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Abstract: Background and aim: Parkinson’s disease (PD), a neuro-degenerative disorder, is often
detected by the onset of its motor symptoms such as rest tremor. Unfortunately, motor symptoms
appear only when approximately 40–60% of the dopaminergic neurons in the substantia nigra are
lost. In most cases, by the time PD is clinically diagnosed, the disease may already have started 4 to
6 years beforehand. There is therefore a need for developing a test for detecting PD before the onset of
motor symptoms. This phase of PD is referred to as Presymptomatic PD (PPD). The motor symptoms
of Parkinson’s Disease are manifestations of instability in the sensorimotor system that develops
gradually due to the neurodegenerative process. In this paper, based on the above insight, we propose
a new method that can potentially be used to detect the degradation of motor control stability, which
can be employed for the detection of PPD. Methods: The proposed method tracks the tendency of a
feedback control system to transition to an unstable state and uses a machine learning algorithm for
its robust detection. This method is explored using a simple simulation example consisting of a simple
pendulum with a proportional-integral-derivative (PID) controller as a conceptual representation
for both healthy and PPD individuals with a noise variance of 0.01 and a noise variance of 0.1. The
present study adopts a longitudinal design to evaluate the effectiveness of the proposed methodology.
Specifically, the performance of the proposed approach, with specific choices of features, is compared
to that of the Support Vector Machine (SVM) algorithm for machine learning under conditions of
incremental delay-induced instability. This comparison is made with results obtained using the
Longitudinal Support Vector Machine (LSVM) algorithm for machine learning, which is better suited
for longitudinal studies. Results: The results of SVM with one choice of features are comparable
with the results of LSVM for a noise variance of 0.01. These results are almost unaffected by a noise
variance of 0.1. All of the methods showed a high sensitivity above 96% and specificity above 98%
on a training data set. In addition, they perform very well with the validation synthetic data set
with sensitivity above 95% and specificity above 98%. These results are robust to further increases
in noise variance representing the large variances expected in patient populations. Conclusions:
The proposed method is evaluated on a synthetic data set, and the machine learning results show a
promise and potential for use for detecting PPD through an early diagnostic device. In addition, an
example task with physiological measurement that can potentially be used as a clinical movement
control test along with representative data from both healthy individuals and PD patients is also
presented, demonstrating the feasibility of performing a longitudinal study to validate and test the
robustness of the proposed method.

Keywords: presymptomatic Parkinson’s disease; diagnosis; machine learning

Appl. Sci. 2023, 13, 9502. https://doi.org/10.3390/app13179502 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13179502
https://doi.org/10.3390/app13179502
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8626-1089
https://orcid.org/0000-0002-6490-7555
https://doi.org/10.3390/app13179502
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13179502?type=check_update&version=1


Appl. Sci. 2023, 13, 9502 2 of 20

1. Introduction

Parkinson’s disease (PD) is the second largest progressive neurodegenerative disorder
of the central nervous system [1]. It is characterized by several motor symptoms such
as tremor at rest, rigidity, bradykinesia, and postural instability. Generally, the clinical
diagnosis is based on a combination of clinical symptoms, a thorough history of patients,
and a response to levodopa [1–3]. It is reported that motor symptoms appear only when
approximately 40–60% of the dopaminergic neurons in the substantia nigra are lost [4–7]. In
most cases, by the time PD is diagnosed, the disease may have already started 4 to 6 years
beforehand [7]. There is therefore is a need to develop a test for detecting PD before the
onset of the motor symptoms (called Presymptomatic PD (PPD) [8,9]). Such a test would
help a clinician not only in detecting PPD, but also in monitoring the progression of PD or in
monitoring efficacy of early therapeutic interventions [10,11]. Detecting PPD helps patients
to start their treatment in the presymptomatic phase. The utilization of machine learning
techniques for the early diagnosis of Parkinson’s disease is an active area of research.
These efforts aim to leverage the power of these techniques to enhance the accuracy
and timeliness of diagnosis [12–16]. It has been established that there are advantages of
early pharmacological and therapeutic intervention in PD such as monoamine oxidase B
inhibitors [17], catechol-o-methyl-transferase inhibitors [18], amantadine [19], amplitude
training [20], reciprocal pattern training [21], and gait-balance training [22], including a
reduction in symptoms, particularly dyskinesia, and the delay of levodopa initiation [23].
Both the reduction in symptoms and the potential for slowing disease progression can have
a significant impact on improving patients’ quality of life [23].

Although there have been recent advances in identifying potential biomarkers [24],
including genetic [25,26] and neuroimaging techniques [11] that help in detecting PD,
these are still in the early stages, and further work is needed in this direction. Further,
it has also been recognized that a variety of nonmotor symptoms associated with PD
may be observed years before the onset of motor symptoms and hence may be used as
markers for detecting PPD [27]. Examples of these nonmotor symptoms are olfactory
loss [28,29], rapid eye movement sleep behavior disorders [30–32], bowel dysfunction, and
so on [27,33,34]. Recently, reference [7] proposed that a combination of tests (including
smell test, transcranial sonography, and SPECT) could be helpful in detecting PPD. Further,
Ref [35] proposed a general methodology and an automatic system that can be used for
the detection of presymptomatic phase or diagnosis, and/or to monitor the treatment
effectiveness for a variety of neurological disorders based on eye movement data for
various stimuli. An important ingredient that is lacking in these methodologies is that they
are empirical and are not based primarily on an understanding of the mechanism causing
these symptoms.

