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Abstract: The occurrence of flash floods is a natural yet unavoidable occurrence over time. In addition
to harming people, property, and resources, it also undermines a country’s economy. This paper
attempts to identify areas of flood vulnerability using a frequency ratio approach. The frequency ratio
(FR) model was used to produce flood prediction maps for New Cairo City, Egypt. Using field data
and remote sensing data, 143 spatial flooded point sites were mapped to build a flood inventory map.
The primary driving criteria for flash floods were determined to be elevation, slope, aspect, Land Use
Land Cover (LULC), lithology, stream distance, stream density, topographic wetness index (TWI),
surface runoff, and terrain ruggedness index (TRI), in that order of importance. A flood susceptibility
map (FSM) has been created using the FR model, which combines geographical flooded sites and
environmental variables. Our findings from FSM, roughly a fifth of the city is very highly susceptible
to flooding (19.32%), while the remaining 40.09% and 13.14% of the study area rank very low and
low risk, respectively. The receiver operating characteristic curve (ROC) technique was also used
to validate the FSM, and the resulting results showed an area under the curve (AUC) of 90.11%. In
conclusion, decision makers can employ models to extract and generate flood risk maps in order to
better understand the effects of flash floods and to create alternative measures to prevent this hazard
in similar regions. The results of this study will aid planners and decision makers in developing some
likely actions to reduce floods vulnerability in this area.

Keywords: frequency ratio; flash floods; AUC-ROC; susceptibility; urbanized areas; Egypt

1. Introduction

The occurrence of flash floods is a natural yet unavoidable occurrence over time.
In addition to harming people, property, and resources, it also undermines a country’s
economy. In terms of social, economic, and environmental perspectives, floods have been
one of Egypt’s worst natural disasters in recent years. The magnitude of a flash flood is the
most important factor in determining its impact. Flood-related direct or indirect damages
can be divided into materialistic and non-materialistic effects when calculating overall
effects [1–7].

Climate change has become one of the most serious threats facing the planet. Global
warming and the consequent problems of drought, desertification, and floods is perhaps
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the most prominent form of that change, which affects all continents of the world [2–6].
Even the Arab region, the heart of the world, has become the epicenter of climate change.
At the global level, 2010 was the hottest year since the beginning of temperature monitoring
in the late nineteenth century, as nineteen countries recorded record temperatures, five of
which were Arab countries, in addition to the fact that the Middle East region, in general,
is considered the poorest water area. Across the world, the per capita share of fresh water
is less than half of the global rate of water poverty, 1000 m3 per year, according to the
World Bank 2014 report. Climate change is tangible, and the ability to deal with it differs
according to the material and technical capabilities of countries, but the danger lies in the
change of rain regimes in the Arab countries, and thus the drowning of some small cities
due to floods, and this is so far because we have reached a temperature increase of 1.1 ◦C.
Ways to confront climate change include building flood protection systems by evaluating
the current risks resulting from floods, as in this work, and thus building scenarios to
overcome the problems arising from those risks.

Urbanized areas are currently more susceptible to flooding if human activity and envi-
ronmental factors change streamflow systems and precipitation patterns [8]. Additionally, a
number of negative effects of flash floods can be observed, including disruptions to peoples’
life, harm to urban traffic, housing failure, and the spread of pollutants [9]. As a result, it
is crucial to locate places that frequently flood and direct natural drainage systems into
metropolitan areas [10,11].

Concerning the modelling of flash floods, previous studies used various physical
or statistical models to provide precise mapping for flood-prone zones. Physical mod-
els include the Hydrological Simulation Program-FORTRAN (HSPF) [12], Storm Water
Management Model (SWMM) [13], and HEC-RAS [14,15], while statistical models include
logistic regression, generalized linear models, entropy, frequency ratio (FR), Random Forest
(RF), k-nearest neighbours (KNN), weighting factors, weights of evidence, and flexible dis-
criminant analysis [16,17]. These models can be used to determine the connections between
the location of an FSM-appropriate or inappropriate area and its conditioning elements.
Maps of landslides, groundwater, and floods have all been successfully created using FR,
RF, and KNN, as well as some further innovative data mining techniques (e.g., [18–24]). The
FR model is easier to understand and provides more details on the connections between
the conditions for FSM and the area’s suitability for FSM [25,26].

