friried applied
e sciences

Article

A Novel Approach to Satellite Component Health Assessment
Based on the Wasserstein Distance and Spectral Clustering

Yongchao Hui !, Yuehua Cheng !9, Bin Jiang 1'*(%, Xiaodong Han 2 and Lei Yang !

check for
updates

Citation: Hui, Y.; Cheng, Y;; Jiang, B.;
Han, X; Yang, L. A Novel Approach
to Satellite Component Health
Assessment Based on the Wasserstein
Distance and Spectral Clustering.
Appl. Sci. 2023, 13,9438. https://
doi.org/10.3390/app13169438

Academic Editors: Carmelo Gentile,

Hanxin Chen and Qinglai Wei

Received: 4 July 2023
Revised: 27 July 2023
Accepted: 19 August 2023
Published: 21 August 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

College of Automation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
huiyongchao@nuaa.edu.cn (Y.H.); chengyuehua@nuaa.edu.cn (Y.C.); ylsx2203154@nuaa.edu.cn (L.Y.)
Communication Satellite Division, China Academy of Space Technology, Beijing 100830, China;
13426461933@163.com

Correspondence: binjiang@nuaa.edu.cn

Abstract: This research presents a multiparameter approach to satellite component health assessment
aimed at addressing the increasing demand for in-orbit satellite component health assessment. The
method encompasses three key enhancements. Firstly, the utilization of the Wasserstein distance
as an indicator simplifies the decision-making process for assessing the health of data distributions.
This enhancement allows for a more robust handling of noisy sensor data, resulting in improved
accuracy in health assessment. Secondly, the original limitation of assessing component health within
the same parameter class is overcome by extending the evaluation to include multiple parameter
classes. This extension leads to a more comprehensive assessment of satellite component health.
Lastly, the method employs spectral clustering to determine the boundaries of different health status
classes, offering an objective alternative to traditional expert-dependent approaches. By adopting
this technique, the proposed method enhances the objectivity and accuracy of the health status
classification. The experimental results show that the method is able to accurately describe the trends
in the health status of components. Its effectiveness in real-time health assessment and monitoring of
satellite components is confirmed. This research provides a valuable reference for further research on
satellite component health assessment. It introduces novel and enhanced ideas and methodologies
for practical applications.

Keywords: satellite components; multiparametric health assessment; Wasserstein distance; spectral
clustering; seasonal decomposition

1. Introduction

In the field of research on satellite fault diagnosis and health management, the real-
time health assessment of satellite components is a crucial task to ensure the reliability and
operational stability of satellites. Conducting in-orbit health assessment studies for satellite
components is significant for various purposes, including fault prediction, performance
diagnosis, resource utilization, and data-driven decision making. With the development
of the space industry and the increasing complexity of satellite missions, the demand for
accurate assessment and real-time monitoring of satellite component health is becoming
increasingly pressing [1,2]. As a result, efficient and reliable in-orbit health assessment of
satellite components has become a prominent research topic.

