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Abstract: Standard penetration test (SPT) has been widely used in offshore exploration because of
its unique advantages. Unlike onshore exploration, offshore construction areas are characterized by
high waves and water depths ranging from several meters to tens of meters. As a result, the reliability
of offshore SPT is significantly reduced compared with onshore SPT. Currently, the probe rod length
correction of SPT is not involved in geotechnical engineering investigation codes and related research,
which greatly limits the application of this method in offshore exploration. Therefore, a series of SPTs
were carried out in offshore environments with different water depths, with a maximum rod length
of 65 m. The acceleration and axial stress at each test point of the rod were monitored by the dynamic
signal data acquisition system, and the hammer impacting energy at each test point was obtained
by Force–Velocity (F-V) method. The test results show that the correction of the rod length of the
offshore SPT is different from that of the traditional SPT, and it needs to be further corrected for the
water depth. In this paper, a modified method of rod length for offshore SPT is proposed, which can
provide reference for the application of offshore SPT.

Keywords: offshore standard penetration test; axial stress; energy efficiency; modified coefficient of
rod length

1. Introduction

In recent years, with the rapid development of offshore engineering, it is significant to
understand the mechanical engineering properties of seabed soil. Submarine sediments
are characterized by loose structure, high water content, and high sensitivity, which make
drilling and sampling difficult, and their engineering properties mainly rely on in situ field
tests [1].

Standard penetration test (SPT) is a common in situ testing technique with the ad-
vantages of simple equipment and wide application. The engineering and mechanical
properties of cohesive and sandy soils can be determined by analyzing the blow counts of
SPT (N) [2–5]. However, the SPT equipment is not a precision instrument, and the measured
N is affected by various factors such as human operation errors and equipment differences.
Therefore, it is usually solved by stereotyping equipment specifications, standardizing
operation methods, and limiting the scope of application.

For SPT in shallow marine soft soils, since the survey hole is deep (generally tens of
meters), the blow counts are affected by the rod length; therefore, the length correction
must be carried out. Some suggestions have been given in domestic and foreign related
norms and studies on the rod length correction of the measured penetration blow counts in
the analysis of the results of the SPT [6–11]. In addition, many scholars have also studied
SPT from the hammer impacting energy for an accurate evaluation of the N value [12–24].
According to the theory of one-dimensional rod stress wave propagation, Zuo et al. [25]
obtained the correction coefficient for the rod length within the range of 36 m through the
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indoor model test. In addition, Zuo et al. [26] obtained the rod length correction coefficient
in the range of 83 m by indoor model tests and found that the rod length correction
coefficient was independent of the foundation soil material properties by comparison
tests of soils with different properties. Shi et al. [27] studied the axial stress and hammer
impacting energy distribution along the probe rod based on the field dynamic penetration
test and established the relationship equation between hammer impacting energy and rod
length. Using experimental and numerical simulation methods, Li et al. [28] analyzed the
hammer impacting energy distribution in the probe rod and gave the rod length correction
coefficient in the range of 72 m rod length. However, the existing studies mainly focus on
onshore dynamic penetration test, while the influence of the deflection and deformation
of the probe rod and the shaking of the ship-mounted drilling platform on the rod length
correction coefficient in the offshore environment is not considered [29].

In this study, a series of on-site in situ tests was carried out to analyze the axial stress
distribution and acceleration changes during the hammering process of the probe rod
in the offshore environment. The difference in the transmission efficiency of hammer
impacting energy of probe rods with different lengths is further revealed, and a rod length
correction method suitable for the offshore SPT is proposed, which provides a reference for
the offshore SPT.

