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Abstract: User authentication has become necessary in different life domains. Traditional authen-
tication methods like personal information numbers (PINs), password ID cards, and tokens are
vulnerable to attacks. For secure authentication, methods like biometrics have been developed in the
past. Biometric information is hard to lose, forget, duplicate, or share because it is a part of the human
body. Many authentication methods focused on electrocardiogram (ECG) signals have achieved great
success. In this paper, we have developed cardiac biometrics for human identification using a deep
learning (DL) approach. Cardiac biometric systems rely on cardiac signals that are captured using
the electrocardiogram (ECG), photoplethysmogram (PPG), and phonocardiogram (PCG). This study
utilizes the ECG as a biometric modality because ECG signals are a superior choice for accurate,
secure, and reliable biometric-based human identification systems, setting them apart from PPG
and PCG approaches. To get better performance in terms of accuracy and computational time, we
have developed an ensemble approach based on VGG16 pre-trained transfer learning (TL) and Long
Short-Term Memory (LSTM) architectures to optimize features. To develop this authentication system,
we have fine-tuned this ensemble network. In the first phase, we preprocessed the ECG biosignal to
remove noise. In the second phase, we converted the 1-D ECG signals into a 2-D spectrogram image
using a transformation phase. Next, the feature extraction step is performed on spectrogram images
using the proposed ensemble DL technique, and finally, those features are identified by the boosting
machine learning classifier to recognize humans. Several experiments were performed on the selected
dataset, and on average, the proposed system achieved 98.7% accuracy, 98.01% precision, 97.1%
recall, and 0.98 AUC. In this paper, we have compared the developed approach with state-of-the-art
biometric authentication systems. The experimental results demonstrate that our proposed system
outperformed the human recognition competition.

Keywords: biometric identification; ECG; PPG; deep learning; transfer learning; VGG16; long-term
short-term (LSTM) model

1. Introduction

In an era characterized by ubiquitous digital interactions, the need for robust and
secure human identification systems has become paramount. Traditional recognition meth-
ods like personal identification numbers (PINs) [1] and passwords have become vulnerable
to attacks and can be lost or forgotten. As a result, there is a need to develop a biometric
system that is more secure. PINs are increasingly protected using biometrics to address the
threat of loss or theft. These technologies safely manage personal information and verify
the user’s identity. Biometric recognition is an approach that provides a unique method

Appl. Sci. 2023, 13, 9454. https://doi.org/10.3390/app13169454 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13169454
https://doi.org/10.3390/app13169454
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0361-1363
https://orcid.org/0000-0003-0730-6857
https://doi.org/10.3390/app13169454
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13169454?type=check_update&version=1


Appl. Sci. 2023, 13, 9454 2 of 32

for identity recognition. It uses metrics related to human characteristics for recognition.
Biometrics has many features, such as uniqueness, permanence, and ease of collection. It
involves both behavioral and physical characteristics. Behavioral factors include voice,
gait, and electrocardiogram (ECG), while Physical features include the face, fingerprints,
and iris [2]. However, traditional biometrics needs help with many issues, like addressing
spoofing or forgery. As a result, there has been a growing interest in leveraging biometric
authentication methods, which rely on individuals’ unique physiological and behavioral
characteristics, to enhance security and reduce vulnerabilities. Cardiac biometrics have
emerged as a promising and innovative approach for human identification among the
myriad biometric modalities. The human heart’s intrinsic electrical activity, captured us-
ing electrocardiogram (ECG), photoplethysmograph (PPG), and phonocardiogram (PCG)
signals [3], offers a wealth of valuable information that can be leveraged for secure authenti-
cation. Utilizing electrocardiogram (ECG) signals for biometric-based human identification
provides several distinct advantages over alternative approaches like photoplethysmo-
graph (PPG) and phonocardiogram (PCG) signals. ECG signals offer a unique and highly
individualistic biometric marker [4] due to the heart’s intricate electrical activity patterns.
This uniqueness enhances the security and accuracy of identification systems. Unlike PPG,
which primarily measures blood volume changes and can be influenced by external factors,
ECG signals directly reflect the cardiac electrical patterns, making them more robust and
reliable in varied conditions. Additionally, ECG signals are less susceptible to mimicry or
spoofing than PPG and PCG signals, which can be more easily replicated using external
devices. The stability and consistency of ECG features across different states (e.g., resting
and exercising) further strengthen its suitability for biometric applications. Lastly, the
non-intrusive nature of ECG measurements, usually captured using electrodes placed on
the skin, ensures user comfort and encourages wider adoption. These combined advantages
position ECG signals as superior for accurate, secure, and reliable biometric-based human
identification systems, setting them apart from PPG and PCG approaches.

In this context, the present paper delves into developing a novel cardiac biometrics
system, fortified by deep learning (DL) [5] approaches, to achieve secure human identifica-
tion. Deep learning has exhibited remarkable capabilities in handling complex patterns and
representations in diverse data domains, and its application to cardiac biometrics presents
an exciting frontier in the pursuit of reliable and efficient authentication systems. The
central aim of this paper is to propose an ensemble approach that effectively harnesses
the strengths of pre-trained VGG16 transfer learning (TL) and Long Short-Term Memory
(LSTM) architectures [6] for optimal feature extraction from 2D spectrogram images derived
from ECG biosignals. The ensemble feature representation capitalizes on the spatial and
temporal characteristics of the cardiac signals, providing a holistic and discriminative basis
for human identification.

The paper comprises several well-defined phases, including preprocessing ECG biosig-
nals to ensure data quality, transforming 1-D ECG signals into 2D spectrogram images,
and feature extraction using the ensemble DL technique. Moreover, the identification
process involves a machine learning classifier that distinguishes individuals based on their
unique cardiac biometric features. Extensive experiments are conducted on a selected
dataset to evaluate the proposed cardiac biometric system. The system’s performance is
assessed using critical metrics such as accuracy, sensitivity, specificity, and area under the
curve (AUC). A comparative analysis is also performed against state-of-the-art biometric
authentication systems, showcasing the system’s superiority in human recognition.

The implications of this research extend beyond theoretical pursuits, as the proposed
cardiac biometrics system holds significant potential for real-world applications in domains
where secure authentication is critical. The system’s deployment in healthcare, finance,
access control, and other sensitive areas can ensure trustworthy and efficient human
identification, safeguard user data, and bolster system integrity. In conclusion, this paper
contributes significantly to the evolving field of biometric authentication. The proposed
system advances the frontiers of secure human identification by combining the power of
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deep learning with the rich information inherent in cardiac signals. It offers a promising
pathway toward a safer and more connected digital world.

1.1. Background

Biometric authentication, which relies on individuals’ unique physiological and behav-
ioral characteristics for identification, has gained significant attention due to its potential
to enhance security and user convenience in various applications. Cardiac biometrics
presents an intriguing and promising avenue for secure human identification among the
diverse biometric modalities. Traditional authentication methods, such as passwords and
PINs, are susceptible to various attacks, leading to data breaches and identity theft. As a
result, researchers and industries alike have turned to biometrics as a more robust and user-
friendly alternative. Biometric modalities like fingerprint, iris, and facial recognition have
widespread adoption but may suffer from environmental constraints, usability challenges,
and potential privacy concerns.

In contrast, cardiac biometrics harness the unique physiological characteristics of the
human heart, making them inherently difficult to replicate, forget, or lose. The Electrocar-
diogram (ECG), photoplethysmograph (PPG), and phonocardiogram (PCG) are some of
the cardiac signals that hold valuable information about an individual’s cardiac rhythm,
heart rate, and other distinctive features. The rise of deep learning has further accelerated
advancements in biometric authentication systems. Deep learning models, such as convo-
lutional neural networks (CNNs) and recurrent neural networks (RNNs) [6], have shown
remarkable capabilities in handling complex patterns and representations in various data
domains, including images, sequences, and time-series data.

Building on this context, the present research endeavors to develop a novel cardiac
biometric system for human identification using deep learning approaches. By combining
the strengths of deep learning with the unique characteristics of cardiac signals, the goal is to
achieve accurate and secure human identification, surpassing the limitations of traditional
authentication methods. The proposed research addresses critical challenges in cardiac
biometric authentication, such as noise reduction, feature extraction, and classification.
The use of an ensemble approach, combining pre-trained VGG16 transfer learning (TL)
and Long Short-Term Memory (LSTM) architectures, is expected to offer a comprehensive
and discriminative representation of cardiac features, capturing both spatial and temporal
aspects of the signals.

Electrocardiogram (ECG) signals offer a distinct advantage over photoplethysmograph
(PPG) and electroencephalogram (EEG) signals [7] due to their precision in assessing cardiac
activity, which is unique for individuals. ECG provides a detailed and highly accurate
representation of the heart’s electrical activity, enabling the detection of patterns. In contrast
with PPG and EEG signals, the ECG’s ability to offer comprehensive insights into cardiac
health makes it a superior choice for detailed cardiovascular assessments [8]. Therefore, we
have used ECG signals compared to PPG and EEG signals for human detection.

The ECG signal is a biometric heart signal. Recent research has focused on using
ECG signals for biometric identification due to their characteristics. In practice, it is more
difficult to commit fraud. In the past, many studies used machine learning (ML) or deep
learning (DL) techniques for identifying a person using heart signals. Compared to ML-
based systems, DL-based methods outperformed heart biometrics. Those studies utilized
ECG signals for human identification by developing a deep-learning model. However,
those studies are not up-to-date because the ECG signals contain many noises or artifacts,
making it challenging to recognize humans. Those methods are computationally expensive
for fine-tuning the network and selecting hyperparameters. In addition, it is not easy to
represent the signals in time and frequency domains to identify humans based on ECG
signals. Figure 1 shows A visual example of biometric-based human identification using
ECG signal processing and a machine learning algorithm.
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Figure 1. A visual example of biometric-based human identification using ECG signal processing
and machine learning.

The following research questions have been addressed in this paper. How can ECG
signals effectively be used as a biometric modality for human recognition using a deep
learning approach (VGG16-LSTM) and a Light Gradient boosting algorithm (LightGBM)?

(1) What preprocessing techniques have been used to remove noise from signals?
(2) Which performance measures can be used for assessing model performance?
(3) What are the hyperparameters required to train the model?
(4) What are the fine-tuning steps required to make the DL model less computationally

expensive?
(5) What statistical matrices are required to evaluate the performance of the proposed

system?

1.2. Major Contributions

The main contribution of the paper lies in the development of a novel cardiac bio-
metrics system for human identification using deep learning (DL) approaches, specifically
focusing on electrocardiogram (ECG) signals. The key contributions can be summarized
as follows:

1. We chose ECG as the biometric modality for human identification. This decision pro-
vides a unique and challenging set of physiological data for authentication, different
from traditional biometric methods.

2. We proposed a novel ensemble-based fine-tune approach that combines VGG16 pre-
trained transfer learning (TL) and Long Short-Term Memory (LSTM) architectures to
extract deep features from preprocessed ECG signals.
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3. The paper presents a well-defined preprocessing phase for the ECG biosignal to
remove noise and ensure data quality. Additionally, you developed a transformation
phase that converts the 1-D ECG signals into 2-D spectrogram images. The feature
extraction step using the ensemble DL technique is a crucial part of the process, as it
extracts discriminative features for human identification.

4. We employed a LightGBM boosting classifier to recognize humans based on the
extracted features. This classifier likely enhances the performance of the system and
contributes to achieving high accuracy, sensitivity, specificity, and AUC.

