Spontaneous and Controlled Fermentation Tests in Industrial Table Olives Production
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Trial
- 1.
- it was kept sealed until the end of the fermentation process;
- 2.
- its position, because it was placed in an open space together with all the other barrels.
2.2. Analytical Determinations
2.3. Statistical Analysis
3. Results
3.1. Chemical-Physical Parameters
3.2. Microbiological Analysis
3.3. Phenolic Content
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Eigenvectors: | |||||
F1 | F2 | F3 | F4 | F5 | |
Free acidity | −0.023 | 0.863 | 0.440 | 0.191 | 0.087 |
Humidity | −0.470 | 0.018 | −0.017 | −0.615 | 0.403 |
Ashes | 0.460 | 0.112 | −0.431 | 0.180 | 0.746 |
Salt | 0.477 | 0.029 | −0.159 | −0.034 | −0.417 |
P/S | −0.444 | −0.267 | 0.033 | 0.741 | 0.135 |
Oil content | 0.377 | −0.413 | 0.771 | −0.061 | 0.285 |
Factor loadings: | |||||
F1 | F2 | F3 | F4 | F5 | |
Free acidity | −0.048 | 0.969 | 0.233 | 0.060 | 0.011 |
Humidity | −0.979 | 0.020 | −0.009 | −0.195 | 0.050 |
Ashes | 0.959 | 0.125 | −0.228 | 0.057 | 0.092 |
Salt | 0.995 | 0.033 | −0.084 | −0.011 | −0.052 |
P/S | −0.924 | −0.300 | 0.017 | 0.234 | 0.017 |
Oil content | 0.785 | −0.463 | 0.408 | −0.019 | 0.035 |
Correlations between variables and factors: | |||||
F1 | F2 | F3 | F4 | F5 | |
Free acidity | −0.048 | 0.969 | 0.233 | 0.060 | 0.011 |
Humidity | −0.979 | 0.020 | −0.009 | −0.195 | 0.050 |
Ashes | 0.959 | 0.125 | −0.228 | 0.057 | 0.092 |
Salt | 0.995 | 0.033 | −0.084 | −0.011 | −0.052 |
P/S | −0.924 | −0.300 | 0.017 | 0.234 | 0.017 |
Oil content | 0.785 | −0.463 | 0.408 | −0.019 | 0.035 |
Eigenvectors: | ||||||||||||
F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11 | F12 | |
Hydroxytyrosol | 0.066 | 0.045 | 0.473 | 0.079 | 0.377 | −0.042 | 0.096 | 0.141 | −0.017 | −0.211 | −0.347 | −0.223 |
Tyrosol | −0.087 | 0.318 | 0.060 | 0.293 | 0.310 | −0.133 | 0.067 | 0.159 | 0.175 | −0.046 | 0.076 | 0.397 |
p-Hydroxybenzoic ac. | −0.206 | 0.083 | −0.169 | 0.288 | 0.316 | 0.132 | −0.043 | 0.174 | 0.107 | −0.015 | −0.225 | −0.227 |
Vanillic ac. | 0.273 | 0.014 | −0.156 | −0.021 | 0.115 | 0.078 | −0.282 | 0.052 | −0.388 | −0.266 | −0.041 | 0.169 |
Caffeic ac. | 0.176 | 0.046 | −0.140 | −0.164 | 0.046 | 0.649 | −0.196 | 0.205 | 0.244 | −0.038 | −0.216 | −0.107 |
Vanillin | 0.178 | 0.044 | 0.111 | 0.425 | −0.283 | 0.005 | 0.170 | 0.041 | −0.086 | −0.265 | 0.098 | −0.209 |
p-Coumaric ac. | −0.067 | 0.219 | 0.367 | −0.236 | 0.067 | 0.356 | −0.244 | −0.375 | 0.026 | 0.103 | 0.123 | 0.146 |