In Egypt, rainfall caused flash floods frequently during 1994, 2010, and 2016 [27–29].
Many Egyptian researchers have recorded and studied flash floods in some of Egypt’s ur-
banized regions [16,30–34]. In the northern part of the country in October 2016, 73 individuals
were killed, and 30 were injured [35–37]. Additionally, numerous floods devastated the city
of New Cairo in the years 2018 and 2019 due to, as reported by the Egyptian Meteorolog-
ical Authority, an increase in the rate of rainfall, displacing a sizable number of citizens,
destroying property, costing a sizable amount of money, and taking the lives of seven
people [38–40]. At least six and twenty-five fatalities occurred in Alexandria and Beheria,
respectively, in 2015. Therefore, an early flash flood warning is required to control and
lessen the potential impact of such disasters. The significance of this study lies in applying
recent statistical models to create a map of flood susceptibility to predict which urban areas
may experience flash floods. The outcomes offer a trustworthy addition to the detection
and evaluation of flash floods.

New Cairo City is one of the most prestigious cities in Egypt. Meanwhile, it was
founded in 2000 to alleviate the overcrowding in Cairo City and boasts an area of 267 km2.
It is one of Egypt’s most attractive and populous cities since it contains six international
universities and many economical and luxurious residential buildings. Furthermore, the
region of New Cairo city has been witnessing periodic devastating flash floods every year.
Therefore, this study sheds light on the surface runoff process and its various risks by using
an applied scientific method to study and analyze the runoff risks and conduct a hydro-
logical analysis to identify the areas affected by heavy rains. The importance of this study
stems from the fact that it discusses one of the most important risks that threaten urban
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communities in general and in the study area in particular. This risk affects the security
and stability of the population and their property. The dangers of runoff can be studied
through the application of geospatial techniques and ArcGIS geographic information sys-
tems software in order to support the decision maker in making development decisions to
develop the region and similar areas in a way that preserves the lives of its inhabitants.

Remote sensing (RS) and ArcGIS 10.8.1 software tools have become increasingly
popular in recent years because they offer a fresh perspective on vulnerability assessments
with the necessary justification. As it provides faultless information about a place, the
analysis of satellite imageries on the RS and GIS platforms produces good findings for
flood susceptibility and vulnerability mapping [41]. The environment it generates is
incredibly pleasant, allowing a wide range of models to operate and alter data to assess
flood risk, and the outcomes become more plausible and acceptable. The application of
RS and GIS approaches for assessing flood susceptibility is currently widespread and very
successful [1]. There are numerous models and methods that can be employed in place of
one another for mapping flood vulnerabilities. One of the widely acceptable and extremely
accurate strategies for hazard assessment is the frequency ratio (FR) model [42]. One type
of bivariate statistical analysis (BSA) is frequency ratio (FR), which assigns values to each
class of each parameter and assesses its influence on flood occurrence [43,44]. The FR model
is an easy technique to use in a GIS setting and may provide a map of flood vulnerability
that is scientifically valid [45,46]. The preparation of flood susceptibility mapping using
the FR model is made simple by sophisticated software that is similar to RS and GIS. The
primary goal of the current study is to create a flood vulnerability map for the Kulik River
basin using the FR model. Critical analysis of the area’s possible flood risk zone is the
work’s main goal.

2. Materials and Methods
2.1. Problem Definition

Before and during the process of urban planning for any urban gatherings, it is
necessary to take into account the topographical nature of the region in terms of slopes
(degree—direction) which are known as dry basins. Unfortunately, the urban planning for
the Fifth Settlement district in New Cairo did not take into account the drainage network
form, especially during street planning and linking roads (Figure 1a). This has led to
the obstruction of the movement of rainwater, which has had a negative effect on the
movement of water as well as the safety of that area as a result of rainwater collected
in specific areas of streets and residential buildings, destroying roads, streets, and some
facilities (Egyptian Street, 2018 (https://egyptianstreets.com/2018/04/26/heavy-rains-
cause-chaos-in-Cairo/, accessed on 30 December 2022), and Youm7 (2020) (http://www.
youm7.com/4668611, accessed on 30 December 2022) (Figure 1b–d).

https://egyptianstreets.com/2018/04/26/heavy-rains-cause-chaos-in-Cairo/
https://egyptianstreets.com/2018/04/26/heavy-rains-cause-chaos-in-Cairo/
http://www.youm7.com/4668611
http://www.youm7.com/4668611
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Figure 1. (a) Drainage network of the study area and some various impacts of rainfall storms on
(b) roads, (c) some facilities that struck New Cairo City, and (d) residential buildings (Egyptian Street,
2018; youm7.com, 2020).

