion and considering
the shear stress in the plastic zone, the traditional method for calculating the plastic zone of
the frozen wall is modified, and thus, a modified analytical solution of the contour equation
for the plastic zone of the frozen wall is obtained. Finally, the distribution law of stress
and displacement is analyzed for construction wherein the horizontal freezing method
is used; based on this analysis, factors influencing the evolution of the elastoplastic zone
are studied.

2. Basic Assumptions and Mechanical Models
2.1. Basic Assumptions

1. The horizontal frozen wall and surrounding unfrozen soil are regarded as infinite
thick-walled cylinders; in addition, the plane strain model is used to analyze the
mechanical characteristics of the horizontal frozen wall.

2. The frozen wall is homogeneous and composed of ideal elastoplastic material, while
the unfrozen soil is also homogeneous, but composed of linear elastic material.

3. The influence of the force of the unfrozen soil and frozen wall’s own weight is ignored
in the model under study.

4. All the frozen soil inside the frozen wall is excavated in one instant, and there is no
support on the inner edge of the frozen wall after the excavation; i.e., the radial load
on the inner edge is 0.
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5. There is complete contact between the frozen wall and unfrozen soil; i.e., the ra-
dial stress and shear stress on the contact surface are equal; in addition, the radial
displacement and circumferential displacement are equal as well.

6. The stress field before and after freezing remains unchanged and is the same as
the initial stress field. The initial stress field in the Cartesian coordinate system is
expressed as follows:

σ0
x = λp0, σ0

y = p0, τ0
xy = 0 (1)

Equation (1) can be represented in polar coordinates as follows:
σ0

r = λp0 cos2 θ + p0 sin2 θ = 1+λ
2 p0 − 1−λ

2 p0 cos 2θ

σ0
θ = λp0 sin2 θ + p0 cos2 θ = 1+λ

2 p0 +
1−λ

2 p0 cos 2θ

τ0
rθ = (1− λ)p0 sin θ cos θ = 1−λ

2 p0 sin 2θ

(2)

where σ0 represents the initial stress, which is equivalent to the initial stress field given by
σ0

r , σ0
θ , and τ0

rθ , with compressive stress being considered positive; p0 is the initial vertical
stress value, p0 = γh; h is the buried depth; γ is the soil weight; and λ is the horizontal
lateral pressure coefficient.

2.2. Mechanical Models

The mechanical model considered in our study is shown in Figures 2 and 3. In
particular, Figure 2 shows the mechanical model for the initial stress field of the frozen
stratum, while Figure 3 shows the mechanical model for the interaction between the frozen
wall and surrounding rock after excavation and unloading. Although the contour shape
of the elastoplastic zone of the frozen wall does not remain a regular circle under the
action of a nonuniform stress field, for stress estimation, each contour can be approximately
considered as a circle; then, the exact contour can be determined by solving for elastic stress
of the frozen wall.
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Figure 3. Mechanical model of the interaction between the frozen wall and surrounding rock after
excavation and unloading.

Based on the abovementioned assumptions, the proposed mechanical model is divided
into a frozen wall plastic zone, frozen wall elastic zone, and unfrozen soil elastic zone from
the inside to the outside. In Figure 3, the stress boundary of the surrounding unfrozen soil
at infinity is the initial stress field σ0, load at the interface between the elastic zone of the
unfrozen soil and outer surface of the elastic zone of the frozen wall is p1, and load at the
interface between the inner surface of the elastic zone of the frozen wall and outer surface
of the plastic zone of the frozen wall is pρ.
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2.3. Basic Mechanical Equations

The plane strain mechanical model shown in Figure 3 is used to calculate the stress and
deformation of the frozen wall under nonuniform loading. The basic equations of elastic
mechanics used in solving this model are well known. In particular, the basic mechanical
equations in polar coordinates given in the classical literature [14,35] are discussed here.

First, the equilibrium differential equation for the plane strain mechanical model can
be expressed as follows: {

∂σr
∂r + 1

r
∂τrθ
∂θ + σr−σθ

r = 0
∂τrθ
∂r + 1

r
∂σθ
∂θ + 2τrθ

r = 0
(3)

where σr and σθ represent the normal stress components in the radial and hoop directions,
respectively, while τrθ represents the shear stress component.

Second, the geometric equation for the plane strain mechanical model can be expressed
as follows: 

εr =
∂u
∂r

εθ = 1
r

∂v
∂θ + u

r
γrθ = 1

r
∂u
∂θ + ∂v

∂r −
v
r

(4)

where u and v represent the displacement components in the radial and hoop directions,
respectively. In addition, εr and εθ represent the normal strain components in the radial
and hoop directions, respectively, while γrθ represents the shear strain component.

Third, the physical equation for the plane strain mechanical model can be expressed
as follows: 

εr =
1+ν

E [(1− ν)σr − νσθ ]
εθ = 1+ν

E [(1− ν)σθ − νσr]

γrθ = 2(1+ν)
E τrθ

(5)

where E and ν are the elastic modulus and Poisson’s ratio of the stratigraphic material,
respectively.

The above basic mechanical equations are applicable to both unfrozen soil as well as
frozen wall.