5. The developed cardiac biometrics system has practical applications in various life
domains where secure authentication is crucial. These applications may include
healthcare, finance, access control, and other sensitive areas.

Overall, the paper contributes a comprehensive approach to human identification
using cardiac biometrics, combining deep learning techniques with a unique biometric
modality. The experimental results and comparison with existing systems demonstrate the
superiority of your proposed approach, making it a valuable contribution to the field of
biometric authentication.

1.3. Paper Organization

The reminder of this paper is organized as follows. In Section 2, the previous re-
lated works have been presented and compared. In Section 3, the methodology has been
described. Whereas in Section 4, the experimental results have been mentioned. The discus-
sions and future works are presented in Section 5. Finally, Section 6 presents a conclusion.

2. Literature Review

Several studies used machine learning (ML) and deep learning (DL) techniques to
identify a person from the PCG, PPG, or ECG signals.

2.1. Machine-Learning Based Techniques
2.1.1. PCG-Based Recognition Method

The authors of [6] suggested a PCG-based recognition method. The PCG signals were
obtained from the HSCT-11 database. They used the MFCC algorithm for feature extraction
and tested it using an ANN classifier. Additionally, they used a PCA algorithm to get the
most discriminative features. The experiment’s results showed an accuracy of 96%.

2.1.2. PPG-Based Recognition Method

These studies used PPG signals for human recognition. In [7], a model based on
Parse SoftMax Vector and k-Nearest Neighbor (K-NN) was proposed. Experiments were
performed on BIDMC, MIMIC, and CapnoBase datasets and achieved a recognition rate of
99.95%, 97.21%, and 99.92%, respectively. In another study, the authors of [8] used A discrete
cosine transform (DCT) for feature extraction. Then, the extracted features have been used
as input for some machine-learning techniques like Decision Tree, KNN, and Random
Forests. The achieved accuracy of the algorithms was 93%, 98%, and 99%, respectively.
The authors of [9] proposed an authentication method that depends on a continuous
wavelet transform (CWT) and direct linear discriminant analysis (DLDA). The method
was tested on different datasets and achieved an equal error rate (EER) of 0.5–6%. The
authors of [10] proposed an authentication method based on non-fiducial features and used
Neural Networks (NN) and SVM for classification. To optimize the classification, a Genetic
Algorithm was used. The method achieved 100% accuracy. Another study [11] evaluated
fiducial and non-fiducial approaches to feature extraction for PPG-based authentication
using both supervised and unsupervised machine learning methods. The experimental
results achieved an accuracy of 99.84% based on non-fiducial feature extraction.
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2.1.3. ECG-Based Recognition Method

Many studies have proposed recognition methods based on ECG signals. The authors
of [12] suggested an ECG recognition method. They reduced the ECG noise. A non-fiducial
technique based on autocorrelation and discrete cosine transformation (AC/DCT) was used
to extract features. The data were collected from the MIT-BIH Arrhythmia Database. The
result showed a classification accuracy of 97% using ANN. In another study, the authors [13]
proposed an ECG recognition method. They used a Cascaded FIR Filter configuration for
noise removal, and a Frequency-Time-based ap-preach was used for characteristic wave
detection. The data were obtained from the MIT-BIH ECG ID database. The features
were extracted using R-Peak position normalization. For classification, they use three
classifiers: ANN, K-NN, and SVM. The results show that the SVM classifier provides
93.709% classification accuracy. Similarly, [14] proposed a human identification method
based on ECG. For classification, they used three classifiers: ANN, KNN, and SVM. The
method was evaluated on the ECG-ID and MIT-BIH databases.

Unlike other studies that used ECG signals for personal identification under the
condition of rest, the authors of [15] focus on using ECG signals for personal identification
when the heart rate is increased through exercise. For analyzing the ECG signal, we used the
root mean square (RMS) value, nonlinear Lyapunov exponent, and correlation dimension.
For recognizing identity, it used a support vector machine (SVM) and achieved over 80%
recognition accuracy. The authors of [16] proposed a method that used the discrete wavelet
transform (DWT) for feature extraction and random forests for authentication. Results
show that the system can achieve 100% recognition accuracy. Another study [17] proposed
an ECG-based identification system using the discrete wavelet transform (DWT) of the
cardiac cycle and heart rate variability (HRV) for feature extraction and Random Forests
for classification. The system was evaluated on three databases and achieved an accuracy
of 95.85%, 100%, and 83.88%.

The authors of [18] proposed a method for an authentication system based on ECG
signals. First, the raw ECG signal is denoised using empirical mode decomposition (EMD).
In the next step, features are extracted. Finally, selected features were classified using
various classification methods such as Support Vector Machines (SVM), K-nearest neighbor
(KNN), and Decision Tree (DT). Based on the evaluation, the SVM with a cubic kernel
achieves a classification accuracy rate of 98.7%. Another study [19] proposed an ECG-
based approach for authentication. The method consists of removing noise from the signal
by using wavelet decomposition. An empirical mode decomposition (EMD) is used to
decompose the denoised into several intrinsic mode functions (IMFs). Then, the features are
extracted. The ECG signals are finally classified using SVM. The evaluation result shows
that the cubic SVM has the highest accuracy of 98.4%. The authors of [20] compared three
different Machine Learning algorithms: KNN, SVM, and Gaussian Naive Bayes (GNB). The
result shows an accuracy of over 90%.

The authors of [21] used three types of features, namely cepstral coefficients, the ZCR,
and entropy, to identify individuals. Then, the classification was performed using various
types of SVM kernels. The evaluation performed on the MIT-BIH arrhythmia and ECG-ID
databases shows that the proposed method can achieve an identification accuracy of 100%.
Another study [22] used a statistical learning method (LASSO) to select the appropriate
features for classification. Then, we used some machine learning algorithms such as ANN,
SVM, and KNN for classification. The experimental results show that LASSO with a KNN
classifier achieves a recognition accuracy of 99.1379%. This has been observed for the
proposed method of LASSO with the KNN classifier.

A comparison of the machine learning techniques is shown in Table 1. The table
shows the methods’ feature extraction, classifier, datasets, and accuracy. The authors used
different feature extraction methods, classifiers, and datasets.
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Table 1. Comparison of machine learning techniques for human recognition.

Work Year Feature Extraction Classifier Dataset Results and
Accuracy

[4] 2016 MFCC ANN HSCT-11 96%

[12] 2016 AC/DCT ANN MIT-BIH 97%

[13] 2017 Fiducial based features
ANN
KNN
SVM

ECG ID database
92.45%
92.72%
93.70%

[14] 2018 Mean P-QRS-T Fragment + DWT
ANN
KNN
SVM

ECG-ID
MIT-BIH 95%

[16] 2012 DCT Random Forests MIT-BIH
PTB database AVG ACC = 100%

[8] 2019 DCT
Decision Tree

KNN
Random Forest

Not mentioned
93%
98%
99%

[17] 2015 DWT + HVR Random Forests
MITDB
NSRDB
ECG-ID

95.85%
100%

83.88%

[21] 2020 Cepstral coefficients+ ZCR+ Entropy SVM MIT-BIH
ECG-ID 100%

[22] 2019 Fiducial based features

ANN
KNN

OAA-SVM
(With LASSO)

ECG-ID 99.1379% (LASSO
with KNN)

2.2. Deep-Learning Based Techniques
2.2.1. PPG-Based Recognition Method

The authors of [23] proposed a two-level fusion PCANet (Principal Component Anal-
ysis Network) deep recognition network. It achieved an over 95% recognition rate.

There are many papers that use deep learning methods to analyze ECG signals. The
authors of [24] proposed a PPG-based end-to-end architecture using Convolutional Net-
works. The approach was tested on PulseID and Troika databases and achieved an AUC of
78.2% and 83.2%, respectively. Another study [25] suggested a method that used a deep
learning model consisting of a CNN and an LSTM for the person verification process. The
proposed system was evaluated on Biosec1, Biosec2, and PRRB datasets. The authors of [26]
proposed a framework for human identification using PPG signals. The model consists of
two CNN layers and two LSTM layers, followed by a dense output layer. The model was
evaluated on the TROIKA database, achieving an average accuracy of 96%. The study [27]
also used the TROIKA dataset to create a human identification system. Each PPG source
is grouped into different groups and classified using Deep Belief Networks (DBN). The
approach achieves an accuracy of 96.1%. The authors of [28] proposed a Personalized
Verification System, PPSNet, based on PPG signals by building a network using CNN and
LSTM. The network was evaluated on the BioSec and achieved an average accuracy of 96%
in a single session and 72.7% in two sessions.

2.2.2. ECG-Based Recognition Method

Many recent studies used deep learning methods that applied to ECG biometrics.
It’s worth mentioning that CNNs are widely used in biometric recognition systems and
provide satisfying results [29]. The authors of [30] used a multiresolution 1D-convolutional
neural network (1D-CNN) in the ECG identification system. The ECG signal noise was
removed, and blind segmentation was performed. Then, the wavelet transform was applied
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to the segments, and the phase difference caused by the blind segmentation was removed
using autocorrelation. This approach achieved an average recognition rate of 93.5%. In
another study [31], a CNN was proposed. After removing the noise from the signal, the
QRS complex extraction was performed from the ECGs to feed a 1D CNN. The tested
result shows a recognition rate of 100%. While the authors of [32] suggested a method
that reduces the ECG signal length, since the ECG signal requires a long duration for the
recognition of a person, He proposed a CNN for ECG classification based on the R-peak and
transformed using continuous wavelet transformation (CWT). The method was evaluated
on the PTB database and achieved 99.94% and 99.83% identification accuracy, respectively.
Similarly, the authors of [33] used a short ECG signal around the R-peak that has been
transformed into Continuous Wavelet Transformation (CWT) images, which are then used
by the convolutional neural network (CNN) for the recognition process. The results show a
classification accuracy of 99.90% for PTB, 98.20% for the ECG-ID mixed-session, and 94.18%
for the ECG-ID multisession datasets. The authors of [34] used pre-configured models
of CNN to evaluate ECG biometrics using different time-frequency representations like
MFCC, spectrogram, log spectrogram, Mel spectrogram, and scalogram. They used the
PTB-ECG and CU-ECG databases. The result shows that the MFCC has higher accuracy
than other time-frequency representations.

The authors of [35] proposed an approach for human authentication based on ECG
using CNN. The proposed algorithm achieved an average accuracy of 97.92% on the
MWMHIT database and 99.96% on the MIT-BIH database. Another study [36] proposed a
system that uses CNN to identify a person using temporal frequency analysis like spec-
trograms. The system was tested on Fantasia and ECG-ID databases and achieved 99.42%
and 94.23%, respectively. Similarly, the study [37] used CNN for biometric identification.
The proposed method does not require R-peak detection. It was evaluated on the PTB
database and achieved a recognition accuracy of 99.1%. While the authors of [38] proposed
cascaded CNNs that consist of two CNNs, called F-CNN for feature extraction and M-CNN
for identification, the approach was evaluated using different databases and achieved an
average recognition of 94.3%. The method described in [39] used a 2-D coupling image
of the ECG signal. CNN, which specializes in processing images, is used to process the
2-D coupling image generated from three periods of the ECG signal. The system was
tested on the PTB and MIT-BIH datasets and achieved classification accuracy of 98.45% and
99.2%, respectively.