Traditional component health assessment methods rely on expert experience and
predefined rules. They also have problems such as high subjectivity and poor scala-
bility. Meanwhile, it is difficult to establish an accurate mechanism model due to the
complex structure of satellite components and the high uncertainty of space environment
changes [3,4]. Therefore, accurate component health assessment by means of theoretical
modeling is difficult. However, with the rapid advancement of data science and machine
learning techniques, data-driven health assessment methods are gaining attention among
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researchers. These methods make use of the large amount of real-time data generated by
the component during operation. By analyzing and processing these data, key features are
extracted. The health status of the component is assessed from a number of perspectives
such as the probability of failure [5-9], remaining life [10-14], and degree of condition
deviation [15,16]. Park et al. [17] obtained operational data of flywheel motors through
ground-based acceleration experiments, anomaly detection, and fault prediction of satellite
flywheel motors using shifted nuclear particle filters. Ibrahim et al. [18] analyzed the cause
of the failure of the EgyptSat 1 satellite through a machine learning approach. A multilayer
bi-directional long short-term memory (Bi-LSTM)-based fault prediction algorithm was
proposed by J Gao et al. [19] to improve the prediction accuracy of intelligent algorithms.
In order to avoid excessive waste of resources, Abdelghafar et al. proposed an optimized
regression method based on the coyote optimization algorithm (COA) and support vector
regression (SVR) to predict the remaining battery life [20]. Song et al. [21] presented an iter-
ative update method to improve the long-term predictive performance of battery remaining
life prediction. Ma et al. [22] subjected both the input-to-state and state-to-state transitions
of the LSTM to convolution operations, including the temporal frequency and temporal
information of the signal. This resulted in better computational efficiency and prediction
accuracy when predicting the remaining life of bearing components. The classical single-
parameter correlation vector regression (RVR) was extended to a multiparameter model by
Wang et al. [23]. It was successfully applied to the remaining life prediction of capacitors
and bearing components and good prediction results were achieved. However, due to the
complexity of the orbital environment, the remaining lifetime of satellite components was
strongly influenced by the random environment [24,25] and there were difficulties in the
validation process. In addition, the analysis of component failure probabilities required
the support of a large number of samples, while the available failure samples were very
limited [26-28].

Hui et al. [15] proposed a real-time health assessment method for satellite components
in orbit based on the characteristics of multiparametric data distributions. The method
comprehensively considers the health of data distribution deviations (HDDDs) and the
similarity of data changes (SOC). It utilizes the maximum mean difference (MMD) al-
gorithm and Pearson correlation coefficient to describe component health status. The
authors developed a multiparameter component assessment model by integrating the
entropy weighting method with the criteria importance through intercriteria correlation
(CRITIC) method to assign weights to parameters of the same change type. Additionally,
the empirical modal decomposition (EMD) technique was employed for trend extraction
and comparative validation. This method requires a small amount of sample data and is
easy to validate. Good results have been achieved in all tests using a large amount of real
satellite component operational data. However, the method has a few shortcomings. Firstly,
the original method is only applicable to the multiparameter fusion assessment of the
same type of parameters of a component, restricting its application to the comprehensive
assessment of combinations of different types of parameters. Secondly, the determination
of threshold values still relies on expert experience and lacks objectivity and updating. In
summary, the method provides a new idea and approach for satellite component health
assessment. However, further research and improvement are still needed to improve its
applicability and accuracy.

Building upon previous research, this research proposes an improved and optimized
method to address the above limitations. (1) The improved Wasserstein distance (WD) is
introduced as an alternative measure to HDDD and SOC calculations. This optimization
simplifies the decision-making process for assessing the results and provides a more
accurate description of changes in the health status of satellite components. Additionally,
the method is extended to accommodate the assessment of multiple types of parameters,
surpassing the original approach, which only evaluates single parameter types. (2) Spectral
clustering is used to determine the boundaries of different health status classes to replace
traditional methods that rely on expert experience. By using spectral clustering, the health
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states of satellite components can be automatically classified. This also provides a more
scientific, objective, and reliable means of assessment and enhances the accuracy and
repeatability of the assessment method.

The experimental results confirm the capability of the newly proposed method to
accurately capture the evolving trends in the health status of satellite components. Its
effectiveness in the real-time assessment and monitoring of satellite component health is
validated. The next sections describe, in detail, the optimization method presented in this
research and the experimental results to demonstrate its potential for application in the
field of satellite component health assessment.

2. Problem Description and Overall Program
2.1. Problem Description

This research aims to optimize the original method to address two specific challenges,
with the goal of providing a more versatile approach to component health assessment.