3. Frozen Wall Elastic Problem
3.1. Solution of the Elastic Unloading Mechanical Model for the Frozen Wall

The elastic unloading mechanical model problem of the frozen wall can be obtained
from the superposition of the equivalent initial stress field before excavation (Figure 4) and
virtual excavation disturbance stress field (Figure 5) after the formation of the frozen wall.
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Figure 4 shows that the initial stress σ0 acts on both the inner edge of the frozen wall
and outer edge of the unfrozen soil before excavation. In contrast, Figure 5 shows the
virtual excavation disturbance stress field after excavation following the formation of the
frozen wall, which is equivalent to the unloading force given by σ0

r and τ0
rθ at the inner

edge of the frozen wall, where σ0
r is the equivalent radial load and τ0

rθ is the equivalent
shear load. In the unloading model depicted in Figure 5, because the equivalent radial load
and equivalent shear load of the inner edge of the frozen wall are trigonometrically related
to the polar coordinate angle, it is assumed that the load and angle at the contact surface
between the frozen wall and surrounding unfrozen soil are also related trigonometrically.

Depending on the characteristics of the model boundary conditions and plane strain
problem, when the semi-inverse solution method is used to solve the abovementioned
problems, the plane problem using the stress method can be generalized as solving a stress
function that satisfies a compatible equation. Let Φ denote the stress function, then, the
compatible equation in polar coordinates is given as follows:(

∂2

∂r2 +
1
r

∂

∂r
+

1
r2

∂2

∂θ2

)(
∂2Φ
∂r2 +

1
r

∂Φ
∂r

+
1
r2

∂2Φ
∂θ2

)
= 0 (6)

If the stress function is known, the stress components can be obtained as follows:
σr =

1
r

∂Φ
∂r + 1

r2
∂2Φ
∂θ2

σθ = ∂2Φ
∂r2

τrθ = − 1
r

∂2Φ
∂r∂θ +

1
r2

∂Φ
∂θ = − ∂

∂r

(
1
r

∂Φ
∂θ

) (7)

The stress functions of the unfrozen soil and frozen wall Φi(r, θ)(i = 1, 2) are repre-
sented using separable forms (including fi(r) and gi(r)con2θ); these stress functions are
similar and can be expressed as follows [36,37]:

Φi(r, θ) = fi(r) + gi(r) cos 2θ (8)

Substituting the stress functions of Equation (8) into the compatible Equation (6) yields
the following result:

d4 fi(r)
dr4 +

2
r

d3 fi(r)
dr3 − 1

r2
d2 fi(r)

dr2 +
1
r3

d fi(r)
dr

+

[
d4gi(r)

dr4 +
2
r

d3gi(r)
dr3 − 9

r2
d2gi(r)

dr2 +
9
r3

dgi(r)
dr

]
cos 2θ = 0 (9)

Equation (9) is applicable to any arbitrary θ. Hence,
d4 fi(r)

dr4 + 2
r

d3 fi(r)
dr3 − 1

r2
d2 fi(r)

dr2 + 1
r3

d fi(r)
dr = 0

d4gi(r)
dr4 + 2

r
d3gi(r)

dr3 − 9
r2

d2gi(r)
dr2 + 9

r3
dgi(r)

dr = 0
(10)
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It is known that the constant term in the abovementioned stress function has no effect
on the stresses and displacements of the unfrozen soil and frozen wall; therefore, we set the
constant term in the stress function given by Equation (8) to 0. Hence, by solving the above
differential equations, the appropriate stress function expression is obtained as follows:

Φi(r, θ) = air2 + bir2 ln r + ci ln r + (ei + fir4 +
gi
r2 + dir2) cos 2θ (11)

where ai, bi, ci, di,ei, fi, and gi(i = 1, 2) are undetermined parameters. When i = 1, the
undetermined parameters in the stress function satisfying the semi-inverse solution of
the frozen wall are expressed; in contrast, when i = 2, the undetermined parameters in
the stress function satisfying the semi-inverse solution of the surrounding unfrozen soil
are expressed. Substituting Equation (11) into the stress expression of Equation (7), the
distribution function of the stress field for the frozen wall and surrounding unfrozen soil
can be obtained as follows:

σri = −(2di +
4ei
r2 + 6gi

r4 ) cos 2θ + 2ai + 2bi ln r + bi +
ci
r2

σθi = (2di + 12 fir2 + 6gi
r4 ) cos 2θ + 2ai + 2bi ln r + 3bi − ci

r2

τrθi = (6 fir2 + 2di − 2ei
r2 −

6gi
r4 ) sin 2θ

(12)

Because the stresses of the surrounding unfrozen soil and frozen wall are solved for in
the same manner, we only describe the solution for the stress field of the frozen wall below.
The excavation of frozen soil inside the frozen wall can be considered equivalent to a stress
relief field acting on the inner edge of the frozen wall, which induces stress redistribution
and deformation of the frozen wall. After the excavation of frozen soil inside the frozen
wall, the relief stress inside the frozen wall can be expressed as follows:

∆σr1 = σr1 − σ0
r1 = −

[
2d1 +

4e1
r2 + 6g1

r4 −
p0(1−λ)

2

]
cos 2θ + 2a1 + 2b1 ln r + b1 +

c1
r2 −

p0(1+λ)
2

∆σθ1 = σθ1 − σ0
θ1 =

[
2d1 + 12 f1r2 + 6g1

r4 −
p0(1−λ)

2

]
cos 2θ + 2a1 + 2b1 ln r + 3b1 − c1

r2 −
p0(1+λ)