2. Offshore SPT
2.1. Test Site

This test is based on the offshore wind farm project of China Guangdong Nuclear
Corporation Limited, and the test site is located in the northeastern sea area of Xiangshan
County, Zhejiang Province. The distance from the site center to the shore is 8.2 km, and the
depth of seawater in the site is 5.0–25.2 m. The seabed geological profile of the test site is
shown in Figure 1, and the soil properties for different layers are presented in Table 1. The
SPT is carried out on the survey test platform.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 2 of 14 
 

the indoor model test. In addition, Zuo et al. [26] obtained the rod length correction coef-
ficient in the range of 83 m by indoor model tests and found that the rod length correction 
coefficient was independent of the foundation soil material properties by comparison tests 
of soils with different properties. Shi et al. [27] studied the axial stress and hammer im-
pacting energy distribution along the probe rod based on the field dynamic penetration 
test and established the relationship equation between hammer impacting energy and rod 
length. Using experimental and numerical simulation methods, Li et al. [28] analyzed the 
hammer impacting energy distribution in the probe rod and gave the rod length correc-
tion coefficient in the range of 72 m rod length. However, the existing studies mainly focus 
on onshore dynamic penetration test, while the influence of the deflection and defor-
mation of the probe rod and the shaking of the ship-mounted drilling platform on the rod 
length correction coefficient in the offshore environment is not considered [29]. 

In this study, a series of on-site in situ tests was carried out to analyze the axial stress 
distribution and acceleration changes during the hammering process of the probe rod in 
the offshore environment. The difference in the transmission efficiency of hammer impact-
ing energy of probe rods with different lengths is further revealed, and a rod length cor-
rection method suitable for the offshore SPT is proposed, which provides a reference for 
the offshore SPT. 

2. Offshore SPT 
2.1. Test Site 

This test is based on the offshore wind farm project of China Guangdong Nuclear 
Corporation Limited, and the test site is located in the northeastern sea area of Xiangshan 
County, Zhejiang Province. The distance from the site center to the shore is 8.2 km, and 
the depth of seawater in the site is 5.0–25.2 m. The seabed geological profile of the test site 
is shown in Figure 1, and the soil properties for different layers are presented in Table 1. 
The SPT is carried out on the survey test platform. 

  
Figure 1. Geological profile of the test sea area. 

  

Figure 1. Geological profile of the test sea area.



Appl. Sci. 2023, 13, 9487 3 of 14

Table 1. Index properties of soils at the site located in the northeastern sea area of Xiangshan 71
County, Zhejiang Province.

Soil
Layers

Properties

Water Content/
% Density/(g/m3) Specific

Density
Void
Ratio

Liquid
Limit/%

Plastic
Limit/%

Compression
Modulus/ MPa

Cohesion
Force/kPa

Internal Friction
Angle/◦

Mud
(−22.3 m~−33.8 m) 57.2 1.65 2.74 1.60 46.2 27.2 2.39 11.0 8.3

Silty clay
(−33.8 m~−41.8 m) 24.8 2.02 2.73 0.69 39.7 23.9 6.90 52.0 16.2

Silty
(−41.8 m~−57.8 m) 27.2 1.96 2.70 0.75 / / 7.66 8 31.6

Sandy soil
(−57.8 m~) 21.1 1.99 2.69 0.63 / / 8.97 3 33.9

2.2. Test Scheme

In terms of the probe rod used in the field SPT, the outer diameter is 50 mm, the
inner diameter is 31 mm, the density is 7.85 × 103 kg/m3, and the elastic modulus is
2.11 × 1011 Pa. A total of three strain and acceleration test points are arranged along the
rod, which are, respectively, 0.5 m away from the anvil at the top of the rod, at the water–soil
contact surface, and 0.5 m above the rod bottom penetrator, as shown in Figure 2. The
strain of the probe rod is measured by 120-3AA-type strain gauges. Each measuring point
is arranged with four strain gauges at right angles and connected by the full bridge method.
The acceleration of the probe rod is measured by the acceleration sensor, and its maximum
range is 4.5 × 104 m/s2, which meets the test requirements. The strain and acceleration
data are collected by the DH5922D dynamic signal data collection system, which includes
eight data collection channels. The maximum continuous sampling rate is 200 kHz, which
can meet the requirements of dynamic strain and acceleration data collection in the test.
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Figure 2. Layout of probe rod test points.