First, the MMD mentioned in [15] is capable of describing departures in the data distri-
bution. However, it solely focuses on overall differences and fails to consider variations in
the location distributions. Therefore, it needs to be complemented with Pearson coefficients
to capture the similarities of data changes (SOC). The challenge lies in effectively combin-
ing both indicators when making decisions regarding assessment results. Additionally,
different mapping functions are chosen for different types of data variations. This restricts
the original method to being suitable only for the multiparameter fusion evaluation of
the same type of parameters within a component. For instance, the original method can
only select current data exhibiting the same type of variation across the four axes of a gyro.
Another example is temperature data demonstrating the same type of variation on a solar
sail. Figure 1a illustrates the current data for the four axes of a gyro, indicating that they
vary in precisely the same manner. In contrast, Figure 1b depicts the bearing temperature
and current data for a momentum wheel, revealing that they do not exhibit the same type
of variation.
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Figure 1. Variation in health characteristic parameters of different components.

Figure 2 shows the results of the MMD calculations for two sets of data with different
types of changes. The second set of data in each graph is obtained by adding one to the first
set of data magnitudes, with no other changes. However, the MMD results obtained at this
point in the calculation are different. In short, the calculated MMD results are not the same



Appl. Sci. 2023,13, 9438

40f18

when different variation types of parameters have the same degree of data distribution
deviation (DDD).
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Figure 2. Effectiveness of MMD calculations for data with different change types.

Considering the need to combine different types of parameters for a more comprehen-
sive component health assessment, another consideration is to simplify the decision-making
process for the assessment results. This research introduces the WD as a proxy indicator
to describe the differences in the data distribution and to provide more comprehensive,
accurate, and interpretable assessment results [29,30].

Second, the determination of health status thresholds for satellite components tra-
ditionally relies on expert experience. However, expert experience is highly subjective,
difficult to update, and may not fully leverage the potential information present in the
data. To overcome these limitations, this research introduces a spectral clustering approach
to determine threshold values. Spectral clustering is a nonparametric clustering method
that does not require assumptions to be made about the data distribution. It is applicable
to various types of data, including health status monitoring data of satellite components.
Spectral clustering has the advantages of adapting to complex data structures, taking into
account global information, scalability, and the absence of prelabeled samples [31]. It
enables a more scientific, accurate, and reasonable classification of component health status.

2.2. Overall Program

The method presented in this research comprises three main stages: assessment
modeling, online assessment, and validity verification. The overall program of the method
is shown in Figure 3.

(1) In the assessment modeling phase, the component historical telemetry data are
first preprocessed. The benchmark range is determined using metrics such as variance and
standard deviation. From this, the healthiness assessment indicator for the component’s
whole-life data, i.e., HDDD, is calculated. Simultaneously, the whole-life data are employed
to assign appropriate weights to individual parameters. Subsequently, the health status
classes are classified based on the spectral clustering method and reasonable thresholds are
determined for the subsequent online assessment.

(2) In the online assessment phase, health benchmark state data are first collected and
used to build a benchmark model of the component. Once the benchmark data collection
is complete, the real-time component health assessment commences. During the real-
time assessment process, the health status indicator of the component is calculated using
the improved Wasserstein distance (WD). The results of the HDDD calculation are then
compared with predefined thresholds to determine the corresponding health status level of
the component.
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(3) In the validity verification phase, trends in the long-term data are extracted using
the seasonal decomposition (SD) algorithm. These trends extracted through SD are analyzed
and compared to the results obtained from the HDDD based on the WD. Comparative
analyses are used to verify the effectiveness of the method in capturing trends in component
health status changes.
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Figure 3. Overall program.

3. Program Design
3.1. WD-Based Multiparameter Component Assessment Model
3.1.1. WD-Based Single Parameter Health Calculation

Among the commonly used methods to characterize the differences in data distribu-
tions are total variation, JS dispersion, KL distance, etc. However, for satellite data with
complex variations, the Wasserstein distance is more suitable than these methods. Total
variation is insensitive to subtle variations in the distribution and shape differences, which
makes it difficult to capture early anomalies in components in time [32]. JS dispersion does
not accurately reflect the differences in dealing with nonoverlapping data distributions.
The asymmetric characteristics of the KL distance make its results unstable [33].