2

∆τrθ1 = τrθ1 − τ0
rθ1 =

[
6 f1r2 + 2d1 − 2e1

r2 −
6g1
r4 −

p0(1−λ)
2

]
sin 2θ

(13)

Furthermore, substituting Equation (13) into the physical as well as geometric equa-
tions and simplifying them, the elastic displacement of the frozen wall caused by the relief
stress can be obtained as follows:

∆u1 = 1+µ1
E1

{
−
[
2d1r− 1

1+µ1

4e1
r −

2g1
r3 −

p0(1−λ)r
2 + µ1

1+µ1
4 f1r3

]
cos 2θ

+
1−µ1
1+µ1

2a1r + 1−µ1
1+µ1

2b1r ln r− b1r− c1
r −

1−µ1
1+µ1

p0(1+λ)r
2

}
∆v1 = 1+µ1

E1

[
2d1r + 2 f1r3(µ1+3)

1+µ1
+ 2g1

r3 −
1−µ1
1+µ1

2e1
r −

p0(1−λ)r
2

]
sin 2θ + 4b1rθ

E1

(14)

3.2. Determination of Undetermined Parameters

Based on the single value and continuous displacement conditions, we can say that
bi = 0, i.e.,

b1 = b2 = 0 (15)

According to the Saint-Venant principle, the original rock stress field at a sufficiently
far distance will be correspondingly less affected by the excavation and unloading effect
inside the frozen wall.
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In particular, when r → ∞ , the stress of the surrounding unfrozen soil after excavation
and unloading of the frozen soil at the inner edge of the frozen wall can still be expressed
by Equation (2). Comparing Equation (2) with Equation (12), we obtain:

2d2 = p0(1− λ)/2
2a2 = p0(1 + λ)/2
f2 = 0

(16)

Furthermore, as previously mentioned, because the radial stress and shear stress at
the inner edge of the frozen wall are equal to zero after excavation and unloading, the
following relationship can be obtained: (−2d1 − 4e1

r2
0
− 6g1

r4
0
) cos 2θ + 2a1 +

c1
r2

0
= 0

(6 f1r2
0 + 2d1 − 2e1

r2
0
− 6g1

r4
0
) sin 2θ = 0

(17)

In a similar vein, because the radial stress, shear stress, radial displacement, and cir-
cumferential displacement at the contact surface between the frozen wall and surrounding
unfrozen soil are equal, we obtain the following:

2d1 +
4e1
r2

1
+ 6g1

r4
1
= 2d2 +

4e2
r2

1
+ 6g2

r4
1

2a1 +
c1
r2

1
= 2a2 +

c2
r2

1

6 f1r2
1 + 2d1 − 2e1

r2
1
− 6g1

r4
1
= 6 f2r2

1 + 2d2 − 2e2
r2

1
− 6g2

r4
1

1+µ1
E1

{
−
[

2d1r1 − 1
1+µ1

4e1
r1
− 2g1

r3
1
− p0(1−λ)r1

2 + µ1
1+µ1

4 f1r3
1

]}
= 1+µ2

E2

{
−
[

2d2r1 − 1
1+µ2

4e2
r1
− 2g2

r3
1
− p0(1−λ)r1

2 + µ2
1+µ2

4 f2r3
1

]}
1−µ1

E1
2a1r1 − 1−µ1

E1

p0(1+λ)r1
2 − 1+µ1

E1

c1
r1

= 1−µ2
E2

2a2r1 − 1−µ2
E2

p0(1+λ)r1
2 − 1+µ2

E2

c1
r1

1+µ1
E1

[
2d1r1 +

2 f1r3
1(µ1+3)
1+µ1

+ 2g1
r3

1
− 1−µ1

1+µ1

2e1
r1
− p0(1−λ)r1

2

]
= 1+µ2

E2

[
2d2r1 +

2 f2r3
1(µ2+3)
1+µ2

+ 2g2
r3

1
− 1−µ2

1+µ2

2e2
r1
− p0(1−λ)r1

2

]

(18)

Equations (8)–(11) are simultaneous equations that can be solved using MAPLE, which
is a numerical software, to obtain the values of ai, bi, ci, di, ei, fi, and gi (i = 1, 2); then, the
expressions for stress and displacement in the elastic zone of a horizontal frozen wall can be
obtained by substituting the parameter values into Equations (5) and (7). The expressions
for stress and displacement of unfrozen soil can be obtained in a similar manner.

4. Frozen Wall Elastic–Plastic Problem
4.1. Preliminary Determination of the Plastic Zone Radius

Yang et al. [9] derived an iterative equation to solve for the radius of the plastic zone
of a frozen wall based on different yield criteria and excavation unloading effects in the
case when the in situ geostress field is uniform. However, in most cases, the horizontal
and vertical stresses are not equal; i.e., λ 6= 1. Researchers worldwide typically study the
plastic zone of surrounding rocks under nonuniform stress field conditions based on the
assumption that the surrounding rock after excavation is in an elastic state, subsequently
calculating the stress in this elastic state according to the elasticity theory; finally, the stress
of the elastic zone is substituted into the plastic yield condition to ascertain whether the
surrounding rock has yielded [38]. At this time, the contour shape of the plastic zone of the
surrounding rock is no longer a regular circle; instead it has sickle, cross, or other shape [17].
Although this abovementioned method is only an approximation, it is helpful for stress
estimation. Furthermore, a similar method can be used for the elastoplastic analysis of a
horizontal circular frozen wall under the action of a nonuniform stress field.
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In the plane strain state, the relationship between the principal stresses and three polar
stress components can be expressed as follows: σ1