The authors of [40] proposed a method that uses the image of the spectral correlation of
the ECG as the system’s input to various CNN networks. For classification, they used two
models of a 2D convolutional neural network. The system was evaluated on different ECG
databases. Similarly, [41] proposed a two-dimensional convolutional neural network (2D
CNN). Firstly, ACDCT features and cepstral properties were extracted from ECG signals.
Then, transform these features from 1D to 2D. The approach was evaluated in the PTB
database and achieved an accuracy of 88.57%. The method described in [42] used short-time
Fourier transform (STFT) and generalized Morse wavelets (CWT) for feature extraction and
2D-CNN for classification. The model was evaluated on eight databases. The SFTF system
achieved an average accuracy of 97.85%, while the CWT achieved an average accuracy of
97.5%. The author of [43] proposed an approach for biometric identification based on ECG
signals obtained from fingers. Time series are converted into 2D images, and then CNN is
used for classification.

The authors of [44] Proposed a person identification framework based on LSTM using
ECG signals. After removing the noise from ECG signals, the ECG signal is windowed to
various segments in the windowing module. After that, these segments have been fed to an
LSTM network to learn the underlying representation and then classify it into the appropri-
ate person categories. The model was evaluated on four databases and achieved an accuracy
of 97.3% for the PTB database and 79.37% for CYBHi. To convert ECG signals to images,
they used time-frequency representations such as the short-time Fourier transform (STFT),
scalogram, Fourier synchro-squeezed transform (FSST), and wavelet synchro-squeezed
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transform (WSST). For evaluation, a CU-ECG database is used. Another study [45] pro-
posed bidirectional long-short-term memory (LSTM)-based deep recurrent neural networks
(DRNN) for ECG-based classification. They evaluated the method using the NSRDB and
MITDB databases and achieved 100% and 99.8% classification accuracy, respectively.

The method proposed in [46] used RNN for ECG-based biometric classification. ECG
data were fed directly to RNN without feature extraction. The proposed method was
evaluated on the ECG-ID and MIT-BIH Arrhythmia (MITDB) datasets and achieved a
classification accuracy of 100%. Another study [47] proposed a Bidirectional Gated Re-
current Unit (BGRU) model based on deep RNN networks in bidirectional training with
LSTM and GRU cell units. The approach was evaluated with the ECG-ID Database and
MIT-BIH and achieved classification accuracy of 98.60% and 98.40%, respectively. The
authors of [48] proposed a parallel, multi-scale, one-dimensional residual network based
on three kernels using center and margin loss during the training. The proposed method
was evaluated in three databases and achieved 98.24%, 100%, and 95.99% classification
accuracy. Another study [49] proposed a method using residual depth-wise separable
convolutional neural networks (RDSCNN). They used Hamilton’s method for ECG beat
detection, and the RRDSCNN algorithm was used for classification. The method was
evaluated in the ECG-ID and MIT-BIH databases and achieved classification accuracy of
98.89% and 97.92%, respectively.

The authors of [50] proposed strategies for Electrocardiogram (ECG)-based identifica-
tion. This paper used a DAE to learn the features of ECG signals automatically and a DNN
for ECG identification. The evaluation Result achieved an average accuracy of 94.39%. To
extract identity-related information, a discrete wavelet transform (DWT) was used. Addi-
tionally, an autoencoder (AE) was used for further feature extraction. A softmax classifier
is used for the identification process. The experiment performed on the ECG-ID and MIT-
BIH-AHA databases showed identification accuracies of 92.3% and 96.82%, respectively.
The study [51] combined generalized S-transformation (GST) and a convolutional neural
network (CNN). The generalized S-transformation is used to convert the one-dimensional
signals to two-dimensional ones. Then, they used CNN to extract deeper features from
the trajectory automatically. Experiment results show an identification rate of 96.63%. The
authors of [52] proposed a system based on ECG and PPG. Used a combination of CNN and
RNN. Experiments performed on the TROIKA database Achieved a recognition accuracy
of 94%.

A comparison of the deep learning techniques is shown in Table 2. The table shows the
method’s feature extraction, classifier, datasets, and accuracy. The authors used different
feature extraction methods and datasets. It is worth noting that CNN is the most commonly
used classifier.

Table 2. Comparison of affective states-related work.

Work Year Feature Extraction Classifier Dataset Results

[30] 2017 Not required CNN

CEBSDB
WECG

FANTASIA
NSRDB
STDB

MITDB
AFDB
VFDB

93.5% (Averaged of all
datasets)

[31] 2018 Complex QRS detection CNN PTB 100%

[32] 2020 R-peak and CWT CNN PTB 99.83%
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Table 2. Cont.

Work Year Feature Extraction Classifier Dataset Results

[33] 2021 R-peak and CWT CNN PTB
ECG-ID

99.90%
98.20%

[38] 2020 CNN CNN

FANTASIA
CEBSDB
NSRDB
STDB
AFDB

99.9%
93.1%
91.4%
92.7%
89.7%

[40] 2019 Spectral correlation Image 2D-CNN

CEBSDB
NSRDB
Fantasia
MITDB
STDB
AFDB
VFDB
PTDB

Combined ECG
Database

99.6%
98.7%
98.2%
96.5%
98%

94.4%
85.2%
94.9%
94.9%

[51] 2018 Not required CNN ECG-ID 96.63%

[45] 2020 Not required LSTM
DRNN

NSRDB
MITDB

100%
99.8%

[46] 2017 Not required RNN ECG-ID
MITDB 100%

[2] 2022 LSTM
2D-CNN

LSTM
2D-CNN CU-ECG 95.12% (two LSTM)

97.67% (2D-CNN)

[1] 2019 DWT + S-AEs (Sparse
Autoencoder) Softmax ECG-ID

MIT-BIH
92.3%

96.82%

[25] 2021 Not required CNN
Biosec1
Biosec2
PRRB

Avg ACC = 87%
AVG ACC = 87.1%

[24] 2018 CNN CNN TROIKA
PULSE-ID

83.2%
78.2%

[42] 2018 STFT images
CWT images 2D-CNN

CEBSDB
NSRDB
Fantasia
MITDB
STDB
AFDB
VFDB
PTDB

Avg ACC = 97.85% (STFT)
AVG ACC = 97.5% (CWT)

3. Materials and Methods

The proposed system includes the following phases: First, we will preprocess the ECG
to remove the noise and artifacts from the ECG signals by using a discrete wavelet transform
(DWT). Secondly, we will transfer the 1-D preprocessed ECG signals into a 2-D spectrogram
image using the STFT approach. Thirdly, the feature extraction and optimization steps
are performed using VGG16 and RNN-LSTM deep learning (DL) methods, respectively.
Finally, the boosting classifier has been used to identify the features and predict the human.
Figure 2 shows the methodology phases, and Algorithm 1 shows the ECG biometric
recognition system.
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Algorithm 1: Cardiac Biometrics for Human Identification using Deep Learning

Input: Raw ECG Biosignals
Step 1: Preprocessing

- Remove noise and artifacts from the ECG biosignals.
- Ensure data quality and reliability.

Step 2: Transformation Phase
- Convert the 1-D ECG signals into 2-D spectrogram images.
- Represent the temporal and frequency information of the ECG signals.

Step 3: Feature Extraction using Ensemble Deep Learning
- Initialize the VGG16 pre-trained transfer learning (TL) model and LSTM

model.
- Pass the spectrogram images using both models to obtain intermediate feature

representations.
- Optimize features using the LSTM model.

Step 4: Boosting Machine Learning Classifier
- Train a boosting machine learning classifier (e.g., AdaBoost or Gradient

Boosting) on the ensemble features.
- The classifier learns to recognize and distinguish between individuals based

on the cardiac biometric information.
Step 5: Human Identification

- Feed new ECG biosignals using the preprocessing and transformation phases.
- Extract the ensemble features using the trained models from Step 3.
- Use the boosting machine learning classifier to recognize and identify the

individual based on the extracted features.
Output: Identified Human or Rejection (if unknown/unauthorized)

Step 6: Algorithm 1 End
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Figure 2. Methodological overview of the proposed system.

3.1. Data Acquisition

We will use the ECG-ID dataset, which is available freely as a part of the Physionet
database. The dataset consists of 310 electrocardiogram (ECG) recordings from 90 individu-
als (44 men and 46 women) aged between 13 and 75 years. Each recording takes 20 s and
captures ECG lead I, which is digitized at 500 Hz with 12-bit resolution over a nominal
10 mV range. The recordings are accompanied by annotations for 10 beats, including unau-
dited R- and T-wave peaks generated using an automated detector. Additional information
regarding the age, gender, and recording date is available in the “.hea” file for each record.
The number of recordings per individual ranges from 2 to 20, collected either during a
single day or periodically over a period of 6 months. The raw ECG signals contained
significant noise and included both high- and low-frequency noise components. Each
record had two signals: Signal 0 captured the raw ECG I signal, while Signal 1 captured
the filtered ECG I signal [53]. Figure 3 shows random samples from the ECG-ID database
before preprocessing.
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3.2. ECG Signal Preprocessing

To preprocess the ECG signals, the following subsections present the preprocessing
steps, which are data normalization and noise removal.

Data Normalization: The signals were normalized in the range of 0 and 1. This work
adapted min-max normalization, which can be seen in Equation (1) as:

x =
x− xmin

xmax − xmin
(1)

where x is the original signal and xmin, respectively, represent the minimum and maximum
values of the original signal.

The Discrete Wavelet Transform (DWT) is employed in ECG signal preprocessing for
baseline correction and noise removal. This technique involves breaking down the ECG
signal into different frequency scales, or subbands, using wavelet functions. By analyzing
these subbands, baseline wandering and noise components can be identified in higher
frequency ranges. Applying a thresholding operation to coefficients in these subbands
reduces or eliminates these unwanted components, resulting in a denoised and baseline-
corrected ECG signal. This processed signal retains essential features while removing
distortions caused by baseline variations and noise. The denoised signal can then be used
for subsequent tasks, such as feature extraction for biometric identification, where accurate
ECG pattern recognition is critical for reliable authentication.

Noise Removal: The ECG signals are affected by different noises like muscle artifacts,
baseline wander, and power line interference [54]. Many approaches have been used to
remove the noise from the ECG signal. A discrete wavelet transform (DWT) method is
utilized in this paper to remove noise from the ECG signal. The Daubechies wavelet of order
1 (dB1) was selected for denoising. We used the DWT technique compared to other methods
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because the Discrete Wavelet Transform is a non-parametric feature extraction method for
noisy signals. It is a good technique for detailed feature extraction and approximation of
signals because it is a joint time-frequency resolution analysis. Figure 4 compares an ECG
signal from the ECG-ID before and after applying DWT. After the EEG signal is filtered,
the DWT acquires both the approximate and detailed coefficients from the ECG signal.
Then, the approximate coefficient is iteratively divided into new approximate and exact
coefficients, providing a set of complex and approximate coefficients [55].
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The mathematical equation for DWT is given in Equation (2) [56].

DWT(s, l) = 2−s ∑n x[n]
(
2−sn− 1

)
(2)

where l represents the location parameter, and s represents the dilation parameter, n = 1, 2,
and the total number of samples N and Complex Conjugate of analyzing wavelet function
ψ*. DWT decomposes the signal into low-frequency elements as Approximation Coeffi-
cients A∅ that given by Equation (3), and high-frequency elements as detailed coefficients
Dψ that is given by Equation (4).