To overcome these limitations, the Wasserstein distance (WD) is introduced as a math-
ematical tool for measuring differences in probability distributions. It has attracted a lot of
attention and research in recent years with the rise of deep learning. The WD was proposed
to address some of the limitations and shortcomings of the traditional distance metric
when dealing with probability distributions [29,34]. It provides more information when
measuring differences between data, rather than being limited to statistical distributions of
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values. In contrast to the MMD, the WD takes into account the differences in position and
shape between the two distributions. It captures nonlinear relationships and local nuances,
assessing the dissimilarity by determining the optimal mass transfer between distributions.
The WD quantifies the average cost of transporting mass from one distribution to another
in an optimal manner [34-36]. In summary, the superiority of the WD lies in its ability to
take into account the structure and shape of probability distributions. The WD describes
the differences between the state distributions of data by minimizing the transfer cost. This
gives it better performance in dealing with practical problems such as multimodality, high-
dimensional data, and noise and makes it more suitable compared with other distribution
description methods [37].
The mathematical representation of the WD is as follows [30,38]:

1
Wp (P,Q) = (i;gﬂ(P,Q)/R Xy lPdy (X,y)> ’ @

where 71(P,Q) denotes the set of all joint probability distributions with marginal distributions
P and Q; v is the transfer plan from P to Q, which describes how the mass is transferred
from P to Q.

In the component assessment model, the WD is used to describe the variability between
the real-time operational data of the component and the benchmark data. By calculating
the WD, a positive data distribution health indicator, HDDD, can be obtained to quantify
the health status of the component.

HDDD = 1 — W,(P,Q) ©)

A high HDDD value indicates a small difference between the real-time data and
the benchmark data, suggesting that the component is in a good state of health. Con-
versely, a low HDDD value indicates a potential abnormality or deterioration in the compo-
nent’s health.

The advantage of the new method is illustrated by the X-axis current data of a faulty
gyroscope. The data are derived from telemetry data from a real satellite. From Figure 4,
it can be seen that the current data are abnormally elevated around day 1500 and a fault
occurs. At this time, both the SOC and HDDD based on the WD capture the anomaly
timely and accurately. However, the HDDD based on the MMD is not sensitive to the
anomaly and has a certain lag. This reflects the ability of the HDDD based on the WD to
detect faults and anomalies in a timely manner, especially in the early stages of faults and
anomalies. The temporary increase in the similarity of current data around day 2050 causes
the SOC results to be temporarily unavailable, which needs to be considered together with
the HDDD based on the MMD to ensure that no erroneous results occur. Therefore, the
method proposed in reference [15] needs to consider these two indicators at the same time.
These two indicators complement each other in performing a reasonable and complete
component health assessment. However, the HDDD based on the WD approach does not
suffer from these two problems. Using only one HDDD based on the WD indicator, the
health status of each component can be assessed in a timely, accurate, and comprehensive
manner. Thus, the new method solves the problem of the difficulty in rationally integrating
multiple indicators for decision making.

The WD has several important advantages over traditional distance metrics. Firstly,
the WD can handle nonoverlapping or partially overlapping distributions, which tradi-
tional methods often struggle with. This allows for more comprehensive comparisons in
various scenarios. Secondly, the WD has better robustness to outliers and noise and can
better accommodate anomalies in real data [39,40]. Most importantly, the WD has better
interpretability compared with the results of the MMD and can more accurately describe
the degree of deviation from the component state.
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Figure 4. Comparison of the effectiveness of different single-parameter health state description methods.