σ3
=

σr + σθ

2
±

√(
σr − σθ

2

)2
+ τ2

rθ (19)

The Mohr–Coulomb yield criterion expressed in terms of principal stresses is
as follows:

σ1 =
1 + sin φ

1− sin φ
σ3 +

2c cos φ

1− sin φ
= Aσ3 + B (20)

where A = 1+sin φ
1−sin φ and B = 2c cos φ

1−sin φ .
Substituting Equation (19) into Equation (20), the expression of the yield condition can

be obtained as follows:

σr + σθ

2
= −1 + A

1− A

√(
σr − σθ

2

)2
+ τ2

rθ +
B

1− A
(21)

Then, substituting Equation (12) into Equation (21), and simplifying it, we obtain

12 f1 cos 2θ
(

2a1 − B
1−A

)
r2

p − 4e1 cos 2θ
(

2a1 − B
1−A

)
1
r2

p
+

(
36 f 2

1 r4 +
4e2

1
r4

p
− 24 f1e1

)
cos2 2θ

=
(

1+A
1−A

)2


4d2

1 + 36 f 2
1 r4

p + 24d1 f1r2
p +

4e2
1

r4
p
+

36g2
1

r8
p

+ 24e1g1
r6

p
+

c2
1

r4
p

+

(
8d1e1

r2
p

+ 24d1g1
r4

p
+ 24 f1e1 +

72 f1g1
r2

p

)
cos 4θ

−
(

4d1c1
r2

p
+ 12 f1c1 +

4c1e1
r4

p
+ 12c1g1

r6
p

)
cos 2θ

−
(

2a1 − B
1−A

)2 (22)

Then, Equation (22) can be rewritten in the form of the plastic zone contour equation
in the following manner:

f (r) = k1r4
p + k2r2

p +
k3

r2
p
+

k4

r4
p
+

k5

r6
p
+

k6

r8
p
+ k7 = 0 (23)

where

k1 = 36 f 2
1

(
sin2 2θ +

4A
1 + A2 − 2A

)

k2 = 24d1 f1(
1 + A
1− A

)
2
− 12 f1 cos 2θ(2a1 −

B
1− A

)

k3 = (8d1e1 + 72 f1g1)(
1 + A
1− A

)
2

cos 4θ − 4d1c1(
1 + A
1− A

)
2

cos 2θ + 4e1 cos 2θ(2a1 −
B

1− A
)

k4 = (4e2
1 + 24d1g1 cos 4θ − 4c1e1 cos 2θ + c2

1)(
1 + A
1− A

)
2
− 4e2

1 cos2 2θ

k5 = (24e1g1 − 12c1g1 cos 2θ)(
1 + A
1− A

)
2

k6 = 36g2
1(

1 + A
1− A

)
2

k7 = (4d2
1 + 24 f1e1 cos 4θ − 12 f1c1 cos 2θ)(

1 + A
1− A

)
2
+ 24 f1e1 cos2 2θ − (2a1 −

B
1− A

)
2
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4.2. Solution of Plastic Zone Stress

In the plastic zone of the frozen wall, the radial stress σ
p
r is assumed to be the same

as the stress distribution in its elastic zone [38]; in addition, the direction of the principal
stress remains unchanged in the plastic and elastic zones. Based on these assumptions and
considering Equation (21), the following relationship can be obtained:

tg2α = − 2τrθ
σr−σθ

=
2τ

p
rθ

σ
p
θ −σ

p
r

σ
p
r +σ

p
θ

2 = − 1+A
1−A

√(
σ

p
r −σ

p
θ

2

)2
+ (τ

p
rθ)

2
+ B

1−A

(24)

where α is the direction of the principal stress of the frozen wall at any angle θ relative to
the radius vector orientation of the stress (σp

r , σ
p
θ , τ

p
rθ) at the calculation point.

As indicated in Figure 6, the stress relationships can be represented in the form of a
Mohr’s stress circle; thus, the principal stress direction, radial stress, hoop stress, and shear
stress distribution of the plastic zone of the frozen wall can be obtained as follows:
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Figure 6. τ − σ curve of Mohr’s stress circle.
σ

p
r = −(2d1 +

4e1
r2 + 6g1

r4 ) cos 2θ + 2a1 + 2b1 ln r + b1 +
c1
r2

σ
p
θ = (1+A)−(1−A) cos 2α

(1+A)+(1−A) cos 2α
σ

p
r + 2B cos 2α

(1+A)+(1−A) cos 2α

τ
p
rθ = (A−1) sin 2α

(1+A)+(1−A) cos 2α
σ

p
r + B sin 2α

(1+A)+(1−A) cos 2α

(
σ

p
θ ≥ σ

p
r

)
(25)

where

α =
1
2

arctan

[ (
6 f1r6 + 2d1r4 − 2e1r2 − 6g1

)
sin 2θ

(6 f1r6 + 2d1r4 + 2e1r2 + 6g1) cos 2θ − c1r2

]