Hydroxytyrosylacetate | 0.137 | 0.200 | −0.080 | 0.356 | −0.314 | 0.207 | −0.042 | −0.131 | 0.460 | −0.111 | −0.146 | 0.283 |
Ferulic ac. | 0.234 | 0.118 | 0.239 | −0.188 | −0.027 | −0.233 | 0.134 | −0.304 | 0.175 | 0.131 | −0.331 | 0.047 |
Verbascoside | 0.047 | 0.359 | −0.319 | 0.164 | −0.098 | −0.037 | −0.023 | −0.150 | −0.101 | 0.152 | −0.090 | −0.315 |
O-Coumaric ac. | 0.292 | 0.030 | −0.107 | 0.023 | 0.115 | −0.042 | 0.001 | −0.236 | −0.015 | −0.164 | 0.077 | 0.021 |
3,4-DHPEA-EDA ox | 0.028 | −0.102 | 0.102 | 0.430 | 0.419 | 0.247 | −0.072 | −0.364 | −0.228 | 0.274 | 0.249 | −0.024 |
3,4-DHPEA-EDA | −0.047 | 0.435 | −0.114 | −0.112 | −0.085 | 0.026 | −0.017 | −0.001 | −0.176 | 0.157 | −0.017 | −0.274 |
Oleuropein | 0.205 | 0.301 | −0.172 | −0.101 | 0.012 | 0.015 | 0.066 | 0.002 | −0.227 | −0.056 | 0.187 | 0.171 |
3,4-DHPEA-EA | 0.273 | 0.050 | −0.090 | −0.042 | 0.184 | −0.006 | 0.131 | 0.455 | −0.092 | 0.495 | −0.137 | 0.235 |
Tyrosylacetate | 0.105 | 0.161 | 0.361 | 0.172 | −0.363 | 0.141 | 0.087 | 0.182 | −0.349 | 0.209 | −0.064 | 0.221 |
p-HPEA-EDA ox | 0.289 | 0.014 | 0.090 | −0.151 | 0.033 | −0.063 | −0.053 | −0.027 | 0.137 | 0.266 | 0.020 | −0.293 |
p-HPEA-EDA | 0.278 | −0.052 | −0.072 | −0.156 | 0.164 | −0.085 | −0.114 | −0.020 | −0.028 | −0.319 | −0.078 | 0.227 |
Pinoresinol, 1-Acetoxypinoresinol | −0.185 | 0.248 | −0.295 | −0.060 | 0.141 | −0.168 | 0.052 | −0.264 | −0.094 | 0.002 | −0.249 | 0.127 |
p-HPEA-EA | 0.288 | −0.037 | −0.033 | 0.101 | 0.040 | −0.167 | −0.223 | 0.030 | −0.036 | −0.093 | 0.056 | −0.132 |
3,4-DHPEA,-EA,H ox | 0.157 | −0.091 | −0.156 | −0.128 | 0.131 | 0.314 | 0.789 | −0.122 | 0.029 | −0.085 | 0.152 | −0.016 |
Luteolin | −0.112 | 0.367 | 0.190 | −0.202 | 0.034 | 0.087 | 0.026 | 0.239 | −0.067 | −0.321 | 0.313 | −0.179 |
3,4-DHPEA,-EA,H | −0.229 | 0.276 | 0.047 | −0.102 | 0.108 | −0.097 | 0.067 | 0.065 | 0.179 | −0.040 | 0.160 | 0.111 |
p-HPEA,-EA,H | 0.285 | 0.060 | −0.017 | 0.032 | 0.083 | −0.185 | −0.128 | 0.123 | 0.391 | 0.169 | 0.492 | −0.097 |
FENOLI TOTALI (mg/kg) | 0.251 | 0.218 | 0.144 | 0.049 | 0.065 | −0.103 | 0.101 | −0.118 | 0.034 | −0.083 | −0.154 | −0.142 |
Factor loadings: | ||||||||||||
F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11 | F12 | |
Hydroxytyrosol | 0.216 | 0.098 | 0.782 | 0.121 | 0.545 | −0.045 | 0.080 | 0.065 | −0.007 | −0.071 | −0.064 | −0.010 |
Tyrosol | −0.285 | 0.690 | 0.099 | 0.445 | 0.448 | −0.143 | 0.056 | 0.073 | 0.072 | −0.016 | 0.014 | 0.018 |