3.1.2. Multiparametric Assessment Models Based on Data Standardization

Since different types of parameters exhibit significant differences in amplitude and
variation, direct calculation of their HDDD and weighted fusion is not feasible. Therefore,
there is a need to make improvements to the WD-based HDDD calculation method. First,
the benchmark data for the parameters are normalized. Then, the mapping process is
performed on the real-time operational data using the extreme values of the benchmark
data so that parameters of different variation types are on the same scale. Next, HDDDs of
different parameters can then be compared and fused. In this way, the problem of difficulty
in reasonably fusing the results of multiple categories of parameters due to different types
of amplitude and parameter variation can be solved.

After the benchmark data have been collected, the benchmark data for the different
parameters first need to be normalized in the forward direction. Assume that the data of
the parameter §; are [X1, -, Xm, -, Xp, - - -] and the corresponding benchmark data are
[X1,**,Xm], where the maximum value is ¢I'(max) and the minimum value is ¢ (min).
The formula for the forward normalization of the benchmark data is:

xi — i (min)

N B ma) — G S ©

Subsequent data are mapped according to the changes in the benchmark data. The
mapping method is shown in Equation (4):

X — &M(min)
I E (max) — ¢ (min)

(n > m) @

After the mapping process, the degree of deviation of the different variation types of
parameters can be calculated and reasonably fused according to the method presented in
this research. Taking the shell temperature data of a solar sail component of a star as an
example, the effect after the above operation is shown in Figure 5.
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Figure 5. Data standardization and mapping effects.

By combining the entropy and CRITIC methods, a comprehensive component assess-
ment model is established. The average value of the weights calculated using the two
methods is taken as the final weight of the parameters. This model takes into account
multiple parameters and their respective weights, providing a holistic evaluation of the
health status of the component. The fusion process ensures that the assessment results are
based on the collective information from all relevant parameters, leading to a more accurate
and reliable assessment outcome. In Equation (5), §; is the ith health feature parameter of
the component, w; is the weight of the ith health feature parameter, and £(¢;) is the HDDD
of the ith health feature parameter.

£(&)= wif(G1)+waf(G2) + - - - +wnf(En)

3.2. Classification of Health Status Classes Based on Spectral Clustering

Due to the limitations of expert experience, which is subjective, limited, and difficult
to update, it is difficult to determine reasonable thresholds to classify health states for
different components. For satellite components in particular, the status of a component
can often only be classified as “qualified” or “failed” by means of a fixed threshold. This
inevitably leads to a waste of satellite resources.

Spectral clustering is a nonparametric clustering method that groups data based on
graph theory and linear algebraic methods [41]. Compared with traditional clustering
methods, spectral clustering focuses more on the relationship and similarity between sam-
ples rather than relying only on the distance between samples. In the classification of
component health status levels, there may be complex intrinsic connections and interac-
tions between samples; spectral clustering can better capture these relationships to more
accurately classify health status levels. Additionally, spectral clustering has the following
unique advantages: (1) it is suitable for nonconvex data distributions and can accurately
capture complex structures and correlations; (2) it has strong robustness and is effective in
handling noise and outliers and the clustering results are not easily distorted [42,43]; (3) the
number of states can be divided artificially to adapt to different situations.

When using spectral clustering for health status ranking, the WD-based HDDD is
used as a feature. The main calculation steps are as follows [44]:

(@ Construct a similarity matrix S, where S(i, j) denotes the similarity of the ith data
point to the jth data point.

@ Construct the Laplace matrix. The Laplace matrix L is constructed from the similar-
ity matrix S. The commonly used Laplace matrices are the standard Laplace matrix and the
symmetric normalized Laplace matrix. The standard Laplace matrix is defined as

©)

L=D -5 (6)
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where D is the degree matrix and the diagonal elements represent the degree of each data
point. The symmetric normalized Laplace matrix is defined as

L=1- D 1/2gp-1/2 )

where I is the unit matrix.
(® Eigenvector decomposition. Eigenvector decomposition is performed on the
Laplace matrix L to obtain the eigenvectors and the corresponding eigenvalues.