4.3. Modified Solution for the Plastic Zone Radius

The plastic zone contour equation given by Equation (22) does not consider the
redistribution of stress in the plastic zone. In fact, when the frozen wall enters the plastic
zone, its stress will be constantly adjusted and redistributed, resulting in continuous
expansion of the plastic zone. In order to obtain a more accurate contour equation for the
plastic zone than the previous one, a second approximation correction of the contour line
of the plastic zone is performed considering stress redistribution of the plastic zone. In
particular, for this second approximation, we use the Castner calculation method twice,
wherein the initial plastic zone radius is calculated using the Castner method first, and then
the stress values σ

p
r and τ

p
rθ of the calculated points are obtained using the stress equation

of the plastic zone; in this case, the contour line of the plastic zone is assumed to be a circle
(the circle is made per the radius of the plastic zone for the calculated point). Finally, a new
contour line equation for the plastic zone considering the action of σ

p
r and τ

p
rθ is derived

in a manner similar to Castner’s method to obtain a more accurate plastic zone radius
compared with that of the previous case.
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After the approximation correction similar to Castner’s method, the elastic stress field
of the frozen wall with σ

p
r and τ

p
rθ acting on the inner edge of the frozen wall is obtained

as follows:
σe

r1 = −(2d1 +
4e1
r2 + 6g1

r4 ) cos 2θ + 2a1 + 2b1 ln r + b1 +
c1
r2 + σ

p
r

r2
p

r2

σe
θ1 = (2d1 + 12 f1r2 + 6g1

r4 ) cos 2θ + 2a1 + 2b1 ln r + 3b1 − c1
r2 − σ

p
r

r2
p

r2

τe
rθ1 = (6 f1r2 + 2d1 − 2e1

r2 −
6g1
r4 ) sin 2θ +τ

p
rθ

r2
p

r2

(26)

By substituting Equation (26) into Equation (21), the modified implicit equation for
the radius of the plastic zone can be obtained as follows:

12 f1 cos 2θ
(

2a1 − B
1−A

)
r2 − 4e1 cos 2θ

(
2a1 − B

1−A

)
1
r2 +

(
36 f 2

1 r4 +
4e2

1
r4 − 24 f1e1

)
cos2 2θ

=
(

1+A
1−A

)2



4d2
1 + 36 f 2

1 r4 + 24d1 f1r2 +
4e2

1
r4 +

36g2
1

r8 + 24e1g1
r6 +

(
c1
r2 + σ

p
r

r2
0

r2

)2
+
(

τ
p
rθ

)2 r4
0

r4

+
(

8d1e1
r2 + 24d1g1

r4 + 24 f1e1 +
72 f1g1

r2

)
cos 4θ

− 4
(

d1 + 3 f1r2 + e1
r2 +

3g1
r4

)(
c1
r2 + σ

p
r

r2
0

r2

)
cos 2θ

+

(
12 f1τ

p
rθr2

0 +
4d1τ

p
rθr2

0
r2 − 4e1τ

p
rθr2

0
r4 − 12g1τ

p
rθr2

0
r6

)
sin 2θ


−
(

2a1 − B
1−A

)2 (27)

5. Engineering Examples and Analysis of the Evolution Law of the Elastoplastic Zone
of the Frozen Wall

In the freezing design of the horizontal freezing method, the size of the plastic zone
is an important basis for evaluating the stability of the frozen wall. In order to study the
evolution law of the elastoplastic zone of the frozen wall under nonuniform load, we taking
a horizontal frozen tunnel project as the background; in particular, the effects of the vertical
external load p0 and lateral pressure coefficient λ on the plastic zone contour and range of
the tensile stress zone of the horizontal frozen wall are analyzed.

The tunnel is constructed using artificial freezing method, and the designed average
temperature of the freezing wall is −10 ◦C. The buried depth of the tunnel is 187.0~248 m,
with a longitudinal slope of i = 1/1650, and the initial pressure of the surrounding
soil is between 0.3~0.9 MPa. The rock surrounding the tunnel is composed of N2L2

argillaceous siltstone, sandy mudstone, sandy gravel layer, and N2L2s loose sandstone.
The elastic modulus and Poisson’s ratio of frozen soil and unfrozen soil are respectively:
E1 = 150 MPa, µ1 = 0.35, E2 = 20 MPa, µ2 = 0.35, and the excavation radius of frozen wall
is 3.3 m. The horizontal freezing curtain and freezing hole layout of the tunnel are shown
in Figures 7 and 8, respectively, and the relevant geological parameters are listed in Table 1.
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Table 1. Physical and mechanical parameters of the frozen wall and unfrozen soil mass.

Parameters
Material Types Frozen Wall Unfrozen Soil

Elastic modulus/MPa 150 20
Poisson ratio 0.35 0.35

Lateral pressure coefficient 0.8 0.8
Compressive strength/MPa 5.58 0.99

Cohesive strength/MPa 1.45 0.28
Internal friction angle/◦ 35 30

Bulk density/kN·m3 19.2 22.0

Artificial ground freezing is an unstable thermal conductivity problem with complex
boundary conditions, and the solution to its freezing temperature field requires consider-
ation of factors such as phase transition, moving boundaries, and internal heat sources.
Based on the basic theories of soil moisture migration, heat change, thermodynamics, and
poromechanics during freezing, as well as Harlan’s coupled model of water and heat,
COMSOL multi-physics finite element software and MATLAB were used to build the
numerical calculation models of the freezing temperature field of A–A and B–B sections
of the horizontal freezing curtain of the tunnel [2,39,40], as shown in Figure 9. Via finite
element calculation and analysis, it was found that the thickness of the frozen wall of the
tunnel was 2.76~3.25 m; for the convenience of calculating the thickness of the frozen wall,
it is taken as 3 m.
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5.1. Safety Analysis of Freezing Engineering

By substituting the relevant engineering and geological parameters into
Equations (15)–(18) and solving the simultaneous equations for values of ai, bi, ci, di,
ei, fi, and gi (i = 1, 2) using MAPLE, we obtain the values listed in the Table 2.