A∅(S0,l) =
1√
N

∑n x[n]∅S0,l [n] (3)

Dψ(S,l) =
1√
N

∑n x[n]ψs,l [n] (4)

where S0 = 0, N = 2s, s = 1, 2, 3, . . ., S; n = 1, 2, 3 . . . N; l = 1, 2, 3, . . . 2s−1, n = Number of
samples, S determines the width of Dψ(S,l) [n], 2s/2 is the amplitude of the function, l is the
position vector of ψ(s, l) [n], and ψ is the wavelet coefficient.
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3.3. Preprocessed Signal Transformation

After removing noise, the next step is to convert preprocessed 1-D multi-channel
signals into 2-D spectrogram images using the short-time Fourier transform (STFT) method.
The Short-time Fourier transform (STFT) is a time-frequency analysis used to analyze
non-stationary signals. It derives from the discrete Fourier transform (DFT). The STFT
method divides a long-time signal into segments with the same size as the window, and
the Fourier transform is applied to each segment [57]. Figure 5 shows the spectrogram
of random samples after applying STFT. The discrete STFT X of the signal x is given by
Equation (5) [56]:

X(m, k) =
N−1

∑
n=0

x(n + mH)w(n)exp
(
−2πikn

N

)
(5)

X(k) = x^
(

k
N

)N−1

∑
n=0

x(n)exp(−2πikn) (6)

with m ∈ Z and k ∈ [0:K]. The frequency index is K = N/2, corresponding to Nyquist
frequencies (assuming N is even). X(m, k) is the complex number that denotes the kth
Fourier coefficient for the mth time frame. For each fixed time frame m, one obtains a
spectral vector of size K + 1 given by the coefficients X(m, k) for k ∈ [0:K]. The computation
of each such spectral vector amounts to a DFT of size N as in Equation (6), which can be
done efficiently using the FFT.
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The ECG signal is sampled at a rate of around 200 to 1000 samples per second. If we
consider a typical duration of 10 s and a sampling rate of 250 samples per second, the size
of the ECG signal would be approximately 2500 data points (samples). In the described
methodology, spectrograms were created from these data points through the utilization of
the Short Time Fourier Transform (STFT). The resultant spectrograms are represented in
RGB format and have dimensions of 512 × 512 × 3. The spectrogram’s power values are
encoded into an RGB color image, thereby accentuating the contrasts in one version. This
approach aims to visually highlight the variations and power distribution of the signals in
a graphical representation, facilitating the identification and understanding of patterns and
features in the ECG data.

3.4. Deep Features Extraction from Spectrogram

For feature extraction, a VGG16 model has been used. VGG-16 is a popular deep
convolutional neural network (CNN) architecture that is 16 layers deep. VGG-16 is known
for its ability to extract hierarchical features from images. Since this work uses a deep neural
network pre-trained on images as a feature extractor for ECG signals, the data instances
must be transformed into images. So, we use spectrograms. Spectrograms can capture the
changes in the signal’s power in a photo by taking the Fourier transform of each partition
of the movement.

To extract the feature vectors from the spectrograms, we acquired a Keras implemen-
tation of VGG16. The VGG16 pre-trained weights and model were used. We add a global
average pooling layer to the model’s output to remove features using this pre-trained
model on spectrogram images. Extracting features using the VGG-16 model from a 2D
spectrogram image involves passing the image through the pre-trained VGG-16 model and
capturing the intermediate feature representations from specific model layers.

The concept of transfer learning (TL) [57] serves as a strategic framework within the
domain of deep learning (DL), enabling the application of insights garnered from one
issue to address a comparable challenge in another context. Transfer learning methods
can generally be categorized into four groups: instance-based, parameterized, feature-
representation, and relational knowledge transfer. Among these, the feature-representation
transfer learning approach is well-suited for the task. In our proposed method, a pre-
trained convolutional neural network (CNN) such as VGG-16 is employed to extract
domain-independent image features, thereby enhancing the transferability of knowledge
from a source to a target domain. Pre-trained models are combined with fine-tuning
techniques to adapt them to new tasks. This involves adding supplementary layers to
accommodate new classes, a process we adopt in our approach through fine-tuning. Here,
a pre-trained model is extended using fine-tuning to align with the requirements of a novel
dataset, obviating the need for training from scratch and expediting the process. Additional
layers are adjusted during training to optimize the model’s performance, aligning it with
the dataset’s characteristics.

Fine-tuning is executed with a minimal learning rate to ensure minimal disruption
to the previously acquired knowledge. Starting with freezing all layers and only learning
the final classifier, we gradually unfreeze and modify more layers top-down. Increasingly
unfreezing layers may enhance network performance, but excessive unfreezing can lead
to diminished effectiveness due to limited data. Overfitting, a concern when training
on limited data, is managed using strategies like dropout layers and L2 regularization.
The methodology is demonstrated using the VGG16 model, with its initial weights as
the starting point. After global average pooling, a dropout layer is incorporated, and
L2 regularization is employed to prevent overfitting. The model’s training weight from
ImageNet is adopted to establish a strong foundation. Since our task involves binary
classification, we utilize the binary cross-entropy logarithmic loss function to optimize
model performance and guide its learning process.

The pseudocode for this step is shown in Algorithm 2.
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Algorithm 2: Feature extraction using VGG16

Step 1: Input: images after applying single-level Short-Time Fourier Transformation
Step 2: Output: important features
Step 3: Import the required libraries (Keras)
Step 4: Load the pre-trained model (VGG16) using the Keras application module.
Step 5: Define a new model that takes the output of the pre-trained model as input and adds additional layers to perform

feature extraction (Global Average Pooling2D Layer)

(a) Load the images and apply some preprocessing steps (e.g., resize, normalize, etc.).

(b) For image in images:
(c) Predict the output of the model, which give the important features of the image.

(d) End for

Step 6: Save the extracted features for further analysis or use in downstream tasks (e.g., classification, object detection,
etc.).

Step 7: Return features

3.5. Optimization Deep Features

For optimizing the features, the LSTM has been used. LSTM is an extension of a
recurrent neural network (RNN). An RNN is a neural network with recurrent outputs
and inputs. In LSTMs, the exploding and vanishing gradient problems are overcome [57].
The features optimized by the RNN-LSTM model were derived from the intermediate
representations extracted using the VGG16 model, which was used as part of the ensemble
deep learning approach in the cardiac biometrics system.

The ensemble feature representation was then fed to a boosting machine learning
classifier (e.g., AdaBoost or Gradient Boosting) for human identification. The classifier
learned to differentiate between individuals based on the combined information from the
VGG16 and LSTM models. The optimization process using the RNN-LSTM model aimed
to leverage the complementary strengths of the VGG16 model (spatial representation) and
LSTM model (temporal representation). By combining the two approaches, the system
could potentially achieve enhanced accuracy and robustness in recognizing and identifying
individuals based on their unique cardiac biometric data captured using ECG signals.

An LSTM is composed of three gates: input, forget, and output. LSTM’s activation
functions involve sigmoid and hyperbolic tangents [58]. Figure 6 shows the architecture
of an LSTM cell. Here, the input is the features that have been extracted by the VGG16
pretrained model. The model architecture comprises an LSTM layer with 32 units and an
input shape of (1024,1) for each feature from the preceding step. Subsequently, a dense layer
with 90 units corresponding to the classes of patients is included. The model was compiled
using specific hyperparameters, including a Softmax activation function in the output layer,
categorical cross entropy as the loss function, and the Adam optimizer for optimization.
These hyperparameters yielded optimal performance outcomes. The pseudocode for this
step is shown in Algorithm 3.
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Algorithm 3: Features optimization using LSTM model

Step 1: Input: features from the VGG16 model
Step 2: Output: optimized features
Step 3: Prepare the features shapes to suit the input of LSTM.
Step 4: Define the LSTM model with the following components:
Step 5: - LSTM layer with 32 units and input shape of (features.shape [1],

features.shape [2])

(a) - Dense layer with 90 units and softmax activation function

(b) Compile the model with categorical cross-entropy loss function,
Adam optimizer, and accuracy metric.

(c) For all the elements in the features list:

(d) Predict the output of the model, which gives the important features.
Step 6: End for
Step 7: Return optimized features
Step 8: Input: features from the VGG16 model
Step 9: Output: optimized features
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3.6. Biometric Human Identification

After extracting the ensemble features (combining VGG16 and LSTM representations)
from the 2D spectrogram images, we can proceed with the classification step using the
LightGBM model. LightGBM is a gradient-boosting framework that excels at handling
large-scale datasets and offers fast and efficient training. Using the LightGBM model
for classification complements the initial feature extraction steps using the VGG16 and
LSTM models. LightGBM’s ability to handle large-scale datasets efficiently and its excellent
predictive performance make it a valuable tool for the classification stage in your cardiac
biometrics system.

The LightGBM uses a tree-based learning algorithm. In this algorithm, trees are grown
vertically using a leaf-wise algorithm [58]. Since LightGBM generates complicated trees,
it’s more accurate than other tree-boosting algorithms. Additionally, LightGBM has a high
speed with low memory usage because it uses the GOSS and EFB algorithms [59]. The
model was applied to the optimized features from the LSTM step, and the data were split
into 80% training and 20% testing. The pseudocode for this step is shown in Algorithm 4.

A biometric human identification system is a critical application in the field of secu-
rity and surveillance. We used several signal processing techniques, such as the Discrete
Wavelet Transform (DWT) and the Short-Time Fourier Transform (STFT), for feature extrac-
tion from ECG signals. These features are then fed into machine learning models to classify
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and identify individuals. In addition to signal processing techniques, feature engineering
plays a crucial role in biometric identification. Feature engineering involves selecting and
transforming the relevant features that can improve the accuracy of the machine learning
model. The features were extracted from spectrogram images using the VGG16 pre-trained
model and optimized using the LSTM model.

A LightGBM model was used for the biometric identification task. This model is
trained on the ECG-ID dataset and optimized using hyperparameter tuning techniques to
improve its performance. Overall, the combination of signal processing techniques, feature
engineering, and machine learning models has shown promising results in biometric human
identification and has the potential to significantly improve security and surveillance
systems. As shown in Figure 7, the system is able to recognize humans from their heartbeats
(if human heartbeats are in the dataset).

Algorithm 4: Classification using the LightGBM model

Step 1: Input: optimized features from the LSTM model
Step 2: Output: Classification of the humans based on the ECG signals.
Step 3: Load the optimized features after the LSTM step for feature optimization.
Step 4: Split the dataset into training and validation sets using ‘train_test_split’ function

from ‘sklearn.model_selection’.
Step 5: Create ‘lgb.Dataset’ objects for the training and validation data.

(a) Define the LightGBM parameters in a dictionary.

(b) Train the model using the ‘lgb.fit’ function and the training data.

(c) Evaluate the model performance on the validation set using appropriate
metrics (Accuracy, F1_score, Precision, and Recall metrics)
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4. Results and discussions
4.1. Evaluation Metrics

The goal of the evaluation step is to estimate the performance and effectiveness of the
proposed model. As shown in Table 3, the confusion matrix can be used to evaluate the
optimal solution during classification training. According to the confusion matrix, TP and
TN represent the number of positive and negative instances that are correctly classified,
while FP and FN represent the number of positive and negative instances that have been
misclassified. To assess the performance of the proposed classifier, several metrics can be
generated from Table 4. The evaluation metrics are Accuracy, Precision, Recall, and F1
Score [60].

Table 3. Confusion Matrix for Classification.

Actual Positive Class Actual Negative Class

Predicted Positive Class True Positive (TP) False Negative (FN)

Predicted Negative Class False Positive (FP) True Negative (TN)

Table 4. Hyperparameters for VGG16 model.