p-Hydroxybenzoic ac. | −0.677 | 0.179 | −0.279 | 0.438 | 0.456 | 0.143 | −0.036 | 0.080 | 0.044 | −0.005 | −0.042 | −0.010 |
Vanillic ac. | 0.898 | 0.031 | −0.258 | −0.032 | 0.167 | 0.084 | −0.236 | 0.024 | −0.160 | −0.090 | −0.008 | 0.008 |
Caffeic ac. | 0.577 | 0.100 | −0.231 | −0.249 | 0.066 | 0.700 | −0.164 | 0.094 | 0.100 | −0.013 | −0.040 | −0.005 |
Vanillin | 0.585 | 0.096 | 0.184 | 0.646 | −0.408 | 0.006 | 0.142 | 0.019 | −0.035 | −0.089 | 0.018 | −0.009 |
p-Coumaric ac. | −0.219 | 0.474 | 0.607 | −0.359 | 0.097 | 0.384 | −0.204 | −0.172 | 0.011 | 0.035 | 0.023 | 0.007 |
Hydroxytyrosylacetate | 0.451 | 0.434 | −0.132 | 0.540 | −0.454 | 0.223 | −0.035 | −0.060 | 0.189 | −0.037 | −0.027 | 0.013 |
Ferulic ac. | 0.767 | 0.257 | 0.396 | −0.286 | −0.038 | −0.251 | 0.112 | −0.139 | 0.072 | 0.044 | −0.061 | 0.002 |
Verbascoside | 0.153 | 0.777 | −0.528 | 0.249 | −0.142 | −0.040 | −0.019 | −0.069 | −0.041 | 0.051 | −0.017 | −0.014 |
O-Coumaric ac. | 0.958 | 0.064 | −0.177 | 0.035 | 0.166 | −0.045 | 0.001 | −0.108 | −0.006 | −0.055 | 0.014 | 0.001 |
3,4-DHPEA-EDA ox | 0.091 | −0.220 | 0.168 | 0.653 | 0.605 | 0.266 | −0.060 | −0.167 | −0.094 | 0.092 | 0.046 | −0.001 |
3,4-DHPEA-EDA | −0.155 | 0.942 | −0.188 | −0.170 | −0.123 | 0.028 | −0.014 | 0.000 | −0.072 | 0.053 | −0.003 | −0.012 |
Oleuropein | 0.675 | 0.653 | −0.284 | −0.154 | 0.018 | 0.017 | 0.055 | 0.001 | −0.093 | −0.019 | 0.035 | 0.008 |
3,4-DHPEA-EA | 0.898 | 0.109 | −0.148 | −0.064 | 0.266 | −0.007 | 0.109 | 0.209 | −0.038 | 0.167 | −0.025 | 0.010 |
Tyrosylacetate | 0.345 | 0.348 | 0.597 | 0.261 | −0.524 | 0.152 | 0.073 | 0.083 | −0.143 | 0.070 | −0.012 | 0.010 |
p-HPEA-EDA ox | 0.951 | 0.031 | 0.149 | −0.229 | 0.048 | −0.068 | −0.044 | −0.013 | 0.056 | 0.090 | 0.004 | −0.013 |
p-HPEA-EDA | 0.912 | −0.113 | −0.118 | −0.237 | 0.237 | −0.092 | −0.095 | −0.009 | −0.011 | −0.107 | −0.014 | 0.010 |
Pinoresinol, 1-Acetoxypinoresinol | −0.608 | 0.537 | −0.488 | −0.092 | 0.203 | −0.181 | 0.044 | −0.121 | −0.038 | 0.001 | −0.046 | 0.006 |
p-HPEA-EA | 0.946 | −0.080 | −0.054 | 0.153 | 0.057 | −0.180 | −0.187 | 0.014 | −0.015 | −0.031 | 0.010 | −0.006 |
3,4-DHPEA,-EA,H ox | 0.515 | −0.196 | −0.258 | −0.195 | 0.189 | 0.339 | 0.660 | −0.056 | 0.012 | −0.029 | 0.028 | −0.001 |
Luteolin | −0.369 | 0.795 | 0.314 | −0.307 | 0.049 | 0.094 | 0.022 | 0.110 | −0.028 | −0.108 | 0.058 | −0.008 |
3,4-DHPEA,-EA,H | −0.753 | 0.598 | 0.078 | −0.155 | 0.156 | −0.104 | 0.056 | 0.030 | 0.074 | −0.013 | 0.030 | 0.005 |
p-HPEA,-EA,H | 0.935 | 0.129 | −0.028 | 0.049 | 0.119 | −0.200 | −0.107 | 0.056 | 0.161 | 0.057 | 0.091 | −0.004 |