During the test, the weight of the drop hammer is 63.5 kg and the lifting height is
76 mm. An automatic hoist is used to control the hammering rate and lifting height. In
the test, the blow rate is about 20 strokes per minute, which meets the requirements of the
specification. In order to ensure the accuracy of the test results, parallel tests were carried
out in different test groups.

There are eight test points in the test site for SPT. Before the test, the water depth
of the site was initially surveyed. The water depths of the eight test points were 7.1, 8.9,
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11.1, 11.6, 15.0, 17.1, 19.4, and 20.7 m, respectively. For each test site, 10 sets of standard
penetration tests were designed for different rod lengths to investigate the hammering
energy transmission efficiency of the probe rod at survey depths of 5, 10, 15, 20, 25, 30, 35,
40, 45, and 50 m, respectively.

3. Results
3.1. Stress Wave Propagation Velocity Analysis

From the one-dimensional wave theory, the theoretical wave velocity in the probe rod
can be calculated from Equation (1) [30–36]:

C =
√

E/ρ (1)

where C is the wave velocity (m/s), E is the static elastic modulus of the probe rod (109 Pa,
the average elastic modulus of the probe rod in the test is 195 × 109 Pa), and ρ is the
probe rod density (value is 7850 kg/m3). The theoretical wave velocity in the probe rod is
4987.5 m/s.

Wave velocity between test points in the probe rod is equal to the spacing between
test points divided by the time interval between axial stress peaks at the test points. The
measured wave velocities between the test points are presented in Table 2. Comparing
the measured data in Table 2, it can be seen that the measured wave velocity of the probe
rod is 4547.7~4752.6 m/s and the measured wave velocity is less than the theoretical wave
velocity, which is about 91.2–95.3% of the theoretical value. The theoretical wave velocity is
derived from an ideal one-dimensional elastic isotropic rod. Considering that the probe
rods are connected in the form of joints, joint looseness, sediment infiltration, and other
factors will affect the measured wave velocity, so the measured wave velocity deviates from
the theoretical wave velocity and it can be considered that the test results are consistent
with the one-dimensional wave theory.

Table 2. Times of peak axial stress for test points.

Distances between Two Test
Point/m

Time Intervals between Two
Test Point/s Stress Wave Velocities /m

18.6 0.004090 4547.7
18.6 0.004052 4590.3
18.6 0.004058 4583.5
28.6 0.006056 4722.6
28.6 0.006121 4672.4
28.6 0.006135 4661.8
38.6 0.008124 4751.4
38.6 0.008198 4708.5
38.6 0.008173 4722.9
48.6 0.010226 4752.6
48.6 0.010273 4730.8
48.6 0.010366 4688.4

3.2. Probe Rod Axial Stress and Acceleration Analysis

Figure 3 shows the axial stress change with time at the top of the probe rod and at the
water–soil contact surface under different water depths. In this representation, negative
stress indicates the probe rod being subjected to compression, while positive stress indicates
tension on the probe rod. It can be clearly observed that there are multiple stress peak
points, which are caused by secondary hammering due to rebound after the anvil is struck
by the falling hammer. In this paper, only the axial stresses and acceleration changes of the
rod produced by the first hammering are analyzed. As can be seen from Figure 3, the stress
wave formed by the impact of the falling hammer on the probe rod gradually decays in
the process of downward propagation, resulting in a significant reduction in the peak axial
stress from the top to the bottom of the rod. With the increase in the test water depth, there
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is no significant difference in the peak axial stress at the top test point, but the peak stress
at the bottom test point decreases with the increase in water depth. Compared with the test
group with a test water depth of 7.1 m, the peak stress at the top test point in the test group
with a test water depth of 17.1 m decreased by 2.1%, while the peak stress at the bottom
test point decreased by 28.2%.
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of 20.7 m.