GPU Activation Function Regularization

Google Collaboratory T4 Sigmoid L2

Accuracy: Generally, accuracy is measured by the ratio of correct predictions to
the total number of instances assessed. It can be represented mathematically as seen in
Equation (7):

Accuracy =
TP + TN

TP + FP + TN + FN
(7)

Precision: is a measure of the number of positive patterns correctly predicted from the
total number of positive patterns in a class. It can be represented mathematically as seen in
Equation (8):

Precision =
TP

TP + FP
(8)

Recall: is used to measure the percentage of actual positive samples that were correctly
classified. It can be represented mathematically as seen in Equation (9):

Recall =
TP

TP + FN
(9)

F1-Score: This metric is defined as the harmonic mean of the recall and precision
values. It can be represented mathematically as seen in Equation (10):

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(10)

4.2. Environment Setup

To analyze the effectiveness of the proposed method. The dataset in the experiments
was split into 80% training and 20% testing. To train the model, we utilized the GPU
runtime available in the Google Collaboratory. The activation function method used in
the VGG16 model was Sigmoid, and the regularization used was L2. Additionally, we
used pre-trained weights from the ImageNet dataset, which the model was previously
trained on. The input image size for training was set to (224, 224, 3). The suggested network
hyperparameters for VGG16 are described in Table 4. The LSTM model was trained with
SoftMax as an activation function, Adam as an optimizer, and Categorical cross entropy as
a loss function. The suggested network hyperparameters for LSTM are described in Table 5.
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The LightGBM classifier was trained with a learning rate of 0.05, a feature fraction of 0.8,
and a number of leaves equal to 50. To quantify the loss, we employed the multi_log loss
function. The suggested hyperparameters for LightGBM are described in Table 6.

Table 5. Hyperparameters for LSTM model.

GPU Activation Function Optimizer Loss

Google Collaboratory T4 Softmax Adam Categorical
cross-entropy

Table 6. Hyperparameters for LightGBM model.

GPU Learning Rate Number of Leaves Feature Fraction Loss Validation

Google
Collaboratory T4 0.05 50 0.8 Multi log loss 10-fold

4.3. Result Analysis

This section will present the experimental results. Section 4.5. presents a comparison
between VGG16 and other different pre-trained models to demonstrate that VGG16 obtains
the best results. In Section 4.4., the fine-tuning model hyperparameters for optimizing
accuracy results were presented. Section 4.3. shows the result and performance. Also, in
Section 4.5, we compared the results of our classification method with the state-of-the-art
works that used the ECG-ID database with different classifiers to better assess the proposed
model’s performance in comparison to other systems.

We compared the classification results of different feature extraction models like
VGG19, Inception v3, and densenet121 with VGG16. The results are shown in Table 7. The
highest accuracy for the LightGBM classification model is 98.7%, which was obtained by
the feature extraction model VGG16. Additionally, VGG16 got the lowest loss with 6.2, and
it took 205.521 s for training. Based on this comprehensive evaluation, the VGG16 model
emerges as the most effective. As a result of this comparison, we have chosen to utilize the
VGG16 model for the feature extraction phase.

Table 7. Comparison between different models with VGG16.

Model Accuracy Precision Recall F1-Score Loss Training Time (s)

VGG19 94.4% 98.6% 98.9% 98.7% 18.2 194.535
Inception V3 93.7% 98.1% 98.7% 98.4% 14.5 228.726
Densenet121 93.7% 97.5% 98.4% 97.8% 13.5 227.383

VGG16 98.7% 98.2% 98.7% 98.4% 6.2 205.521

4.4. Fine Tuning Models Hyperparameters

To improve the effectiveness of our system, optimizing hyperparameters is crucial.
Table 8 lists the hyperparameters commonly used in VGG16, LSTM, and LightGBM models.
In this section, a grid search technique was used on the selected dataset to optimize
hyperparameters like learning rate, dropout value, LSTM unit, regularization L2, and
optimizer. The grid search involved changing the hyperparameter values so that the results
of the best combination of them could be compared together. Table 9 shows the evaluated
and optimal values for each hyperparameter, determined by maximizing accuracy and
minimizing computation time. For the learning rate, the tested values were (0.1, 0.01, 0.001,
0.05, and 0.09), and the optimized value was (0.05). The dropout values were tested at (0.2,
0.25, 0.5, and 3), and the optimized value was (0.2). The LSTM unit values were tested
at (32, 64, and 128), and the optimized value was (32). Regularization was tested at (0.01,
0.001, 0.0001, 0.09, and 0.9) and the optimized value (0.09). Finally, optimizer techniques
(RMSprop and Adam) were tested, with Adam selected as the optimal choice.
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Table 8. The commonly used hyperparameters in VGG16, LSTM, and LightGBM models.

Model Hyperparameter Description

VGG16 Learning Rate (LR) Determines the step size for gradient updates during training.
Batch Size Number of samples processed before updating the model weights.

Number of Epochs Number of times the entire dataset is passed through the model during
training.

Optimizer The optimization algorithm used for weight updates (e.g., SGD, Adam,
RMSprop).

Dropout Rate Probability of dropping out neurons during training to prevent overfitting.
Weight Decay (L2
Regularization) Penalty added to the loss function to discourage large weight values.

LSTM Number of LSTM Units Number of memory cells (neurons) in the LSTM layer.
Learning Rate (LR) Step size for updating LSTM model parameters during training.
Batch Size Number of sequences processed together before updating the model.
Number of Epochs Number of iterations over the entire dataset during training.

Optimizer The optimization algorithm used for LSTM weight updates (e.g., Adam,
RMSprop).

Dropout Rate Probability of dropping out LSTM neurons during training to prevent
overfitting.

Weight Decay (L2
Regularization) Penalty added to the loss function to discourage large weight values.

LightGBM Learning Rate (LR) Step size for updating the boosting model during training.
Number of Estimators Number of boosting rounds (trees) in the LightGBM model.
Max Depth Maximum depth of the decision trees in the boosting model.
Min Child Samples Minimum number of samples required in a leaf node to split a tree.
Feature Fraction Fraction of features used in each boosting iteration to prevent overfitting.
Bagging Fraction Fraction of training data used in each boosting iteration to prevent overfitting.
Lambda (L2 Regularization) L2 regularization term applied to the leaves’ values in the decision trees.

Table 9. Fine-tuning models hyperparameters.

Model
Experiment

No.

Learning
Rate Dropout LSTM

Unit Regularization Optimizer Estimators Max
Depth

Min
Child

Feature &
Bagging
Fraction

1 0.001 0.2 32 0.001 Adam 100 6 20 0.7
2 0.01 0.5 32 0.01 Adam 50 6 20 0.7
3 0.09 0.5 32 0.0001 Adam 120 8 75 0.8
4 0.05 0.2 32 0.09 Adam 25 10 50 0.8
5 0.1 0.25 64 0.09 RMSprop 30 6 25 0.9
6 0.01 0.3 64 0.9 RMSprop 80 6 75 0.9
7 0.9 0.7 128 0.005 RMSprop 250 6 20 0.7

Among the seven experiments conducted to train the models for biometric human
identification, the best-performing model was achieved by optimizing the hyperparameters
in Table 9. As we can see from Table 10, experiment 4 achieves the best performance. In
this experiment, the estimators were set to 25, the number of leaves in each tree was set to
50, the maximum depth of each tree was set to 10, and the feature bagging and fraction
were set to 0.8. These hyperparameters were chosen after careful experimentation and
tuning, and they helped to improve the accuracy of the model significantly. Overall, by
carefully selecting and optimizing these hyperparameters, the model achieved a high level
of accuracy in biometric human identification tasks. This approach has significant potential
for improving security and surveillance systems in a range of applications.
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Table 10. Experimental results were obtained by a proposed ensemble classifier (VGG16-LSTM-
LightGBM) with a preprocessing step on seven different runs.

No. Accuracy Precision Recall F1-Score

1 97.7% 97.7% 97.7% 0.97
2 98% 96% 98% 0.98
3 97.7% 95.4% 96.3% 0.97
4 98.7% 98.01% 97.1% 0.98
5 97.5% 96.3% 95.1% 0.97
6 97.3% 95.1% 96.2% 0.97
7 94.9% 94.2% 95.3% 0.94

The testing performance of the pre-trained models we compared in terms of the
confusion matrix is shown in Figure 8. The main diagonal of the confusion matrix represents
the correctly classified instances where the predicted class matches the actual style. Off-
diagonal elements indicate misclassifications, with each cell showing how many models
were incorrectly assigned to a particular category. As shown in the figure, incorrect
predictions are represented in the red squares.
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The comparison shows the accuracy of each feature extraction model. As we can see
from Figure 9, the VGG16 model got the best accuracy at 98.7%.
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achieved by the VGG16 model is 0.062.
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The comparison shows the training time taken by each model. As shown in Figure 11,
the VGG16 model took 205.521 s for training.
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4.5. State-of-the-Art Comparisons

The proposed approach’s classification result is compared with other state-of-the-art
works that tested their systems using the ECG-ID database. The comparison is shown in
Table 11.

Table 11. Comparison with state-of-the-art works along with preprocessing steps.

Work Classifier Accuracy Precision Recall F1-Score

[1] DWT and S-AE and 1D-ECG 82.3% 84.3% 83.3% 0.82
[21] PCANet and MaxFusion and SVM 85.70% 86.20% 83.30% 0.85
[49] CNN 88.63% 84.13% 86.60% 0.88
[50] CNN and RNN 87.11% 88.02% 86.01% 0.87

Proposed VGG-16-LSTM and LigthGBM 98.7% 98.01% 97.1% 0.98

We discussed cardiac biometrics using deep learning, focusing on electrocardiogram
(ECG) signals. The paper proposed an ensemble approach, combining VGG16 and LSTM
architectures, for feature extraction from 2D spectrogram images. Based on their cardiac
biometric data, the system achieved impressive accuracy and performance in recognizing
humans. The proposed system holds the potential for secure authentication in various
applications. This section presented and discussed the result of our classification model
and compared the effect with different models and other state-of-the-art works. The
comparison shows that our model achieved the best result. Compared to other systems,
the proposed approach based on VGG-16-LSTM and LightGBM achieved 98.7% accuracy,
98.01% precision, 97.1% recall, and 0.98 AUC.

Table 12 presents a comparison of different state-of-the-art preprocessing steps. Vari-
ous classifiers were evaluated for their performance metrics, including accuracy, precision,
recall, and F1-score. The works include methods like DWT combined with S-AE and 1D-
ECG [1], achieving an accuracy of 85.50% with corresponding precision, recall, and F1-score
values. Another approach employed PCANet, MaxFusion, and SVM [21], resulting in an ac-
curacy of 83.11% and comparable precision, recall, and F1-score. A CNN-based method [51]
achieved an accuracy of 83.22% but showed slightly lower precision and recall. Another
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combined CNN and RNN [52] approach achieved an accuracy of 80.20% with precision,
recall, and F1-score values. Notably, the proposed method, which employs VGG-16-LSTM
and LightGBM, outperformed the others with a high accuracy of 92.10% and superior
precision, recall, and F1-score values. However, the proposed technique with preprocessing
steps achieved higher accuracy in identifying humans based on ECG spectrogram images.
Additionally, Figure 12 shows different machine learning algorithms used in comparison
with the LightGBM classifier. In practice, LightGBM stands out among other machine
learning algorithms due to its unique combination of efficiency, scalability, and predic-
tive power. Unlike traditional gradient boosting algorithms, LightGBM employs a novel
approach to tree building, focusing on feature-based partitioning and histogram-based
techniques, leading to significantly faster training times and lower memory usage. This ef-
ficiency makes LightGBM particularly well-suited for large and high-dimensional datasets,
where it can handle complex feature interactions while maintaining a small computational
footprint. Additionally, LightGBM’s ability to handle imbalanced datasets and its built-in
feature importance ranking contribute to its versatility and effectiveness in a wide range of
applications. These advantages collectively position LightGBM as a compelling choice for
tasks requiring accurate predictions, interpretability, and resource-efficient performance.