2.2. Area of Study and Geological Context

The region is located east of the Greater Cairo region and contains the largest new city
in the Republic, which is “New Cairo City”. The research region is part of the Cairo-Suez
District area in the Northern Eastern Desert and is situated southeast of the Nile Delta
(Figure 2). The stratigraphy of the study area has been studied by several authors [47–53].
The exposed sequence in the study area consists of sedimentary and volcanic rocks ranging
in age from upper Miocene to middle Eocene. According to the geological map of Greater
Cairo simplified from the (EGS) [54] scale 1.100,000, the rock units (Figure 3) in order

youm7.com
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of oldest to youngest consist of 1-Giashi Formation, 2-Maadi Formation, 3-Anqabiya
Formation, 4-Gebel Ahmer Formation (Oligocene age), 5-Basalt flows (Oligo-Miocene age),
6-Marine Miocene sediments (Early to Middle Miocene age, Hommath Formation), and
7-Non-marine sediments (Late Miocene age, Hagul Formation). This demonstrates that
tertiary-aged sedimentary rocks predominated in northern areas of the Eastern Desert, as
well as in the areas east of the Nile Delta. The oldest rock unit of the middle Eocene age
is the Giashi Formation, which is exposed in the southwestern corner of the map area.
It consists of white limestone with Qprculina pyramidum and is 52 m thick. The Maadi
Formation bed is of the upper Eocene age and is visible in the southern and eastern corners
of the map region. It is 59 m thick, mostly made of fossiliferous sands and sandstone
with clay and marl at the base. The top is covered in a 6 m thick brown fossiliferous sand
limestone. The northeastern corner of the map region exposes beds from the Upper Eocene
Anqabiya Formation. It is 61 m thick and primarily made of sand and sandstone with
fossiliferous clay intercalations.
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2.3. Data and Method

The Digital Elevation Model (DEM) was obtained from the website (http://www.usgs.
gov/, accessed on 30 December 2022). According to Xu et al. [55], DEMs are critical for
flood inundation mapping and hydrologic and hydraulic modelling. Additionally, five
land use bands from the Earth Explorer website (https://earthexplorer.usgs.gov/, accessed
on 30 December 2022) were composited and categorized using ArcMap to generate the
land use/ land cover map. The NASA Power website (https://power.larc.nasa.gov/data/,
accessed on 30 December 2022) also provided precipitation data that was downloaded.
Following that, a number of FSM conditioning factors were acquired and taken into consid-
eration during FR modelling operations. The results were then validated using the receiver
operating characteristics (ROC) curve. Figure 4 depicts a flowchart of the general process
used for flood susceptibility mapping.

In the flood susceptibility mapping, the capacity of the sewer system, being limited,
was not taken into account.

http://www.usgs.gov/
http://www.usgs.gov/
https://earthexplorer.usgs.gov/
https://power.larc.nasa.gov/data/
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2.4. Flood Inventory Map

The flood inventory map is one of the primary maps used to evaluate flood suscep-
tibility [19,56]. In addition, the accuracy of the flood hazard map can be enhanced as we
add more flooded points that are seen during different flood events using QGIS 3.32.1
software [57]. The majority of this data came from field surveys and research completed
in the past to identify the accumulation points in New Cairo city [58]. In the study area,
143 flooded points were found; 100 flooded points (representing 70%) were used for train-
ing, while the remaining 43 points (representing 30%) were used for model validation
(Figure 5). The percentages of training and testing points were chosen in accordance
with [59–62].
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2.5. Flood Conditioning Factors