Lv=Av (8)

where L is the Laplace matrix, v is the eigenvector, and A is the eigenvalue. The eigenvector
corresponding to the first k eigenvalues is usually chosen as the new data representation,
where k is the specified number of clusters.

® Clustering. The data are clustered using a clustering algorithm (e.g., K means)
based on the information in the feature vector. The data are classified into different classes
of health status.

We present an example using the solar sail shell temperature and bearing temperature
data from a real satellite. As there are generally no “failure” states, except for severe failures
and end of life, the HDDD of the ten-year data was therefore clustered into three states:

“Excellent, Good and Qualified”. The original data and the HDDD clustering effect are
shown in Figure 6.
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Figure 6. The HDDD for the (a) shell temperature and (b) bearing temperature of a solar sail. (c) The
spectral clustering effect of HDDD for shell temperature. (d) The spectral clustering effect of HDDD
for bearing temperature.
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Figure 6 clearly demonstrates that, even for the same degree of degradation, different
health characteristic parameters of the same component yield varying HDDD values.
Therefore, the health state thresholds should be different for different components. It
can be observed that the different state classes in Figure 6 are clearly delineated and
clustered well. However, the use of expert experience only allows for delineation using
fixed thresholds. It is difficult to take into account the differences in different parametric
data characteristics and component types. In summary, spectral clustering is scientifically
valid and effective in classifying component health status classes. By considering the
characteristics and similarities of the data, the health status classes of components can
be classified more accurately. This also provides a useful reference for subsequent health
condition monitoring and maintenance.

It is important to note that the application of this method presupposes the availability
of complete lifetime history data for this type of component. This allows for spectral
clustering and the determination of reasonable thresholds.

3.3. Verification of Validity Based on Seasonal Decomposition

For long-term data on the stable operation of components, the use of empirical modal
decomposition (EMD), while capable of extracting accurate trends, suffers from two short-
comings. Firstly, the influence of unknown factors, such as the orbital environment, can
lead to data embodying health that is not ideally monotonically decreasing. When per-
forming nonmonotonic trend extraction, a suitable modal function (e.g., IMF) needs to
be selected for decomposition based on experience or expert knowledge. This involves
subjective judgement and parameter selection, which can lead to subjective bias in the
results for complex variation data. Secondly, EMD is highly sensitive to data specificity.
When anomalies with nonsmooth, nonlinear, or noisy data are encountered, EMD may
produce inaccurate or unstable results [45,46].

In contrast, the seasonal decomposition (SD) algorithm is widely used in time series
analysis and offers distinct advantages. It decomposes time series data into three com-
ponents: seasonal, trend, and stochastic. Compared with EMD, SD has the advantages
of deterministic decomposition, targeting periodic data, providing trend analysis, and
handling periodic noise [47,48]. At the same time, SD does not require human selection
of modal functions or adjustment of parameters. Subjectivity and human intervention are
avoided, providing more consistent and repeatable results. This makes it very suitable
when dealing with data with fixed periodic variations, such as satellite component data.
It is based on the principle of analyzing periodic and trend changes in time series and
decomposing the data into components of different frequencies [49].

SD can be expressed in Equation (9):

Y(t) = T(t) +S(t) + R(t) )

where Y(t) represents the time series data, T(t) represents the trend component, S(t) repre-
sents the seasonal component, and R(t) represents the stochastic component.
The main steps of the algorithm are as follows:
(@ First, the trend component is estimated using smoothing techniques (e.g.,
moving averages):
T(H) = §(T(1)) (10

@ Next, the trend component is subtracted from the raw data to obtain the
detrended data:
Y/(6) = Y(t) — T(t) a1

® The data are then detrended by calculating the cyclical variation at each point in
time. The seasonal component is estimated:

S(t) = g(Y'(t)) (12)
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(® Finally, the seasonal component is subtracted from the detrended data to obtain the
remaining stochastic component:

R(t) =Y'(t) — S(t) (13)

Through such a decomposition process, the time series data can be split into three
components: trend, seasonality, and stochastic. Analysis of the data and trend extraction
are achieved.