Figure 4 shows the effect of survey depth on the axial stress at the top and bottom test
points of the probe rod under a water depth of 15 m. As can be seen from Figure 4, there is
a significant difference in the magnitude of peak stress between the top and bottom test
points of the probe rod. The axial stress at the bottom test point is notably smaller than that
at the top test point. For example, at a survey depth of 10 m, the peak stress at the top test
point is 308.4 MPa, while the peak stress at the bottom test point is 124.6 MPa, a reduction
of 59.6%. With the increase in the length of the probe rod, there is no significant difference
in the peak stress at the top test point, and the peak stress at the bottom test point decreases
with the increase in the rod length. Compared with the test group with a survey depth of
10 m, the stress at the top test point was reduced by 4.8% and the stress at the bottom test
point was reduced by 11.5% for the test group with a survey depth of 20 m.
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Figure 5 shows the variation curve of the probe acceleration with time for different
rod lengths. With the increase in rod length, the peak acceleration of the rod decreases
obviously. For the test group with survey depth of 5–50 m, the peak accelerations are 4975.8,
4923.2, 4672.1, 4501.7, 4399.1, 4267.5, 4192.3, 4087.2, 3957.8, and 3952.7 m/s2, respectively.
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4. Hammer Impacting Energy Transfer Efficiency of Offshore SPT

In our study, force–velocity method (F-V method) is used to calculate the hammer
impacting energy distribution in SPT. The F-V method was proposed by Abou-mater and
Goble in 1997 [37]. The principle is that the elongated ratio of the rod in the SPT equipment
can meet the one-dimensional propagation theory of elastic wave; that is, the transverse
propagation of elastic wave is ignored in the process of energy calculation. When the
elastic stress wave passes through the position of the dynamometer, the work done by the
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stress wave on the point is equal to the product of the force measured at the point and the
displacement, and the expression is shown in Equation (2).

Em =
∫ t

0
F(t)V(t)dt (2)

where Em is the hammer impacting energy obtained by calculation (J), F(t) is axial stress
(N), V is the particle velocity of the rod (m/s), and t is the time when the energy accumulates
to the maximum energy (s).

4.1. The Effect of Water Depth on the Hammer Impacting Energy Distribution of the Probe Rod

The hammer impacting energy varying with the water depth at the top of the probe
rod and water–soil contact surface is shown in Figure 6. The test results show that the water
depth has a great influence on the hammer impacting energy distribution in the probe
rod. The hammer impacting energy at the top test point increased with the rod length. For
the test groups with water depths of 7.1, 8.9, 11.1, 11.9, 15.0, 17.1, 19.4, and 20.7 m, the
hammering energies at the top test point are 399.7, 403.1, 408.1, 405.4, 403.2, 405.8, 408.1,
and 409.6 J, respectively. The total potential energy of the hammer before falling in the
SPT was 473.5 J, so the energy transfer efficiency at the top test point in each test group
was 84.4, 85.13, 86.2, 85.6, 85.2, 85.7, 86.2, and 86.5%, respectively. The hammer impacting
energy at the test point of water–soil contact surface decreases gradually with the increase
in the probe rod length. Compared with those at the top test points, the hammer impacting
energies decrease by 19.1, 20.8, 22.5, 22.2, 22.6, 23.3, 24.2, and 24.6%, respectively, and the
attenuation value increases with the increase in water depth.
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By fitting the data in Figure 6, the relationship between the hammer impacting energy
and probe rod length at the top of the probe rod and water–soil contact surface can be
obtained:

Er = 0.49 × l + 391.14 (top test point) (3)

Er = −13.35ln(l) + 348.89 (water-soil contact surface) (4)

where l is the water depth (m).