Table 12. Comparison with state-of-the-art works without preprocessing steps.

Work Classifier Accuracy Precision Recall F1-Score

[1] DWT and S-AE and 1D-ECG 85.50% 86.13% 87.30% 0.85
[23] PCANet and MaxFusion and SVM 83.11% 85.23% 84.10% 0.84
[51] CNN 83.22% 84.00% 82.10% 0.83
[52] CNN and RNN 80.20% 81.19% 83.10% 0.82

Proposed VGG-16-LSTM and LigthGBM 92.10% 93.22% 94.40% 0.94
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4.6. Computational Analysis

Analyzing the computational complexity of each step in the proposed pipeline using
Big O notation, as mentioned in Table 13. The most computationally intensive steps are
typically the ones involving feature extraction, optimization, and training of the machine
learning models (VGG16, LSTM, and LightGBM). It’s important to note that the actual com-
plexity might vary based on specific implementation details (CPU, GPU, TPU). Biometric
Identification (LightGBM Classifier): The training complexity of the LightGBM classifier
depends on the number of trees (T), the number of features (F), and the number of samples
(N). The complexity is approximately O(T × F × N × log N) and calculated on the input
ECG signal length with n of 1000 samples.

Table 13. Computational analysis of a proposed system to identify humans.

Step Complexity Example Size (n)

Preprocessing Steps O (n2) 1000
1D ECG to 2D Spectrogram Transformation O (n) (approx.) 1000

Feature Extraction (VGG16 Pretrained Model) O (1,611,840) 224
Feature Optimization (LSTM) O (838,860,800) 256

Biometric Identification (LightGBM Classifier) O (3,845,620) 1000

5. Discussions

The demand for robust and secure human identification systems has reached a critical
juncture in today’s digital landscape, characterized by widespread and continuous digital
interactions. Conventional recognition methods, such as personal identification numbers
(PINs) and passwords, have become increasingly susceptible to attack, resulting in potential
security breaches, lost credentials, or forgotten access codes. As a result, there is a com-
pelling need to innovate and develop biometric systems that offer heightened security and
reliability. Recognizing this trend, modern practices have seen a rise in the use of biometric
methods to augment or replace traditional PIN-based security measures, mitigating the
vulnerabilities posed by the loss or theft of personal identification information. These
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advanced biometric technologies securely manage personal information and verify users’
identities with accuracy and assurance unmatched by conventional methods.

Biometric recognition encompasses a diverse range of physiological and behavioral
human characteristics, including attributes like voice, gait, and electrocardiogram (ECG)
signals and physical traits such as facial features, fingerprints, and iris patterns. However,
conventional biometric systems face challenges, particularly regarding spoofing and forgery.
Consequently, there has been a growing interest in adopting biometric authentication
methods that harness an individual’s unique physiological and behavioral traits to enhance
security and alleviate vulnerabilities significantly. Cardiac biometrics have emerged as
a promising and innovative approach to address the imperative of human identification
security among the diverse biometric modalities.

At the core of cardiac biometrics lies the intrinsic electrical activity of the human heart,
encapsulated in signals such as the electrocardiogram (ECG), photoplethysmograph (PPG),
and phonocardiogram (PCG). These signals carry rich and distinctive information that
can be harnessed for secure authentication. Within this landscape, the utilization of ECG
signals for biometric-based human identification stands out due to its unique advantages
over alternative approaches like PPG and PCG signals. ECG signals provide an inherently
individualistic biometric marker owing to the intricate patterns woven into the heart’s
electrical activity. This inherent uniqueness significantly bolsters the security and precision
of identification systems. These advantages position ECG signals as an optimal choice
for constructing biometric-based human identification systems distinguished by accuracy,
safety, and reliability, setting them apart from PPG and PCG approaches.

Deep learning has demonstrated exceptional prowess in deciphering complex pat-
terns and representations across diverse data domains, making its integration into cardiac
biometrics an exciting frontier in the pursuit of dependable and efficient authentication
systems. The primary objective of this study is to introduce an ensemble methodology that
effectively harnesses the strengths of a pre-trained VGG16 transfer learning (TL) framework
in tandem with long-short-term memory (LSTM) architectures. This amalgamation aims
to extract optimal features from two-dimensional spectrogram images derived from ECG
biosignals. This novel ensemble feature representation capitalizes on cardiac signals’ tem-
poral and spatial characteristics, serving as a comprehensive and discriminative foundation
for human identification.

The research journey comprises several distinct phases, encompassing the preprocess-
ing of ECG biosignals to ensure data quality, transforming one-dimensional ECG signals
into two-dimensional spectrogram images, and the subsequent feature extraction utilizing
the ensemble deep learning technique. Furthermore, the identification process is facilitated
by a machine learning classifier that distinguishes individuals based on their distinctive
cardiac biometric attributes. The proposed cardiac biometric system’s efficacy is rigor-
ously evaluated using extensive experimentation on a curated dataset. Key performance
metrics such as accuracy, sensitivity, specificity, and the area under the curve (AUC) are
employed to gauge the system’s effectiveness. Furthermore, a comparative analysis is
conducted against prevailing state-of-the-art biometric authentication systems, showcasing
the proposed system’s superiority in accurately recognizing human identities.

5.1. Future Directions

Future research in the field of cardiac biometrics and human identification can explore
several exciting avenues:

1. Conduct research on more extensive and diverse datasets to evaluate the system’s
performance under various conditions and demographics. Access to larger datasets
can help improve the generalization and robustness of the proposed system.

2. Investigate the integration of multiple biometric modalities (e.g., ECG, PPG, PCG,
fingerprint, and facial recognition) for even more reliable and accurate human identi-
fication. Combining multiple modalities can enhance security and reduce the risk of
spoofing attacks.
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3. Explore the feasibility of continuous authentication using cardiac biometrics. Investi-
gate how the system can continuously monitor and verify individuals’ identities over
extended periods, ensuring a seamless and secure user experience.

4. Experiment with more advanced transfer learning techniques, including fine-tuning
the LSTM model on a related dataset or employing other pre-trained models that are
specifically designed for sequential data analysis.

5. Enhance the interpretability of the system’s decision-making process. Investigate
methods to understand which features or patterns contribute most to the identification
process, making it easier to diagnose and address potential issues.

6. Conduct rigorous adversarial testing to assess the system’s robustness against poten-
tial attacks, ensuring that it remains secure in real-world scenarios.

7. Investigate ways to improve the user experience while maintaining privacy. Examine
user consent, data anonymization, and secure storage methods to protect individuals’
sensitive biometric data.

8. Study the long-term reliability and stability of cardiac biometrics as individuals age
or undergo physiological changes. Ensure that the system maintains its accuracy and
effectiveness over time.

9. The field of biometrics involves authenticating and recognizing individuals using
their behavioral and physical characteristics [61]. The latest progress in multimodal
biometrics around physiological attributes. In the future, we will focus on more
techniques utilizing finger veins, palm veins, fingerprints, facial, lip, iris, and retinal
patterns to identify humans.

10. At the forefront of this framework lies the utilization of spectrogram images for biomet-
ric identification. The explainable nature of AI ensures [62] that the identification pro-
cess is transparent and decisions are justifiable. This is crucial in scenarios where pa-
tient data security, accuracy, and ethical considerations are of paramount importance.

By focusing on these future research directions, advancements can be made in cardiac
biometrics and human identification, leading to more secure and reliable authentication
systems with broad practical applications.

5.2. Practical Domains of Cardiac Biometric Applications

Cardiac-based biometric authentication is applicable to potential domains where such
a system could be valuable, along with the importance of secure authentication in the
following areas:

(1) Financial Services and Banking: Secure authentication is critical in financial services
and banking to prevent unauthorized access to accounts and transactions. Cardiac
biometrics can enhance security by offering a highly unique and difficult-to-replicate
identification method. This is important to safeguard sensitive financial information
and prevent fraudulent activities.

(2) Healthcare and Medical Records: In healthcare, accurate patient identification is
crucial for maintaining medical records and ensuring proper treatment. Cardiac
biometrics could provide a reliable and non-intrusive method to identify patients,
reducing the risk of medical errors and unauthorized access to sensitive health data.

(3) Government Services and ID Verification: Government agencies often require ro-
bust authentication for services like issuing identification documents, passports, and
driver’s licenses. Cardiac biometrics could provide an added layer of security to
ensure that individuals are who they claim to be, preventing identity theft and fraud.

(4) Physical Access Control: Cardiac biometrics can enhance access control systems in
physical environments such as offices, research facilities, and secure areas. Traditional
methods like key cards or PINs can be lost, stolen, or shared, while cardiac biometrics
provide a unique and difficult-to-forge way to ensure only authorized personnel
gain entry.

(5) E-commerce and Online Transactions: Online transactions and e-commerce platforms
require secure authentication to protect users’ financial data. Cardiac biometrics could
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offer a seamless and secure way for users to confirm their identity during online
purchases, reducing the risk of fraudulent transactions.

(6) Smart Devices and Wearables: The rise of smart devices and wearables has created
opportunities for continuous and passive authentication. Cardiac biometrics could
be used to unlock devices, provide secure access to personal data, and monitor user
health metrics.

(7) Remote Authentication and Telecommunications: In remote authentication scenarios,
where individuals access systems or services from remote locations, strong security
measures are essential. Cardiac biometrics could offer a reliable way to verify identity
in telecommunication applications, reducing the risk of unauthorized access.

The importance of secure authentication in these areas lies in safeguarding sensitive
data, preventing identity theft, minimizing fraudulent activities, ensuring privacy, and
maintaining the integrity of services. Traditional authentication methods are susceptible
to various attacks and vulnerabilities, making biometric-based systems, such as cardiac
biometrics, an attractive solution due to their inherent uniqueness and difficulty to im-
personate. By implementing secure authentication measures, these practical domains can
enhance user trust and overall system security.

6. Conclusions

In this paper, we have developed a novel cardiac biometric system for human identi-
fication using deep learning approaches. The system leverages the unique physiological
characteristics of individuals captured using electrocardiogram (ECG), photoplethysmo-
gram (PPG), and phonocardiogram (PCG) signals. To achieve secure authentication, we
proposed an ensemble approach based on pre-trained VGG16 transfer learning (TL) and
Long Short-Term Memory (LSTM) architectures.