FENOLI TOTALI (mg/kg) | 0.825 | 0.473 | 0.239 | 0.074 | 0.094 | −0.111 | 0.084 | −0.054 | 0.014 | −0.028 | −0.029 | −0.006 |
Correlations between variables and factors: | ||||||||||||
F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11 | F12 | |
Hydroxytyrosol | 0.216 | 0.098 | 0.782 | 0.121 | 0.545 | −0.045 | 0.080 | 0.065 | −0.007 | −0.071 | −0.064 | −0.010 |
Tyrosol | −0.285 | 0.690 | 0.099 | 0.445 | 0.448 | −0.143 | 0.056 | 0.073 | 0.072 | −0.016 | 0.014 | 0.018 |
p-Hydroxybenzoic ac. | −0.677 | 0.179 | −0.279 | 0.438 | 0.456 | 0.143 | −0.036 | 0.080 | 0.044 | −0.005 | −0.042 | −0.010 |
Vanillic ac. | 0.898 | 0.031 | −0.258 | −0.032 | 0.167 | 0.084 | −0.236 | 0.024 | −0.160 | −0.090 | −0.008 | 0.008 |
Caffeic ac. | 0.577 | 0.100 | −0.231 | −0.249 | 0.066 | 0.700 | −0.164 | 0.094 | 0.100 | −0.013 | −0.040 | −0.005 |
Vanillin | 0.585 | 0.096 | 0.184 | 0.646 | −0.408 | 0.006 | 0.142 | 0.019 | −0.035 | −0.089 | 0.018 | −0.009 |
p-Coumaric ac. | −0.219 | 0.474 | 0.607 | −0.359 | 0.097 | 0.384 | −0.204 | −0.172 | 0.011 | 0.035 | 0.023 | 0.007 |
Hydroxytyrosylacetate | 0.451 | 0.434 | −0.132 | 0.540 | −0.454 | 0.223 | −0.035 | −0.060 | 0.189 | −0.037 | −0.027 | 0.013 |
Ferulic ac. | 0.767 | 0.257 | 0.396 | −0.286 | −0.038 | −0.251 | 0.112 | −0.139 | 0.072 | 0.044 | −0.061 | 0.002 |
Verbascoside | 0.153 | 0.777 | −0.528 | 0.249 | −0.142 | −0.040 | −0.019 | −0.069 | −0.041 | 0.051 | −0.017 | −0.014 |
O-Coumaric ac. | 0.958 | 0.064 | −0.177 | 0.035 | 0.166 | −0.045 | 0.001 | −0.108 | −0.006 | −0.055 | 0.014 | 0.001 |
3,4-DHPEA-EDA ox | 0.091 | −0.220 | 0.168 | 0.653 | 0.605 | 0.266 | −0.060 | −0.167 | −0.094 | 0.092 | 0.046 | −0.001 |
3,4-DHPEA-EDA | −0.155 | 0.942 | −0.188 | −0.170 | −0.123 | 0.028 | −0.014 | 0.000 | −0.072 | 0.053 | −0.003 | −0.012 |
Oleuropein | 0.675 | 0.653 | −0.284 | −0.154 | 0.018 | 0.017 | 0.055 | 0.001 | −0.093 | −0.019 | 0.035 | 0.008 |
3,4-DHPEA-EA | 0.898 | 0.109 | −0.148 | −0.064 | 0.266 | −0.007 | 0.109 | 0.209 | −0.038 | 0.167 | −0.025 | 0.010 |
Tyrosylacetate | 0.345 | 0.348 | 0.597 | 0.261 | −0.524 | 0.152 | 0.073 | 0.083 | −0.143 | 0.070 | −0.012 | 0.010 |
p-HPEA-EDA ox | 0.951 | 0.031 | 0.149 | −0.229 | 0.048 | −0.068 | −0.044 | −0.013 | 0.056 | 0.090 | 0.004 | −0.013 |
p-HPEA-EDA | 0.912 | −0.113 | −0.118 | −0.237 | 0.237 | −0.092 | −0.095 | −0.009 | −0.011 | −0.107 | −0.014 | 0.010 |
Pinoresinol, 1-Acetoxypinoresinol | −0.608 | 0.537 | −0.488 | −0.092 | 0.203 | −0.181 | 0.044 | −0.121 | −0.038 | 0.001 | −0.046 | 0.006 |