Table 2. Stress function parameters.

Parameters Value Parameters Value

a1 0.52 a2 0.41
b1 0.00 b2 0.00
c1 −11.36 c2 −2.11
d1 0.106 d2 0.045
e1 −2.06 e2 −0.39
f1 −6.60 × 10−4 f2 0.00
g1 10.80 g2 −1.72

The stress values of the frozen wall under the elastic state can be obtained by sub-
stituting the undetermined parameters into Equation (12); the corresponding values for
principal stresses, principal stress direction, and yield state for kπ/12 (k = 0, 1, 2, 3, 4, 5,
6) directions are listed in Table 3. Verification using Equation (21) indicates that plastic
yield does not occur at the inner edge of the frozen wall of the tunnel; furthermore, the
maximum circumferential stress at the inner edge of the frozen wall is 2.76 MPa, which
meets the safety factor requirement of the compressive strength being twice the maximum
circumferential stress. Under the actual working conditions for the tunnel considered in
this study, for a frozen wall thickness of 3 m, it was calculated that, when the vertical
external load increases to 1.83 MPa, the frozen wall reaches the elastic limit at the horizontal
inner edge, and the vertical external load of the elastic limit is 2.03 times the design load,
indicating that the tunnel freezing methodology leads to safe and reliable results.

Table 3. Stress and elastic–plastic state of the inner edge of the frozen wall.

Angle
θ/◦

First Principal
Stress

σ1/MPa

Second Principal
Stress

σ2/MPa

Principal Stress
Direction

α+θ/◦
Yield State

0◦ 2.76 0 0◦ Not yielding
15◦ 2.67 0 15◦ Not yielding
30◦ 2.42 0 30◦ Not yielding
45◦ 2.09 0 45◦ Not yielding
60◦ 1.75 0 60◦ Not yielding
75◦ 1.51 0 75◦ Not yielding
90◦ 1.42 0 90◦ Not yielding
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By substituting the parameters listed in Tables 1 and 2 in Equations (12) and (14),
the stress and displacement distribution of the frozen wall in the No. 7 tunnel using the
freezing method construction can be obtained as shown in Figures 10 and 11.
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As shown in Figure 10, because the frozen wall is subject to a nonuniform stress
field, its radial stress increases at different gradients with the radius in each direction. In
particular, when λ < 1, the radial stress in the horizontal direction increases faster than that
in the vertical direction near the inner edge of the frozen wall; in addition, the magnitude
of horizontal radial stress is larger than vertical radial stress. In contrast, near the outer
edge, the radial stress in the vertical direction increases faster than that in the horizontal
direction, and its value is also greater than that in the horizontal direction. However, for
r = 5.31m, the radial stresses in all directions are equal to 0.64 MPa. Furthermore, the
circumferential stress in the horizontal direction is significantly greater than that in the
vertical direction. Moving along the vector radius from the inner edge to the outer edge, the
horizontal circumferential stress decreases, while the vertical circumferential stress remains
almost unchanged; in addition, the horizontal circumferential stress at the outer edge of
the frozen wall is less than the vertical circumferential stress at the outer edge. As with
radial stress distribution, the circumferential stresses in all directions are equal to 1.38 MPa
at r = 5.81m. It should be noted that the shear stress is positive for angles in the range of
0–90◦ and 180–270◦, whereas negative for angles in the range of 90–180◦ and 270–360◦; the
absolute value of shear stress is strictly symmetrical with respect to the horizontal, vertical,
45◦, and 135◦ directions.

From Figure 11a, it can be seen that the radial displacement distribution of the elastic
zone of the frozen wall shows that the vertical radial displacement of the frozen wall is
greater than the horizontal radial displacement, and all of these displacements are positive
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values, i.e., indicating deformation to the excavation face; this can be attributed to the verti-
cal outward load being is greater than the horizontal outward load. Furthermore, moving
along a vector radius from the inner edge to outer edge, the radial displacement gradually
decreases. From the circumferential displacement distribution shown in Figure 11b, we
can see that the circumferential displacement is positive in the direction of 0–90◦ and
180–270◦, negative in the direction of 90–180◦ and 270–360◦, and the absolute value of
circumferential displacement is strictly symmetrical with respect to the horizontal, vertical,
45◦, and 135◦ directions.

5.2. Influence of External Load on the Plastic Zone Contour

Figure 12 shows the changes in the shape of the plastic zone contour of the frozen wall
with an increase in p0 for different λ.