The flood susceptibility map was generated utilizing ten environmental criteria, in-
cluding elevation, slope, aspect, LULC, lithology, stream distance, stream density, TWI,
surface runoff, and TRI. According to Bui et al. [63], elevation has a significant impact on
flood vulnerability because there is a negative correlation between elevation and floods.
In other words, flash floods have less of an impact as elevation rises [64]. DEM elevations
in the research region ranged from 61 to 190 m a.s.l (Figure 6a), with greater elevations
found in the area’s east and southeast. Flooding is a physiographic event that is closely
tied to slope since water tends to build up in lower slope areas [63,65]. ArcGIS 3-D analysis
methods were used to prepare a slope map using ASTER data (Figure 6b). The slope aspect
can have a significant impact on the direction of rainfall, and the significance of aspect is
found in its relationship to the direction of prevalent meteorological phenomena [32]. The
aspect thematic layer was also created in ArcMap using spatial analysis tools (Figure 6c).
Landuse/Landcover (LU/LC) is a crucial factor impacting flood susceptibility [66,67].
LULC affects infiltration, evapotranspiration, and surface runoff generation directly or
indirectly. Supervised classification from Landsat-8 OLI imagery was employed to build the
LULC map [68] (Figure 6d). Additionally, lithology is essential in causing floods because
impermeable rock units increase runoff by decreasing infiltration rates. The lithological
units of the study area were digitized at a scale of 1:500,000 from CONOCO [69] (Figure 6e).
In addition, stream distance is the main pathway for flood discharge; thus, places near
streams are more vulnerable to flooding [70]. Stream networks in the research area were
identified using Arc Hydro tools that are part of ArcMap. Data from the stream network
was used to create thematic layers that show the stream distance and stream density
(Figure 6f,g). The topographic wetness index (TWI) and terrain ruggedness index (TRI) are
determined to identify high topographic areas and wet areas at high risk of flash flooding.
Spatial distribution maps of TWI and TRI were created using ArcGIS, with values ranging
from 3.1 to 20 and from 0.11 to 0.89, respectively (Figure 6h,i). Due to a lack of infiltration
surfaces, surface runoff is typically reinforced in urban regions, which leads to destructive
urban flooding. Forecasting floods, which occur suddenly, flashily, and for a brief period
of time, heavily depends on surface runoff caused by storm rainfall [71]. Based on a soil
conservation service (SCS) model, a surface runoff database was created (Figure 6j).
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2.6. Frequency Ratio Method

The FR technique, which represents the likelihood of the occurrence of a particular
feature, was first introduced by Bonham-Carter [72–74]. It should be noted that under the
FR model, a class with a higher value indicates a class’s greater potential for an incident
(such as a flash flood, landslide, or groundwater potentiality). In the context of this study,
it suggests that a place is more susceptible to artificial recharging through FSM. FR is
calculable as follows:

FR =

(
FSN

FStotal
/

A
Atotal

)
(1)
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where FSN indicates the total number of FSM locations, FS total displays all FSM locations,
A shows the total number of FSM points in each category of variables, and total displays all
cells in the region under study. The term FR denotes the frequency ratio for various FSM
conditioning factor classes. The following equation is used to determine each pixel’s final
FR value [25,75,76]:

FSMR = ∑ (FR)j (j = 1, 2, . . .. . . n) (2)

where j is various FSM conditioning factors, and FSMR is the final FR value for each
individual pixel.

Each controlling factor’s FR value was calculated using ArcGIS and Microsoft Excel
and its importance in flood susceptibility (Table 1). Accordingly, elevation, slope, aspect,
LULC, lithology, stream distance, and stream density had the highest importance values
in the modelling process. On the other hand, TWI, TRI, and surface runoff had the least
important values. Using ArcMap 10.7, the FSM map was produced using the FR approach
by integrating the FR layers of the controlling parameters (Equation (3)).

GFSM = ∑n
i=1 FR (3)

Table 1. Frequency ratio (FR) outputs of the controlling factors layers used for flood suitability
mapping.

FSM Conditioning Factors Classes % of Domain % of FSM Points FR

Slope

0–10 6.0 39.7 8.1
10–20 10.4 55.3 4.8
20–30 20.1 0.0 0.0
>30 61.5 0.0 0.0

Elevation

<60 45.2 92.7 2.0
60–93 8.1 68.3 2.7

94–110 46.6 58.0 1.9
120–140 20.9 54.7 1.7
150–160 60.3 34.0 1.5
170–190 18.8 0.0 0.0

>190 35.8 0.0 0.0

Aspect

Flat 20.9 4.7 1.5
North 60.3 92.0 0.5

Northeast 18.8 3.3 0.2
South 35.8 0.0 0.0

Southeast 2.3 0.0 0.0
West 11.5 0.0 0.0

LULC

Urban 23.2 35.0 2.1
Vegetation 10.5 11.7 1.4
Bare Land 60.0 55.3 0.9

Water 4.3 0.0 0.0

Lithology

Sandstone 30.5 70.3 0.2
Loose sand 10.9 45.3 5.8

Sand and gravel 7.5 60.1 5.3
Sandstone marl 49.1 0.0 0.0
White limestone 3.9 22.0 6.6

Distance from streams (m)

<430 40.0 68.7 2.7
440–850 24.8 24.0 1.0
860–1300 14.8 2.7 0.2

1400–1700 9.0 2.7 0.3
1800–2100 11.3 2.0 0.2

>2200 12.0 3.1 0.1
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Table 1. Cont.