p-HPEA-EA | 0.946 | −0.080 | −0.054 | 0.153 | 0.057 | −0.180 | −0.187 | 0.014 | −0.015 | −0.031 | 0.010 | −0.006 |
3,4-DHPEA,-EA,H ox | 0.515 | −0.196 | −0.258 | −0.195 | 0.189 | 0.339 | 0.660 | −0.056 | 0.012 | −0.029 | 0.028 | −0.001 |
Luteolin | −0.369 | 0.795 | 0.314 | −0.307 | 0.049 | 0.094 | 0.022 | 0.110 | −0.028 | −0.108 | 0.058 | −0.008 |
3,4-DHPEA,-EA,H | −0.753 | 0.598 | 0.078 | −0.155 | 0.156 | −0.104 | 0.056 | 0.030 | 0.074 | −0.013 | 0.030 | 0.005 |
p-HPEA,-EA,H | 0.935 | 0.129 | −0.028 | 0.049 | 0.119 | −0.200 | −0.107 | 0.056 | 0.161 | 0.057 | 0.091 | −0.004 |
FENOLI TOTALI (mg/kg) | 0.825 | 0.473 | 0.239 | 0.074 | 0.094 | −0.111 | 0.084 | −0.054 | 0.014 | −0.028 | −0.029 | −0.006 |
References
- Conte, P.; Fadda, C.; Del Caro, A.; Urgeghe, P.P.; Piga, A. Table Olives: An Overview on Effects of Processing on Nutritional and Sensory Quality. Foods 2020, 9, 514. [Google Scholar] [CrossRef]
- Perpetuini, G.; Prete, R.; Garcia-Gonzalez, N.; Khairul Alam, M.; Corsetti, A. Table Olives More than a Fermented Food. Foods 2020, 9, 178. [Google Scholar] [CrossRef] [PubMed]
- Anagnostopoulos, D.A.; Kamilari, E.; Tsaltas, D. Evolution of Bacterial Communities, Physicochemical Changes and Sensorial Attributes of Natural Whole and Cracked Picual Table Olives During Spontaneous and Inoculated Fermentation. Front. Microbiol. 2020, 11, 1128. [Google Scholar] [CrossRef] [PubMed]
- Cocolin, L.; Alessandria, V.; Botta, C.; Gorra, R.; De Filippis, F.; Ercolini, D.; Rantsiou, K. NaOH-debittering induces changes in bacterial ecology during table olives fermentation. PLoS ONE 2013, 8, e69074. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, E.; Medina, E.; García, P.; Brenes, M.; Romero, C. Optimization of the Natural Debittering of Table Olives. LWT—Food Sci. Technol. 2017, 77, 308–313. [Google Scholar] [CrossRef]
- Anagnostopoulos, D.A.; Tsaltas, D. Current Status, Recent Advances, and Main Challenges on Table Olive Fermentation: The Present Meets the Future. Front. Microbiol. 2022, 12, 797295. [Google Scholar] [CrossRef] [PubMed]
- Servili, M.; Settanni, L.; Veneziani, G.; Esposto, S.; Massitti, O.; Taticchi, A.; Urbani, S.; Montedoro, G.F.; Corsetti, A. The use of Lactobacillus pentosus 1MO to shorten the debittering process time of black table olives (Cv. Itrana and Leccino): A pilot-scale application. J. Agric. Food Chem. 2006, 54, 3869–3875. [Google Scholar] [CrossRef]
- Gökçen, İ. Phenolic compounds change in Table Olives. Nutr. Food Sci. Int. J. 2017, 3, 555621. [Google Scholar]