If the nonuniformity of the two external loads is strong (as shown in Figure 12a with
λ = 0.3), the tensile stress zone will clearly appear in the vertical direction at the inner
edge of the frozen wall. In particular, when the value of p0 is low, the frozen wall only
appears as a crescent-shaped plastic zone within a certain range of the inner edge in the
horizontal direction (e.g., contours of 2 MPa and 3 MPa in Figure 12a), and the radius
of plastic zone in the direction of 0◦ and 180◦ is the largest. As p0 increases, the plastic
zone expands along the horizontal direction towards the outer edge of the freezing wall;
in addition, it simultaneously expands along the inner edge of the freezing wall in the
vertical direction. The contour of the plastic zone of the frozen wall gradually evolves from
the crescent shape under low load to that of an ear-like shape (e.g., the contours of 5 MPa
and 12 MPa in Figure 12a), and the plastic zone in the direction of 30–60◦ (the other three
quadrants are similar in terms of the radius of the plastic zone) has the largest radius, which
is the weakest position for plastic failure on the frozen wall. Furthermore, the horizontal
inner edge of the freezing wall is in the plastic zone, while the outer edge is still in the
elastic state; in contrast, for the vertical direction of the frozen wall, the inner edge lies in
the tensile stress zone, whereas the outer edge lies in the elastic zone.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 21 
 

horizontal direction (e.g., contours of 2 MPa and 3 MPa in Figure 12a), and the radius of 
plastic zone in the direction of 0° and 180° is the largest. As 0p  increases, the plastic zone 
expands along the horizontal direction towards the outer edge of the freezing wall; in 
addition, it simultaneously expands along the inner edge of the freezing wall in the verti-
cal direction. The contour of the plastic zone of the frozen wall gradually evolves from the 
crescent shape under low load to that of an ear-like shape (e.g., the contours of 5 MPa and 
12 MPa in Figure 12a), and the plastic zone in the direction of 30–60° (the other three quad-
rants are similar in terms of the radius of the plastic zone) has the largest radius, which is 
the weakest position for plastic failure on the frozen wall. Furthermore, the horizontal 
inner edge of the freezing wall is in the plastic zone, while the outer edge is still in the 
elastic state; in contrast, for the vertical direction of the frozen wall, the inner edge lies in 
the tensile stress zone, whereas the outer edge lies in the elastic zone. 

 
Figure 12. Relationship between the external load and plastic zone contour of the frozen wall. 

If the nonuniformity of the two external loads is neither strong nor weak (as shown 
in Figure 12c with 0.5=λ ), there is no tensile stress zone in the entire frozen wall. In par-
ticular, when the value of 0p  is low, the shape of the plastic zone of the frozen wall is the 
same as that of 3.0=λ . With an increase in 0p , the contour of the plastic zone of the fro-
zen wall gradually evolves from a crescent shape to ear-like shape (e.g., contours of 5 MPa 
and 12 MPa in Figure 12c), and the plastic zone in the direction of 30–60° (the other three 
quadrants are similar in terms of radius of the plastic zone) has the largest radius, which 
is the weakest position of plastic failure of the frozen wall, but its evolution process is 
slower than the case of 0.3=λ . Furthermore, the vertical direction of the frozen wall is 
entirely in the elastic zone, whereas inner edge and outer edge of the horizontal frozen 
wall lie in the plastic and elastic zones, respectively. 

If the nonuniformity of the two external loads is weak (as shown in Figure 12e with 
0.8=λ ), because the stress condition is similar to the stress state under uniform load ( 1=λ

), the contour of the plastic zone evolves from a crescent shape at the horizontal inner edge 
to an ellipse with an increase in the external load 0p  on the frozen wall (e.g., contour of 
5 MPa in Figure 12e). Thus, in this case, no ear-shaped plastic zone is observed during the 

Figure 12. Relationship between the external load and plastic zone contour of the frozen wall.

If the nonuniformity of the two external loads is neither strong nor weak (as shown
in Figure 12c with λ = 0.5), there is no tensile stress zone in the entire frozen wall. In
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particular, when the value of p0 is low, the shape of the plastic zone of the frozen wall is
the same as that of λ = 0.3. With an increase in p0, the contour of the plastic zone of the
frozen wall gradually evolves from a crescent shape to ear-like shape (e.g., contours of
5 MPa and 12 MPa in Figure 12c), and the plastic zone in the direction of 30–60◦ (the other
three quadrants are similar in terms of radius of the plastic zone) has the largest radius,
which is the weakest position of plastic failure of the frozen wall, but its evolution process
is slower than the case of λ = 0.3. Furthermore, the vertical direction of the frozen wall
is entirely in the elastic zone, whereas inner edge and outer edge of the horizontal frozen
wall lie in the plastic and elastic zones, respectively.

If the nonuniformity of the two external loads is weak (as shown in Figure 12e with
λ = 0.8), because the stress condition is similar to the stress state under uniform load
(λ = 1), the contour of the plastic zone evolves from a crescent shape at the horizontal inner
edge to an ellipse with an increase in the external load p0 on the frozen wall (e.g., contour
of 5 MPa in Figure 12e). Thus, in this case, no ear-shaped plastic zone is observed during
the entire evolution process, and the radius of plastic zone in the direction of 0◦ and 180◦ is
always the largest.

Based on our analysis, λ = 0.485 is the critical point for which the inner edge of the
frozen wall just develops tensile stress under the abovementioned working conditions; this
critical point for tensile stress is located on the vertical inner edge of the frozen wall. In
contrast, when λ<0.485, the tensile stress zone is clearly observed on the inner edge of the
vertical direction of the frozen wall, whereas, when λ > 0.485, there is no tensile stress
zone on the frozen wall. Furthermore, λ = 0.61 is the critical point between the ear-shaped
plastic zone and elliptical plastic zone of the frozen wall. Under the effect of high external
load and when λ < 0.610, the shape of the plastic zone of the frozen wall is roughly that
of an ear, whereas, for λ > 0.610, the shape of the plastic zone is elliptical. Thus, when
λ = 0.61 and p0 = 8.95 MPa, the inner edge of the frozen wall in the vertical direction is
right at the critical point between the elastic and plastic states.