The advantages of this method are illustrated in particular in reaction flywheel case
temperature data that appear to be anomalous. As can be seen in Figure 7, the shell
temperature data for this component are complex and, at the same time, anomalous at
around day 1200. EMD for such data can only extract the trend of late rising changes
through global description. This is not fully consistent with the real data trend; however,
the characteristics of SD make it possible to extract an accurate trend of change for these
data. The fact that accurate descriptions can also be generated in detail illustrates the
strength of this method.

Shell temperature of the reaction flywheel
300 L Trends obtained by EMD
Trends obtained by SD
60
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Figure 7. Comparison of trend extraction methods.

4. Experiment and Verification

The validity of the method is illustrated in Section 3 using data such as the gyroscope
current under failure and the full-life temperature of a solar sail. In this research, we
focus on the different types of variations in component health characteristic parameters.
To provide a more comprehensive illustration, we present a complete case study using
operational data from a real satellite’s momentum wheels.

4.1. Component Assessment Modeling

The momentum wheel is a key actuating component of the satellite attitude control
system. It regulates the speed and direction by controlling the current. Changes in the
current parameter have a direct impact on the performance of the momentum wheel.
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Current (A)
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Therefore, if the current parameter is unstable or too large or too small, it may lead to an
unstable rotational speed of the momentum wheel, increased attitude control errors, or
failure to achieve the required attitude adjustment. At the same time, abnormal changes
in temperature parameters can indirectly affect the performance of the momentum wheel
by influencing the friction characteristics, inertia characteristics, and motor performance.
In a closed-loop satellite attitude control system, monitoring and control of temperature
are very important to ensure the proper operation and accurate attitude adjustment of the
momentum wheel. Based on the above considerations, the bearing temperature and current
of a momentum wheel component are selected. Seven years of whole-life data are used to
assess and analyze the validity of the methodology presented in this study. Figure 8 shows
the original data for these two health characteristics after preprocessing with wild-value
rejection and resampling.
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Figure 8. The current (a) and bearing temperature (b) data of the momentum wheel after preprocessing.

As can be seen in Figure 8, the current data are extremely stable for the first two years,
with no significant changes in amplitude. Around day 700, there is significant performance
degradation, with a decreasing trend in the current amplitude. The temperature data show
a relatively gentle downward trend overall.

Using the first cycle data as the health state benchmark, the two parameters are
normalized positively. The results are shown in Figure 9. The weights are calculated
using the entropy weighting method and CRITIC method; the mean value is taken as the
combined weight. The results are shown in Table 1. The details of the method can be found
in [15] and will not be repeated here.

Table 1. Results of the calculation of the parameter weights.

Weighting of Current Weighting of Bearing Temperature

CRITIC method 0.512 0.488
Entropy method 0.486 0.514
Combined weighting 0.499 0.501

The combined weight of the current was 0.499 and the combined weight of the bearing
temperature is 0.501. The assessment model for the momentum wheel component is shown
in Equation (14):

f(¢) = 0.499f(¢1) + 0.501£(¢2) (14)
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Figure 9. Positive normalization of the current and bearing temperature.

4.2. Component Health Assessment

The health indicator HDDD is calculated separately for the two parameters. The
results of the two parameters are then weighted and fused using the assessment model.
The results are shown in Figure 10.
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Figure 10. The results of the calculation of the component health indicator HDDD.
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During the initial phase of the orbital run, the HDDD of the current data shows
minimal changes, while the HDDD of the temperature data exhibits a significant downward
trend. Starting from approximately day 700, there is a rapid decline in the health of the
current data, surpassing the rate of decline in the temperature data. After day 1050, the
health of the current data falls below that of the bearing temperature parameter. These
changes align well with the original data and the method accurately describes the variations
in health for both parameters, demonstrating its validity.