- Ramírez, E.; Medina, E.; Brenes, M.; Romero, C. Endogenous Enzymes Involved in the Transformation of Oleuropein in Spanish Table Olive Varieties. J. Agric. Food Chem. 2014, 62, 9569–9575. [Google Scholar] [CrossRef]
- Bonatsou, S.; Tassou, C.C.; Panagou, E.Z.; Nychas, G.E. Table Olive Fermentation Using Starter Cultures with Multifunctional Potential. Microorganisms 2017, 5, 30. [Google Scholar] [CrossRef]
- Lanza, B.; Zago, M.; Di Marco, S.; Di Loreto, G.; Cellini, M.; Tidona, F.; Bonvini, B.; Bacceli, M.; Simone, N. Single and Multiple Inoculum of Lactiplantibacillus plantarum Strains in Table Olive Lab-Scale Fermentations. Fermentation 2020, 6, 126. [Google Scholar] [CrossRef]
- Lanza, B.; Di Marco, S.; Bacceli, M.; Di Serio, M.G.; Di Loreto, G.; Cellini, M.; Simone, N. Lactiplantibacillus plantarum Used as Single, Multiple, and Mixed Starter Combined with Candida boidinii for Table Olive Fermentations: Chemical, Textural, and Sensorial Characterization of Final Products. Fermentation 2021, 7, 239. [Google Scholar] [CrossRef]
- Arroyo-López, F.N.; Querol, A.; Bautista-Gallego, J.; Garrido-Fernández, A. Role of yeasts in table olive production. Int. J. Food Microbiol. 2008, 128, 189–196. [Google Scholar] [CrossRef]
- Arroyo-López, F.N.; Romero-Gil, V.; Bautista-Gallego, J.; Rodríguez-Gómez, F.; Jiménez-Díaz, R.; García-García, P.; Querol, A.; Garrido-Fernández, A. Yeasts in Table Olive Processing: Desirable or Spoilage Microorganisms? Int. J. Food Microbiol. 2012, 160, 42–49. [Google Scholar] [CrossRef]
- Campus, M.; Cauli, E.; Scano, E.; Piras, F.; Comunian, R.; Paba, A.; Daga, E.; Di Salvo, R.; Sedda, P.; Angioni, A.; et al. Towards Controlled Fermentation of Table Olives: LAB Starter Driven Process in an Automatic Pilot Processing Plant. Food Bioprocess Technol. 2017, 10, 1063–1073. [Google Scholar] [CrossRef]
- Corsetti, A.; Perpetuini, G.; Schirone, M.; Tofalo, R.; Suzzi, G. Application of starter cultures to table olive fermentation: An overview on the experimental studies. Front. Microbiol. 2012, 3, 248. [Google Scholar] [CrossRef]
- Psani, M.; Kotzekidou, P. Technological Characteristics of Yeast Strains and Their Potential as Starter Adjuncts in Greek-Style Black Olive Fermentation. World J. Microbiol. Biotechnol. 2006, 22, 1329–1336. [Google Scholar] [CrossRef]
- Marquina, D.; Toufani, S.; Llorente, P.; Santos, A.; Peinado, J.M. Killer Activity in Yeast Isolates from Olive Brines. Adv. Food Sci. 1997, 19, 41–46. [Google Scholar]