4.2. Effect of Survey Depth on the Hammer Impacting Energy Distribution of the Probe Rod

Figure 7 shows the influence of survey depth on the distribution law of hammer
impacting energy under 15 m water depth. Table 2 shows that the hammer impacting
energy at the top test points increases with the increase in survey depth. For the test group
with a survey depth of 5–50 m, the hammer impacting energies at the top test points are
396.7, 396.2, 392.8, 398.2, 401.2, 406.9, 414.6, 411.3, 412.3, and 414.7 J, respectively, and the
energy transfer efficiency at the rod top test points of each test group is 83.8, 83.7, 83.0, 84.1,
84.7, 85.9, 87.6, 86.9, 87.1, and 87.6%, respectively. The hammer impacting energy at the
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bottom test points of the probe rod gradually decreases with the increase in the probe rod.
The energy transfer efficiency at the top and bottom test points was 81.0, 76.1, 71.9, 66.9,
64.4, 60.5, 57.5, 55.0, 53.8, and 51.6%, respectively.
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Figure 8 illustrates the fitting curve for the effective hammering energy of the probe
rod with respect to the test depth, as shown in the following equation:

Er = −38.35 ln(l) + 375.42 (bottom test point) (5)

where l is the water depth (m).
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4.3. Rod Length Correction of Offshore SPT

Effective hammer impacting energy is used to represent the rod length correction
in the land SPT (effective hammer impacting energy is the work conducted by the probe
penetrating into the soil to overcome the resistance of the soil under the action of one
hammering):

α =
E(l)

E(2)
(6)
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where E(l) is the effective hammer impacting energy of SPT with different rod lengths (J);
E(2) is the effective hammer impacting energy of the SPT at the rod length of 2 m (J); and
α is the rod length correction coefficient. During the offshore SPT, the influence of the
water depth on the hammer impacting energy attenuation in the probe cannot be ignored.
Therefore, it is necessary to introduce a water depth correction coefficient to ensure the
accuracy of the exploration data. In this paper, the average hammer impacting energy at
the top test points under different water depths is used as the correction base point, and
the ratio of its hammer impacting energy to that of the probe rod at the water–soil contact
surface is defined as the water depth correction coefficient:

αw =
E1

E2
(7)

where E1 is the average value of hammer impacting energy of the probe rod at the water–
soil contact surface (J); E2 is the average value of hammer impacting energy at the top test
points (J); and αw is the correction coefficient of water depth. The effect of exploration
depth on hammer impacting energy distribution is described, and a survey depth correction
coefficient for the offshore SPT is proposed:

αs =
El
E3

(8)

where El is the effective hammer impacting energy of SPT with different survey depths (J);
E3 is the effective hammer impacting energy of the SPT at the survey depth of 2 m (J); and
αs is the correction coefficient of survey depth. The correction method of blow counts in
offshore SPT can be expressed as:

N1 = αwαsN (9)

where N1 is the blow counts after correction and N is the measured blow counts in the field.

5. Conclusions

(1) The variation curves of acceleration and axial stress of the probe rod during the
hammering process were measured by the offshore SPT. The difference between the
measured wave speed and the theoretical wave speed in the test is 4.7–8.8%, which is
consistent with the one-dimensional wave theory. The test results show that, as the
length of the probe rod grows, the peak acceleration decreases significantly, the peak
stress at the top of the rod is basically unchanged, and the peak stress at the bottom of
the rod decreases significantly.

(2) The hammer impacting energy at the test points at both ends of the probe rod was
obtained using the F-V method based on the one-dimensional wave theory. By
analyzing the effective hammer impacting energy distribution of the probe rod under
different water depth and survey depth conditions, the relationship between hammer
impacting energy and rod length at the top of the rod, water–soil contact surface, and
the bottom of the rod is obtained.

(3) According to the definition of rod length correction coefficient and test results, this
paper proposes a correction method for blow counts applicable to offshore SPT.
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