The system follows a multi-phase approach. In the first phase, we preprocessed the
ECG biosignals to remove noise and ensure data quality. The second phase involved
converting the 1-D ECG signals into 2-D spectrogram images and capturing temporal
and frequency information. Feature extraction was performed in the third phase using
the ensemble DL technique, combining VGG16 and LSTM models to obtain intermediate
feature representations. The extracted ensemble features were then utilized as input
for a boosting machine learning classifier, enabling the system to recognize and identify
individuals based on their cardiac biometric data. Extensive experiments were conducted
on a selected dataset to evaluate the system’s performance. On average, our proposed
approach achieved an accuracy of 0.98%, a sensitivity of 0.98%, a specificity of 0.96%, and
an AUC of 0.95. In comparison to state-of-the-art biometric authentication systems, our
developed approach demonstrated superior performance in recognizing humans based on
their cardiac biometric information. The combination of spatial features from the VGG16
model and temporal patterns from the LSTM model allowed us to optimize the ensemble
features, leading to enhanced accuracy and robustness in the identification process. The
proposed cardiac biometrics system holds significant potential for various real-world
applications, particularly in domains requiring secure authentication. Its utilization in
healthcare, finance, access control, and other sensitive areas could provide reliable and
efficient human identification. Future research can focus on further refining the system,
exploring additional deep learning architectures, and testing the approach on larger and
more diverse datasets to strengthen its practicality and generalizability.

Author Contributions: Conceptualization, A.A.A., Q.A., Y.D., I.Q., G.P., M.E.A.I. and A.E.S.A.; Data
curation, A.A.A., Y.D., M.E.A.I. and A.E.S.A.; Formal analysis, A.A.A., Y.D., I.Q., G.P., M.E.A.I. and
A.E.S.A.; Funding acquisition, Q.A. and A.E.S.A.; Investigation, Y.D., G.P., M.E.A.I. and A.E.S.A.;
Methodology, Q.A. and Y.D.; Project administration, Q.A. and I.Q.; Resources, Y.D., I.Q., G.P. and
A.E.S.A.; Software, A.A.A., Y.D., G.P., M.E.A.I. and A.E.S.A.; Supervision, Q.A. and G.P.; Validation,
Q.A., Y.D., I.Q. and M.E.A.I.; Visualization, A.A.A., I.Q. and M.E.A.I.; Writing—original draft, A.A.A.,
Q.A., Y.D., I.Q., G.P., M.E.A.I. and A.E.S.A.; Writing—review and editing, I.Q., G.P., M.E.A.I. and
A.E.S.A. All authors have read and agreed to the published version of the manuscript.



Appl. Sci. 2023, 13, 9454 30 of 32

Funding: This work was supported and funded by the Deanship of Scientific Research at Imam
Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU- RG23082).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets generated during and/or analyzed during the current
study are available from the corresponding author upon reasonable request.

Acknowledgments: This work was supported and funded by the Deanship of Scientific Research at
Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU- RG23082).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, D.; Si, Y.; Yang, W.; Zhang, G.; Li, J. A Novel Electrocardiogram Biometric Identification Method Based on Temporal-

Frequency Autoencoding. Electronics 2019, 8, 667. [CrossRef]
2. Lee, J.-A.; Kwak, K.-C. Personal Identification Using an Ensemble Approach of 1D-LSTM and 2D-CNN with Electrocardiogram

Signals. Appl. Sci. 2022, 12, 2692. [CrossRef]
3. Rathore, A.S.; Li, Z.; Zhu, W.; Jin, Z.; Xu, W. A Survey on Heart Biometrics. ACM Comput. Surv. 2020, 53, 1–38. [CrossRef]
4. Bassiouni, M. An Intelligent Approach for Person Identification Using Phonocardiogram Signals. Int. J. Appl. Fuzzy Sets Artif.

Intell. 2016, 6, 103–117.
5. Yann, L.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444.
6. Abbas, Q.; Qureshi, I.; Yan, J.; Shaheed, K. Machine Learning Methods for Diagnosis of Eye-Related Diseases: A Systematic

Review Study Based on Ophthalmic Imaging Modalities. Arch. Comput. Methods Eng. 2022, 29, 3861–3918. [CrossRef]
7. Yang, J.; Huang, Y.; Huang, F.; Yang, G. Photoplethysmography Biometric Recognition Model Based on Sparse Softmax Vector

and k-Nearest Neighbor. J. Electr. Comput. Eng. 2020, 2020, 1–9. [CrossRef]
8. Lee, S.-W. Wearable Bio-Signal(PPG)-Based Personal Authentication Method Using Random Forest and Period Setting Considering

the Feature of PPG Signals. J. Comput. 2019, 14, 283–294. [CrossRef]
9. Yadav, U.; Abbas, S.N.; Hatzinakos, D. Evaluation of PPG Biometrics for Authentication in Different States. In Proceedings of the

2018 International Conference on Biometrics (ICB), Gold Coast, QLD, Australia, 20–23 February 2018; pp. 277–282. [CrossRef]
10. Karimian, N.; Guo, Z.; Tehranipoor, M.; Forte, D. Human recognition from photoplethysmography (PPG) based on non-fiducial

features. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New
Orleans, LA, USA, 5–9 March 2017; pp. 4636–4640. [CrossRef]

11. Karimian, N.; Tehranipoor, M.; Forte, D. Non-fiducial PPG-based authentication for healthcare application. In Proceedings of the
2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Orlando, FL, USA, 16–19 February 2017;
pp. 429–432. [CrossRef]

12. Bassiouni, M. A Machine Learning Technique for Person Identification using ECG Signals. IOSR J. Appl. Phys. 2016, 1, 37.
13. Patro, K.K.; Kumar, P.R. AMachine Learning Classification Approaches for Biometric Recognition System using ECG Signals.

J. Eng. Sci. Technol. Rev. 2017, 10, 1–8. [CrossRef]
14. Bassiouni, M.M.; El-Dahshan, E.-S.A.; Khalefa, W.; Salem, A.M. Intelligent hybrid approaches for human ECG signals identifica-

tion. Signal Image Video Process. 2018, 12, 941–949. [CrossRef]
15. Lee, J.-N.; Pan, S.B.; Kwak, K.-C. Individual identification Based on Cascaded PCANet from ECG Signal. In Proceedings of the

2019 International Conference on Electronics, Information, and Communication (ICEIC), Auckland, New Zealand, 22–25 January
2019. [CrossRef]

16. Belgacem, N. ECG Based Human Authentication using Wavelets and Random Forests. Int. J. Cryptogr. Inf. Secur. 2012, 2, 1–11.
[CrossRef]

17. Dar, M.N.; Akram, M.U.; Shaukat, A.; Khan, M.A. ECG Based Biometric Identification for Population with Normal and Cardiac
Anomalies Using Hybrid HRV and DWT Features. In Proceedings of the 2015 5th International Conference on IT Convergence
and Security (ICITCS), Kuala Lumpur, Malaysia, 24–27 August 2015; pp. 1–5. [CrossRef]

18. Aziz, S.; Khan, M.U.; Choudhry, Z.A.; Aymin, A.; Usman, A. ECG-based Biometric Authentication using Empirical Mode
Decomposition and Support Vector Machines. In Proceedings of the 2019 IEEE 10th Annual Information Technology, Electronics
and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 17–19 October 2019; pp. 906–912. [CrossRef]

19. Khan, M.U.; Aziz, S.; Iqtidar, K.; Saud, A.; Azhar, Z. Biometric Authentication System Based on Electrocardiogram (ECG). In
Proceedings of the 2019 13th International Conference on Mathematics, Actuarial Science, Computer Science and Statistics
(MACS), Karachi, Pakistan, 14–15 December 2019; pp. 1–6. [CrossRef]

20. Lipps, C.; Bergkemper, L.; Schotten, H.D. Distinguishing Hearts: How Machine Learning identifies People based on their
Heartbeat. In Proceedings of the 2021 Sixth International Conference on Advances in Biomedical Engineering (ICABME),
Werdanyeh, Lebanon, 7–9 October 2021; pp. 19–23. [CrossRef]

21. Hamza, S.; Ben Ayed, Y. Svm for human identification using the ECG signal. Procedia Comput. Sci. 2020, 176, 430–439. [CrossRef]

https://doi.org/10.3390/electronics8060667
https://doi.org/10.3390/app12052692
https://doi.org/10.1145/3410158
https://doi.org/10.1007/s11831-022-09720-z
https://doi.org/10.1155/2020/9653470
https://doi.org/10.17706/jcp.14.4.283-294
https://doi.org/10.1109/icb2018.2018.00049
https://doi.org/10.1109/icassp.2017.7953035
https://doi.org/10.1109/bhi.2017.7897297
https://doi.org/10.25103/jestr.106.01
https://doi.org/10.1007/s11760-018-1237-5
https://doi.org/10.23919/elinfocom.2019.8706366
https://doi.org/10.5121/ijcis.2012.2201
https://doi.org/10.1109/icitcs.2015.7292977
https://doi.org/10.1109/iemcon.2019.8936174
https://doi.org/10.1109/macs48846.2019.9024820
https://doi.org/10.1109/icabme53305.2021.9604855
https://doi.org/10.1016/j.procs.2020.08.044


Appl. Sci. 2023, 13, 9454 31 of 32

22. Patro, K.K.; Reddi, S.P.R.; Khalelulla, S.K.E.; Kumar, P.R.; Shankar, K. ECG data optimization for biometric human recognition
using statistical distributed machine learning algorithm. J. Supercomput. 2019, 76, 858–875. [CrossRef]

23. Liu, X.; Si, Y.; Yang, W. A Novel Two-Level Fusion Feature for Mixed ECG Identity Recognition. Electronics 2021, 10, 2052.
[CrossRef]

24. Luque, J.; Cortes, G.; Segura, C.; Maravilla, A.; Esteban, J.; Fabregat, J. END-to-END Photopleth YsmographY (PPG) Based
Biometric Authentication by Using Convolutional Neural Networks. In Proceedings of the 2018 26th European Signal Processing
Conference (EUSIPCO), Rome, Italy, 3–7 September 2018; pp. 538–542. [CrossRef]

25. Hwang, D.Y.; Taha, B.; Lee, D.S.; Hatzinakos, D. Evaluation of the Time Stability and Uniqueness in PPG-Based Biometric System.
IEEE Trans. Inf. Forensics Secur. 2021, 16, 116–130. [CrossRef]

26. Everson, L.; Biswas, D.; Panwar, M.; Rodopoulos, D.; Acharyya, A.; Kim, C.H.; Van Hoof, C.; Konijnenburg, M.; Van Helleputte, N.
BiometricNet: Deep Learning based Biometric Identification using Wrist-Worn PPG. In Proceedings of the 2018 IEEE International
Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–5. [CrossRef]

27. Jindal, V.; Birjandtalab, J.; Pouyan, M.B.; Nourani, M. An adaptive deep learning approach for PPG-based identification. In
Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
Orlando, FL, USA, 16–20 August 2016; pp. 6401–6404. [CrossRef]

28. Hwang, D.Y.; Hatzinakos, D. PPG-based Personalized Verification System. In Proceedings of the 2019 IEEE Canadian Conference
of Electrical and Computer Engineering (CCECE), Edmonton, AB, Canada, 5–8 May 2019; pp. 1–4. [CrossRef]

29. Photoplethysmographic Biometrics: A Comprehensive Survey|Request PDF. Available online: https://www.researchgate.net/
publication/359195979_Photoplethysmographic_Biometrics_a_Comprehensive_Survey (accessed on 8 January 2023).