- Bleve, G.; Tufariello, M.; Durante, M.; Perbellini, E.; Ramires, F.A.; Grieco, F.; Cappello, M.S.; De Domenico, S.; Mita, G.; Tasioula-Margari, M.; et al. Physico-chemical and microbiological characterization of spontaneous fermentation of Cellina di Nardò and Leccino table olives. Front. Microbiol. 2014, 5, 570. [Google Scholar] [CrossRef]
- Ciafardini, G.; Zullo, B.A. Use of Air-Protected Headspace to Prevent Yeast Film Formation on the Brine of Leccino and Taggiasca Black Table Olives Processed in Industrial-Scale Plastic Barrels. Foods 2020, 9, 941. [Google Scholar] [CrossRef]
- Panagou, E.Z.; Tassou, C.C.; Katsaboxakis, C.Z. Induced Lactic Acid Fermentation of Untreated Green Olives of the Conservolea Cultivar by Lactobacillus Pentosus. J. Sci. Food Agric. 2003, 83, 667–674. [Google Scholar] [CrossRef]
- Lombardi, S.J.; Macciola, V.; Iorizzo, M.; De Leonardis, A. Effect of different storage conditions on the shelf-life of natural green table olives. Ital. J. Food Sci. 2018, 30, 414–427. [Google Scholar]
- Lanza, B.; Zago, M.; Carminati, D.; Rossetti, L.; Meucci, A.; Marfisi, P.; Russi, F.; Iannucci, E.; Di Serio, M.G.; Giraffa, G. Isolation and preliminary characterization of Lactobacillus plantarum bacteriophages from table olive fermentation. Ann. Microbiol. 2012, 62, 1467–1472. [Google Scholar] [CrossRef]
- Chytiri, A.; Tasioula-Margari, M.; Bleve, G.; Kontogianni, V.G.; Kallimanis, A.; Kontominas, M.G. Effect of different inoculation strategies of selected yeast and LAB cultures on Conservolea and Kalamàta table olives considering phenol content, texture, and sensory attributes. J. Sci. Food Agric. 2020, 100, 926–935. [Google Scholar] [CrossRef]
- Paba, A.; Chessa, L.; Daga, E.; Campus, M.; Bulla, M.; Angioni, A.; Sedda, P.; Comunian, R. Do Best-Selected Strains Perform Table Olive Fermentation Better than Undefined Biodiverse Starters? A Comparative Study. Foods 2020, 9, 135. [Google Scholar] [CrossRef]
Code | Description |
---|---|
N1 | Spontaneous Fermentation (replica 1) |
N2 | Spontaneous Fermentation (replica 2) |
G1 | Guided Fermentation (replica 1) |
G2 | Guided Fermentation (replica 2) |
FUO | Spontaneous Fermentation (sealed barrel) |
Date (dd/mm/yyyy) | Days | Description |
---|---|---|
6 November 2021 | 0 | Barrels preparation |
2 December 2021 | 23 | Inoculation of barrels G1 and G2 |
9 December 2021 | 30 | 1st sampling (s.) |
16 December 2021 | 37 | 2nd sampling (s.) |
13 January 2022 | 65 | 3rd sampling (s.) |
3 March 2022 | 114 | 4th sampling (s.) |
16 June 2022 | 219 | 5th sampling/end fermentation (EP) |
20 September 2022 | 315 | 6th sampling/shelf-life 3 months (S3) |