FSM Conditioning Factors Classes % of Domain % of FSM Points FR

Stream density (km km−2)

<2 63.2 35.3 0.7
8.4–11 10.8 16.7 1.5
12–15 22.0 48.0 0.9
16–18 4.0 33.0 0.1
19–21 22.0 60.7 0.9
22–24 4.0 48.0 2.2

TWI

3–6 43.0 65.7 2.7
6–9 25.8 22.0 1.0

9–12 13.8 4.7 0.3
12–16 8.0 3.7 0.4
16–19 10.3 4.0 0.5
>19 62.2 30.3 3.6

TRI
0.11–0.36 40.3 0.0 0.0
0.37–0.63 10.8 3.3 0.2
0.64–0.89 30.8 80.0 1.5

Surface Runoff

5.3–5.7 40.2 31.3 0.6
5.7–6 12.8 14.7 0.9
6–6.3 20.0 44.0 1.7

6.3–6.6 5.0 0.0 0.0
6.6–7 29.1 42.7 3.2

3. Results and Discussion
3.1. Flood Susceptibility Map (FSM)

Depending on the FR values and the previously indicated approach applied to the
top ten thematic layers, the flood vulnerability zones were estimated. According to the
findings, classes 170–190, 10–20, and 18.8 had the lowest values of FR for elevation, slope,
and aspect (0.2, 4.8, and 0.3, respectively). The FR values were inversely correlated with
high elevation, slope, and aspect values, resulting in the lowest flood probability. With
FR values more than 2, locations closer than 430 m from a stream had a higher likelihood
of experiencing flash floods. Additionally, the analysis of the stream density showed that
classes with densities greater than >22 km km−2 had the greatest value of FR (2.2), followed
by classes with densities between 8.4 and 11 km km−2. (1.5). The class of sandstone and
gravel deposits had the lowest FR value (1.2) and a high chance of flash floods, whereas
the class of limestone formations had the highest FR value (5.6) and a high probability
of flash floods. The areas with the largest frequency ratio (FR = 3.6, respectively) and
the highest values of TWI and TRI (>19 and 0.64–0.89), respectively, demonstrate high
vulnerability to flooding threats. The surface runoff parameter indicated that the areas
with the highest frequency ratio (3.3) and, consequently, the highest likelihood of flooding
were those with the highest surface runoff rate (6.6–7 m). According to the FSM, places
with a large concentration of structures are the ones most in danger of flooding, whilst
open spaces are less vulnerable. This finding supports the idea that metropolitan areas
with low infiltration values are more susceptible to flooding. According to the findings,
20% of the research region is classified as having a very high risk of flash flood hazards
(Figure 7). Contrarily, more than 50% of the area under investigation is less in danger of
flooding (40.09% is classified as having extremely low risk, and 13.14% as having low-risk
levels, respectively).

The area, with that extension, is threatened by the danger of runoff due to the flow
of water that collects in the stomachs of the main valleys and descends according to the
directions of the various slopes and at a speed that varies according to the slope angles,
causing torrential torrents that destroy the human activities that obstruct their path, and
increase the risk of water erosion in the region due to the presence of dense drainage
networks with tributaries Figure 6g.
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Figure 7. The flood susceptibility map (FSM) produced by FR models.

3.2. Model Validation

To evaluate the efficacy of the FR model, ROC was employed to corroborate the
predictions’ correctness [77,78]. The vertical axis shows sensitivity, whereas the horizontal
axis displays specificity [79]. The estimated models have been graded as poor, medium,
good, very good, or outstanding in AUC-ROC ranges of 0.5–0.6, 0.6–0.7, 0.7–0.8, 0.8–0.9,
and 0.9–1, respectively. Yesilnacar [80] classified models as poor, fair, good, very good, or
exceptional based on the AUC-ROC ranges. The calculated area under the curve (AUC) for
Figure 8 was found to be 90.11%, indicating a very good, effective model that may produce
trustworthy results.
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The role of geological formations (Figure 3) is considered the basis of hydrological
studies, and an important factor to consider is a formation’s connection with the water-
bearing layers and the ability of rocks to permeate water to feed the aquifer. In addition, the
relationship between the surface characteristics and their influence on the degree of slope
on the intensity of runoff is also important, as it turns out that there are interchangeable
layers of soft rocks. The process of sculpting by flowing runoff on rocks with greater
resistance, such as limestone rocks, indicates that the region was affected by erosion factors
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resulting from water runoff and then the phenomenon of undermining the bottom of the
slopes, which led to rockslides in the region and increased rates of retreat of rocky edges.