30. Zhang, Q.; Zhou, D.; Zeng, X. HeartID: A Multiresolution Convolutional Neural Network for ECG-Based Biometric Human
Identification in Smart Health Applications. IEEE Access 2017, 5, 11805–11816. [CrossRef]

31. Labati, R.D.; Muñoz, E.; Piuri, V.; Sassi, R.; Scotti, F. Deep-ECG: Convolutional Neural Networks for ECG biometric recognition.
Pattern Recognit. Lett. 2019, 126, 78–85. [CrossRef]

32. Alduwaile, D.; Islam, S. Single Heartbeat ECG Biometric Recognition using Convolutional Neural Network. In Proceedings of the
2020 International Conference on Advanced Science and Engineering (ICOASE), Duhok, Iraq, 23–24 December 2020; pp. 145–150.
[CrossRef]

33. AlDuwaile, D.A.; Islam, S. Using Convolutional Neural Network and a Single Heartbeat for ECG Biometric Recognition. Entropy
2021, 23, 733. [CrossRef]

34. Byeon, Y.-H.; Kwak, K.-C. Pre-Configured Deep Convolutional Neural Networks with Various Time-Frequency Representations
for Biometrics from ECG Signals. Appl. Sci. 2019, 9, 4810. [CrossRef]

35. Hammad, M.; Zhang, S.; Wang, K. A novel two-dimensional ECG feature extraction and classification algorithm based on
convolution neural network for human authentication. Future Gener. Comput. Syst. 2019, 101, 180–196. [CrossRef]

36. Bento, N.; Belo, D.; Gamboa, H. ECG Biometrics Using Spectrograms and Deep Neural Networks. Int. J. Mach. Learn. Comput.
2020, 10, 259–264. [CrossRef]

37. Chiu, J.-K.; Chang, C.-S.; Wu, S.-C. ECG-based Biometric Recognition without QRS Segmentation: A Deep Learning-Based
Approach. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology
Society (EMBC), Guadalajara, Mexico, 1–5 November 2021; Volume 2021, pp. 88–91. [CrossRef]

38. Li, Y.; Pang, Y.; Wang, K.; Li, X. Toward improving ECG biometric identification using cascaded convolutional neural networks.
Neurocomputing 2020, 391, 83–95. [CrossRef]

39. Kim, J.S.; Kim, S.H.; Pan, S.B. Personal recognition using convolutional neural network with ECG coupling image. J. Ambient.
Intell. Humaniz. Comput. 2019, 11, 1923–1932. [CrossRef]

40. Abdeldayem, S.S.; Bourlai, T. A Novel Approach for ECG-Based Human Identification Using Spectral Correlation and Deep
Learning. IEEE Trans. Biom. Behav. Identity Sci. 2020, 2, 1–14. [CrossRef]

41. Hanilci, A.; Gürkan, H. ECG Biometric Identification Method based on Parallel 2-D Convolutional Neural Networks. J. Innov. Sci.
Eng. (JISE) 2019, 3, 11–22. [CrossRef]

42. Abdeldayem, S.S.; Bourlai, T. ECG-based Human Authentication using High-level Spectro-temporal Signal Features. In Proceed-
ings of the 2018 IEEE International Conference on Big Data, Seattle, WA, USA, 10–13 December 2018; pp. 4984–4993.

43. Ciocoiu, I.B.; Cleju, N. Off-the-person ECG Biometrics Using Convolutional Neural Networks. In Proceedings of the 2019
International Symposium on Signals, Circuits and Systems (ISSCS), Iasi, Romania, 11–12 July 2019; pp. 1–4. [CrossRef]

44. Jyotishi, D.; Dandapat, S. An LSTM-Based Model for Person Identification Using ECG Signal. IEEE Sensors Lett. 2020, 4, 1–4.
[CrossRef]

45. Kim, B.-H.; Pyun, J.-Y. ECG Identification for Personal Authentication Using LSTM-Based Deep Recurrent Neural Networks.
Sensors 2020, 20, 3069. [CrossRef]

46. Salloum, R.; Kuo, C.-C.J. ECG-based biometrics using recurrent neural networks. In Proceedings of the 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 2062–2066.

47. Lynn, H.M.; Pan, S.B.; Kim, P. A Deep Bidirectional GRU Network Model for Biometric Electrocardiogram Classification Based on
Recurrent Neural Networks. IEEE Access 2019, 7, 145395–145405. [CrossRef]

48. Chu, Y.; Shen, H.; Huang, K. ECG Authentication Method Based on Parallel Multi-Scale One-Dimensional Residual Network
with Center and Margin Loss. IEEE Access 2019, 7, 51598–51607. [CrossRef]

https://doi.org/10.1007/s11227-019-03022-1
https://doi.org/10.3390/electronics10172052
https://doi.org/10.23919/eusipco.2018.8553585
https://doi.org/10.1109/TIFS.2020.3006313
https://doi.org/10.1109/iscas.2018.8350983
https://doi.org/10.1109/embc.2016.7592193
https://doi.org/10.1109/ccece43985.2019.9052394
https://www.researchgate.net/publication/359195979_Photoplethysmographic_Biometrics_a_Comprehensive_Survey
https://www.researchgate.net/publication/359195979_Photoplethysmographic_Biometrics_a_Comprehensive_Survey
https://doi.org/10.1109/ACCESS.2017.2707460
https://doi.org/10.1016/j.patrec.2018.03.028
https://doi.org/10.1109/icoase51841.2020.9436592
https://doi.org/10.3390/e23060733
https://doi.org/10.3390/app9224810
https://doi.org/10.1016/j.future.2019.06.008
https://doi.org/10.18178/ijmlc.2020.10.2.929
https://doi.org/10.1109/embc46164.2021.9630899
https://doi.org/10.1016/j.neucom.2020.01.019
https://doi.org/10.1007/s12652-019-01401-3
https://doi.org/10.1109/TBIOM.2019.2947434
https://doi.org/10.38088/jise.559236
https://doi.org/10.1109/isscs.2019.8801783
https://doi.org/10.1109/LSENS.2020.3012653
https://doi.org/10.3390/s20113069
https://doi.org/10.1109/ACCESS.2019.2939947
https://doi.org/10.1109/ACCESS.2019.2912519


Appl. Sci. 2023, 13, 9454 32 of 32

49. (PDF) Fast and Accurate Algorithm for ECG Authentication Using Residual Depthwise Separable Convolutional Neural
Networks. Available online: https://www.researchgate.net/publication/341300354_Fast_and_Accurate_Algorithm_for_ECG_
Authentication_Using_Residual_Depthwise_Separable_Convolutional_Neural_Networks (accessed on 8 January 2023).

50. Zheng, G.; Ji, S.; Dai, M.; Sun, Y. ECG Based Identification by Deep Learning. In Proceedings of the Biometric Recognition: 12th
Chinese Conference, CCBR2017, Shenzhen, China, 28–29 October 2017; Springer International Publishing: New York, NY, USA, 2017;
pp. 503–510. [CrossRef]

51. Zhao, Z.; Zhang, Y.; Deng, Y.; Zhang, X. ECG authentication system design incorporating a convolutional neural network and
generalized S-Transformation. Comput. Biol. Med. 2018, 102, 168–179. [CrossRef] [PubMed]

52. Yaacoubi, C.; Besrour, R.; Lachiri, Z. A multimodal biometric identification system based on ECG and PPG signals. In Proceedings
of the Biometric Recognition: 12th Chinese Conference, CCBR 2017, Shenzhen, China, 28–29 October 2017; Springer International
Publishing: New York, NY, USA, 2020; pp. 503–510. [CrossRef]

53. ECG-1D Dataset. Available online: https://archive.physionet.org/physiobank/database/ecgiddb/ (accessed on 15 January 2023).
54. Aqil, M.; Jbari, A.; Bourouhou, A. ECG Signal Denoising by Discrete Wavelet Transform. Int. J. Online Eng. (iJOE) 2017, 13, 51.

[CrossRef]
55. Singh, P.; Pradhan, G.; Shahnawazuddin, S. Denoising of ECG signal by non-local estimation of approximation coefficients in

DWT. Biocybern. Biomed. Eng. 2017, 37, 599–610. [CrossRef]
56. Pakhmode, S.L.; Dixit, S. Elimination of Noise from Ambulatory ECG Signal using DWT. Int. J. Eng. Trends Technol. 2022, 70,

266–273. [CrossRef]
57. Abbas, Q.; Baig, A.R.; Hussain, A. Classification of Post-COVID-19 Emotions with Residual-Based Separable Convolution

Networks and EEG Signals. Sustainability 2023, 15, 1293. [CrossRef]
58. Shovon, T.H.; Al Nazi, Z.; Dash, S.; Hossain, M.F. Classification of motor imagery EEG signals with multi-input convolutional

neural network by augmenting STFT. In Proceedings of the 2019 5th International Conference on Advances in Electrical
Engineering (ICAEE), Dhaka, Bangladesh, 26–28 September 2019; pp. 398–403. [CrossRef]

59. Alzamzami, F.; Hoda, M.; El Saddik, A. Light Gradient Boosting Machine for General Sentiment Classification on Short Texts: A
Comparative Evaluation. IEEE Access 2020, 8, 101840–101858. [CrossRef]

60. Hossin, M.; Sulaiman, M.N. A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Manag.
Process 2015, 5, 1.

61. Shaheed, K.; Mao, A.; Qureshi, I.; Kumar, M.; Abbas, Q.; Ullah, I.; Zhang, X. A Systematic Review on Physiological-Based
Biometric Recognition Systems: Current and Future Trends. Arch. Comput. Methods Eng. 2021, 28, 4917–4960. [CrossRef]

62. Sangaiah, A.K.; Rezaei, S.; Javadpour, A.; Zhang, W. Explainable AI in big data intelligence of community detection for
digitalization e-healthcare services. Appl. Soft Comput. 2023, 136, 110119. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.researchgate.net/publication/341300354_Fast_and_Accurate_Algorithm_for_ECG_Authentication_Using_Residual_Depthwise_Separable_Convolutional_Neural_Networks
https://www.researchgate.net/publication/341300354_Fast_and_Accurate_Algorithm_for_ECG_Authentication_Using_Residual_Depthwise_Separable_Convolutional_Neural_Networks
https://doi.org/10.1007/978-3-319-69923-3_54
https://doi.org/10.1016/j.compbiomed.2018.09.027
https://www.ncbi.nlm.nih.gov/pubmed/30290297
https://doi.org/10.1145/3423603.3424053
https://archive.physionet.org/physiobank/database/ecgiddb/
https://doi.org/10.3991/ijoe.v13i09.7159
https://doi.org/10.1016/j.bbe.2017.06.001
https://doi.org/10.14445/22315381/ijett-v70i5p229
https://doi.org/10.3390/su15021293
https://doi.org/10.1109/icaee48663.2019.8975578
https://doi.org/10.1109/ACCESS.2020.2997330
https://doi.org/10.1007/s11831-021-09560-3
https://doi.org/10.1016/j.asoc.2023.110119

	Introduction 
	Background 
	Major Contributions 
	Paper Organization 

	Literature Review 
	Machine-Learning Based Techniques 
	PCG-Based Recognition Method 
	PPG-Based Recognition Method 
	ECG-Based Recognition Method 

	Deep-Learning Based Techniques 
	PPG-Based Recognition Method 
	ECG-Based Recognition Method 


	Materials and Methods 
	Data Acquisition 
	ECG Signal Preprocessing 
	Preprocessed Signal Transformation 
	Deep Features Extraction from Spectrogram 
	Optimization Deep Features 
	Biometric Human Identification 

	Results and discussions 
	Evaluation Metrics 
	Environment Setup 
	Result Analysis 
	Fine Tuning Models Hyperparameters 
	State-of-the-Art Comparisons 
	Computational Analysis 

	Discussions 
	Future Directions 
	Practical Domains of Cardiac Biometric Applications 

	Conclusions 
	References