7 December 2022 | 388 | 7th sampling/shelf-life 6 months (S6) |
Fresh Olives | During the Process | End of Process | Shelf Life 3 Months | Shelf Life 6 Months | |
---|---|---|---|---|---|
Microbiological analysis | X | X | X | X | X |
Phenols content (pulp) | X | X | X | X | X |
Phenols content (brine) | X | X | X | X | |
Colour | X | X | X | ||
Humidity | X | X | |||
Ash | X | X | |||
Oil content | X | X | |||
Pulp/stone ratio (P/S) | X | X | X | X | |
Salt content (pulp) | X | ||||
Salt content (brine) | X | X | X | X | |
Free acidity (pulp) | X | ||||
Free acidity (brine) | X | X | X | X | |
Textural analysis * | X | X | X | X | X |
Sensory analysis * | X | X |
Parameters | Fresh Fruit |
---|---|
Free acidity (1) | 0.44 ± 0.01 |
Humidity (2) | 69.53 ± 0.08 |
Ash (3) | 2.20 ± 0.36 |
Salt (4) | 0.60 ± 0.01 |
P/S (5) | 4.42 |
Oil content (6) | 9.54 ± 0.03 |
Parameters | N1 | N2 | G1 | G2 | FUO |
---|---|---|---|---|---|
Free acidity (1) | 0.30 ± 0.01 | 0.29 ± 0.01 | 0.28 ± 0.01 | 0.41 ± 0.01 | 0.64 ± 0.01 |
Humidity (2) | 62.19 ± 0.01 | 63.93 ± 0.35 | 61.48 ± 0.56 | 62.66 ± 0.04 | 61.63 ± 0.08 |
Ash (3) | 6.86 ± 1.39 | 6.71 ± 1.18 | 6.73 ± 1.36 | 5.77 ± 0.16 | 7.84 ± 0.01 |
Salt (4) | 8.97 ± 0.05 | 8.69 ± 0.07 | 9.03 ± 0.02 | 8.86 ± 0.09 | 10.11 ± 0.09 |
Oil content (5) | 10.74 ± 0.24 | 11.03 ± 0.50 | 12.13 ± 0.30 | 11.70 ± 0.30 | 10.67 ± 0.00 |
P/S (6) | 3.83 | 3.63 | 3.81 | 3.63 | 3.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simone, N.; Di Loreto, G.; Bacceli, M.; Di Marco, S.; Cellini, M.; Vecchiotti, G.; Lanza, B. Spontaneous and Controlled Fermentation Tests in Industrial Table Olives Production. Appl. Sci. 2023, 13, 9455. https://doi.org/10.3390/app13169455
Simone N, Di Loreto G, Bacceli M, Di Marco S, Cellini M, Vecchiotti G, Lanza B. Spontaneous and Controlled Fermentation Tests in Industrial Table Olives Production. Applied Sciences. 2023; 13(16):9455. https://doi.org/10.3390/app13169455
Chicago/Turabian StyleSimone, Nicola, Giuseppina Di Loreto, Martina Bacceli, Sara Di Marco, Martina Cellini, Giulia Vecchiotti, and Barbara Lanza. 2023. "Spontaneous and Controlled Fermentation Tests in Industrial Table Olives Production" Applied Sciences 13, no. 16: 9455. https://doi.org/10.3390/app13169455
APA StyleSimone, N., Di Loreto, G., Bacceli, M., Di Marco, S., Cellini, M., Vecchiotti, G., & Lanza, B. (2023). Spontaneous and Controlled Fermentation Tests in Industrial Table Olives Production. Applied Sciences, 13(16), 9455. https://doi.org/10.3390/app13169455