As these data are for the full life of the momentum wheel component in stable opera-
tion, the component is not in a state of complete “failure”. Therefore, the health status of
the component has gone through three levels: excellent, good, and qualified. The combined
HDDD of the momentum wheel component is used as a feature and the health status
classes are classified using spectral clustering. The results of the threshold classification are
presented in Table 2.

Table 2. Results of threshold calculation.

Excellent Good
HDDD 0.821 0.338

Based on the thresholds, the curve for the change in the health status of the momentum
wheel component is shown in Figure 11.
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Figure 11. Chart of component health status level changes.

Figure 11 clearly demonstrates the rapid degradation of the component’s performance,
reaching a passable condition within approximately five years. Despite this degradation,
the component is still capable of performing certain work tasks. By conducting real-
time in-orbit health assessments of key components, it becomes possible to strategically
allocate work tasks based on the component’s status. This approach effectively prevents
unnecessary waste of satellite resources.

4.3. Verification of Validity

Long-term data trends in the current and bearing temperature are extracted using SD.
The results are shown in Figure 12.
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Figure 12. Trend extraction based on the seasonal decomposition algorithm.
The long-term trends in the current and bearing temperature are normalized positively
to the HDDD variation curve. A comparison of the normalized trends is shown in Figure 13.
The similarity between the two sets of trends is evaluated using three measures: Pearson
correlation coefficient, root mean square error (RMSE), and mean absolute error (MAE).
The results of these calculations are summarized in Table 3.
Original data trend Original data trend
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Figure 13. Comparison of the two trends in the (a) current and (b) bearing temperature after
positive normalization.

Table 3. Calculation of trend change similarity indicators.

Indicator Current Bearing Temperature
Pearson correlation coefficient 0.999 0.999
RMSE 3.622 x 1075 3.273 x 1075
MAE 2.986 x 107° 2.652 x 107

As can be observed from the calculations in Figure 13, there is a very high similarity
between the trends in the complete long-term data extracted using SD and the trends in the
HDDD based on the WD. Although slight variations can be observed in certain details, the
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magnitudes of the RMSE and MAE, as presented in Table 3, are all on the order of 104,
The consistency of the change is also reflected in the results of the similarity metrics. The
method presented in this research relies on a single indicator for the description of health
changes. However, SD first generates model assumptions and parameter estimates for
the overall data and then extracts accurate trends by processing the long-term data. The
validation results, which indicate a high degree of similarity, fully demonstrate the validity
and accuracy of the method.

5. Conclusions

In this research, an optimized multiparameter satellite component health assessment
method based on the Wasserstein distance and spectral clustering is presented. This method
offers four advantages over the original method [15] (which only relies on short-term data
for accurate in-orbit health assessment): (1) The HDDD is calculated based on the improved
WD. Compared with methods such as the MMD and JS dispersion, the WD can provide
more comprehensive, accurate, and interpretable assessment results. At the same time,
it solves the challenge of rational and comprehensive decision making with multiple
indicators. (2) By preprocessing the benchmark standardization of different change types
of parameters, the fusion of multiple parameters of the same variation type in the original
method is extended to the fusion of multiple parameters of different variation types. This
makes the fusion process more scientific and rational. (3) A spectral clustering algorithm is
used to determine the boundaries of health status classes, avoiding the subjectivity when
relying on expert experience while adapting to the clustering needs of different types of
data. (4) The use of the seasonal decomposition algorithm to extract trends in nonmonotonic
health state changes enhances the accuracy of the validation of the assessment results. This
improves the validation of the assessment results for different data scenarios.

Through these improvements, this research complements and refines the original
method in terms of theory, application, and validation. The combination of the two
methods enables an accurate description of the real-time health status of components under
stable operation, faults, abnormalities, and backup switching. This research provides a
valuable reference in the field of in-orbit health assessment of key satellite components. It
also provides guidance for further application of the assessment method to components
in other systems. Future research will continue to build on this foundation to expand the
application of the assessment method to more systems.
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