5.3. Influence of the Lateral Pressure Coefficient on the Plastic Zone Contour

The effect of the lateral pressure coefficient λ on the extent and shape of the plastic
zone of frozen wall for different cases is shown in Figure 13.
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In the case of p0 = 3 MPa, when the value of λ is low, the contour of the plastic zone of
the frozen wall is that of a short, thick crescent shape (e.g., contour of λ = 0.3 in Figure 13a),
and the range of the horizontal plastic zone is the largest. In contrast, if λ is increased to 1,
the crescent-shaped plastic zone gradually expands in the vertical direction along the inner
edge of the frozen wall, and the horizontal plastic zone continuously reduces to form a long,
thin, crescent-shaped contour, after which this contour becomes elliptical in shape (λ = 0.8).
When λ > 1 and continues to increase, the horizontal plastic zone decreases gradually,
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while the vertical plastic zone increases and gradually separates in the horizontal direction,
i.e., at 0◦, finally forming two crescent shaped plastic zones in the vertical direction.

In the case of p0 = 5 MPa or 10 MPa, for the same values of λ, the range of the tensile
stress zone is the same as that of p0 = 3MPa. In particular, when λ = 0.3, the plastic zone
contour of the frozen wall is ear-shaped, and the plastic zone in the direction of 30–60◦

(the other three quadrants are similar in terms of the radius of the plastic zone) has the
largest radius, which is the weakest position for plastic failure on the frozen wall. When λ
increases to 1, the plastic zone of the frozen wall gradually closes in the vertical direction
along the inner edge, and the horizontal plastic zone continuously reduces until an ellipse
is formed (λ = 0.8).

5.4. Discussion on Stability Evaluation of Horizontal Frozen Wall under Uneven Load

Based on the abovementioned analysis of the influence of the lateral pressure coeffi-
cient λ and vertical external load p0 on the plastic zone contour and range of the tensile
stress zone of the horizontal frozen wall, the following observations can be made:

(1) When λ<0.485, the tensile stress zone is clearly observable at the inner edge of the
frozen wall in the vertical direction and its range is only related to λ; in particular, it
increases with a decrease in λ, but is independent of the magnitude of p0. Furthermore,
p0 only affects the magnitude of the tensile stress in the stress zone, but does not affect
its range. Moreover, a reasonable vertical direction freezing reinforcement should be
performed to increase the radius of the frozen wall and avoid tensile failure of the
inner edge of the frozen wall.

(2) When 0.485 < λ < 0.610, there is no tensile stress zone on the frozen wall. In such
cases, the plastic failure of the horizontal inner edge under low load and inner edge
in the direction 30–60◦ (the other three quadrants are similar in terms of the radius of
the plastic zone) under high load should be avoided.

(3) When λ > 0.610, there is no tensile stress zone as in the previous case, and the plastic
zone in the 0◦ and 180◦ directions has the largest radius, indicating the weakest
positions of the plastic wall of the frozen wall. Thus, the compressive plastic failure of
the inner edge of the frozen wall in the horizontal direction should be avoided.

For circular horizontal freezing engineering, in practice, λ should first be determined
using an in situ stress test to judge whether tensile stress is present in the frozen wall, and
the corresponding tensile failure of the tensile stress zone should be determined according
to the tensile strength of the frozen soil obtained via the frozen soil mechanics test. By
substituting the external load into the plastic contour equation of the frozen wall, the
plastic zone can be determined; consequently, the maximum position of the plastic zone
can be obtained. Finally, the freezing scheme can be improved based on the determined
weak areas.

6. Conclusions

In this study, after deriving the analytical solution of the stress and displacement of
the elastic–plastic zone of the frozen wall under nonuniform load, a specific engineering
case is analyzed; in particular, the distribution law of stress and displacement of the frozen
wall and corresponding influencing factors of the contour of its plastic zone are analyzed.
Considering our observations, the following conclusions can be drawn:

The point where λ = 0.485 is the critical point at which the inner edge of the frozen
wall just develops tensile stress. When λ < 0.485, the tensile stress zone is clearly observed
at the inner edge of the frozen wall in the vertical direction, and its range is only related to λ;
in particular, it increases with a decrease in λ. Furthermore, p0 only affects the magnitude
of the tensile stress in the region, but does not affect its range. When λ > 0.485, no tensile
stress zone is observed.

When λ < 0.61, the frozen wall plastic zone contour evolves from a crescent shape
to an ear shape as p0 increases. In contrast, for λ > 0.61, the plastic zone contour evolves
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from a crescent shape in the horizontal direction to an elliptical shape with an increase in
p0, and there is no ear-shaped plastic zone observed during the entire evolution process.

When p0 = 3 MPa, with an increase in λ tending towards 1, the contour of the plastic
zone of the frozen wall evolves from a short, thick crescent shape to long, thin crescent
shape until the intersection finally becomes an elliptical plastic zone; in contrast, when
p0 = 5 MPa or 10 MPa, for the same increase in λ, the contour of the plastic zone of the
frozen wall gradually closes along the inner edge in the vertical direction evolving from an
ear shape to ellipse.

Thus, this study provides a theoretical basis for the design and calculation of stress in
horizontal frozen walls under nonuniform load conditions.
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