The city of New Cairo has a dense network of roads of all degrees and road widths that,
in general, vary with location in the region and the degree of connection to neighborhoods.
It is noted that the periodic paving operations, which result in an explicit change and
transformation of the land surface from just a natural surface permeable to water in
varying proportions to a solid artificial surface that prevents the natural drainage of falling
rainwater, increase the rates of runoff risk in urban areas if the slope factor and its direct
impact participate with it. The velocity of runoff indicates the ability of water to carry rock
and soil materials.

In this study, we analyzed the spatial relationships between all inputs using a process
of digital conversion of the surface water drainage network that threatens the region.
Additionally, we utilized spatial analysis to determine the areas threatened by the danger
of surface runoff on all types of land use in the region. This is also due to the uncalculated
encroachments on the old valleys’ streams, changes in land uses, the lack of avoidance
of the main valleys’ streams, the general slope trends, and the inclinations of the earth’s
surface in different neighborhoods of the city that vary in their geographical distribution
and degree of their danger.

Flash floods pose a significant threat to the safety and well-being of communities
around the world, including in New Cairo, Egypt. A growing body of research has sought
to understand the causes and impacts of flash floods in this region, as well as to develop
effective mitigation strategies to reduce their frequency and severity.

Several recent studies have shed light on the factors contributing to flash floods in
New Cairo. For example, Elsanabary and Elsanabary [81] used GIS-based multi-criteria
decision analysis to create a flash flood susceptibility map for the city, identifying areas at
high risk for flooding. Similarly, El-Sayed and El-Sayed [82] assessed the flash flood hazard
and risk in the Wadi Degla Protectorate area of New Cairo, finding that the main factors
contributing to flash floods were land use change, urbanization, and climate change.

Other studies have focused on the impacts of flash floods in New Cairo and potential
mitigation strategies. Elsanabary and Elsanabary [83] developed a flash flood risk map
for the city, highlighting the importance of improved drainage systems and land use
management to reduce the risk of flooding. Megahed and El Bastawesy [84] analyzed the
impact of flash floods on the urban environment in New Cairo, emphasizing the need for
better infrastructure and emergency response plans.

Overall, these studies highlight the urgent need for effective measures to mitigate the
impact of flash floods in New Cairo, particularly in light of the increasing frequency and
severity of this natural hazard.

4. Conclusions

This study aimed to analyze the flash flood susceptibility zones by using an FR model
with ten independent parameters. This was performed considering that the higher the
input, the more dependable the accuracy of the results. As a result, only areas where the
necessary number of flash flood locations is at least 100 points could be subject to the
mapping of flash flood vulnerable zones using the FR model. In total, 147 flooded locations
were collected from field and satellite data of pre- and post-flash flood events. Frequency
ratio techniques as tools were used in this study to create an accurate FSM map in New
Cairo City. Researchers and scientists can use this tool to gain insights about effective
methods for handling massive datasets. In our study, we used ten conditioning factors
(elevation, slope, aspect, LULC, lithology, stream distance, stream density, TWI, TRI, and
surface runoff) that have been developed and used in the FR technique’s training data as
input. According to our findings, the flood susceptibility map has been categorized as
having very low, low, moderate, high, and very high risk, which correspond to 40.09%,
13.14%, 14.48%, 12.97%, and 19.32% of the total area of the city, respectively. The findings
of the susceptibility map showed a high flood risk in regions with low elevation, low slope
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and aspect, and near proximity to stream networks, urban areas as well high topographic
areas, and wet areas. Decision makers could use the generated flood susceptibility map
as a reference to step up preventive measures in areas that are particularly vulnerable to
flash flood threats. Eventually, the AUC-ROC curve was used to perform and validate the
used models, with an accuracy of 90.11% area under the curve. In order to build a deeper
understanding of flash flood crisis mitigation, future studies will need to integrate models,
such as logistic regression and weights of evidence. The findings reported here can act as a
jumping-off point for subsequent research on flood evaluation and could give researchers a
better understanding of the study area’s vulnerability to flash floods.
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