As widely noted in the literature [36–49], the sensorimotor system of a healthy individ-
ual may be seen as a stable control system, while the sensorimotor system of an individual
with PD showing motor symptoms may be viewed as a control system with instabilities.
The source and mechanism of these instabilities remain topics of debate and investigation
with delay-induced instability (with higher loop-delay in PD causing the instability, further
explained in Section 2.1) being one of the prominent theories [42,46,47,49]. In general, the
latencies in the sensorimotor loop are also known to be amplified and cause instabilities in
other conditions as well, such as Multiple Sclerosis (MS) and stroke survivors [50].

In this paper, we propose a method for detecting this degradation in stability, which
can then be applied to detecting PPD based on observing the progression of the tendency
of the sensorimotor loop to develop instabilities before the instability manifests itself as
symptoms. Here, we do not concern ourselves with the source or mechanism of the
instability and develop a method that could be utilized for any instability in general. This
proposed method is further fleshed out through a numerical study. We employ a simple
pendulum with a PID controller as a conceptual representation of the sensorimotor loop
to simulate motor control tasks in healthy and PPD individuals for this analysis. We also
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present representative human subject data collected through such an example clinical test,
thereby demonstrating the feasibility of the proposed method.

The main contribution of this study is to propose a method to track the tendency of
a feedback control system to transition to an unstable state and using machine learning
algorithms for its robust detection. Specifically, we employ a simple simulation example
consisting of a simple pendulum with a PID controller as a conceptual representation for
both healthy and PPD individuals with a noise variance of 0.01 and a noise variance of 0.1.
To show the efficacy of the proposed method, we compare our results of the SVM algorithm
for machine learning with two sets of proposed features, C1 and C2, with the results of the
LSVM algorithm for machine learning. The results of SVM with feature C2 are comparable
with the results of LSVM for a noise variance of 0.01. These results are almost unaffected
by a noise variance of 0.1. All of the methods showed a high sensitivity of above 96% and
specificity of above 98% on a training data set. In addition, they perform very well with the
synthetic validation data set with a sensitivity above 95% and specificity above 98%. Thus,
our proposed method is evaluated on a synthetic data set, and the machine learning results
show promise and potential for use in detecting PPD through an early diagnostic device.
In addition, we have shown the feasibility of the proposed method to estimate a pole from
a clinical test that may be used as a regular health checkup to track the progression of the
poles and hence the probability of developing Parkinson’s disease in near future.

The conceptual framework of the proposed method is described in detail in Section 2.2,
the simulation example used for our numerical study in Section 2.3, and potential methods
to classify whether particular data are from healthy individuals or an individual with PPD
in Sections 2.3.1 and 2.3.2. The results of the numerical study are described in Section 3.
An example task and associated data collected from human subjects are presented in
Section 3.2. The longitudinal study needed to validate the method will be taken up as
future work. Finally, we discuss further steps needed to validate the proposed method in
Section 4 and close with the conclusion in Section 5.

2. Methods

In this section, we first describe a simple representation of the sensorimotor loop.
Subsequently, we describe how we leverage the insight that in PD, the instability in the
sensorimotor loop develops gradually over a period of time, to propose an approach to
detecting PPD. Based on the proposed approach, we perform numerical simluations using
a simplified representation of a sensory–motor loop to generate synthetic data and test the
method using a numerical study.

2.1. Sensorimotor Loop Representation

One can represent the motor control (movement control) in humans as a simple
feedback control system of the form shown in Figure 1. In the schematic shown, the
body dynamics is the natural dynamics in the absence of any neural control of the body
part of interest (e.g., hand). The feedback path represents all sensory feedback, including
proprioceptive feedback, visual feedback, and tactile feedback. These types of sensory
feedback are carried to the controller (brain) by afferent nerves. The controller represents
the neurosystem’s logic, which continuously compares the kinematic variables from sensory
feedback (e.g., actual velocity) with the desired kinematic variables (e.g., desired velocity)
to determine the motor command. This motor command is then conveyed through the
efferent nerves and results in muscle actions to obtain the desired response. We refer to
this closed-loop feedback system consisting of motor actions and sensory feedback as the
human sensorimotor system. As there are various time delays in the human sensorimotor
system, including delays due to nerve conduction times and information processing time,
for simplicity, we lump all sensorimotor system delays (delays in various portions of the
sensorimotor system) into one transport delay in the closed-loop feedback system. Finally,
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the saturation in the loop approximates the physiological limit of the transmission of neural
control actions [51].

Body 

DynamicsController
Velocity

Body

dynamics Efferent nerve

Afferent nerve

Delay Saturation
Controller

Sensory

feedbacks

Motor

command

Figure 1. The closed-loop feedback system representing the human sensorimotor system.

A number of studies [36–38,42,45,47–49,52] have observed that increased sensorimotor
loop delay in PD tends to destablize the sensorimotor system. This is supported by
the observation that response time in patients with PD is larger than that in healthy
individuals [53–56]. According to these observations, the sensorimotor system of a healthy
individual is a control system with a smaller delay, and the sensorimotor system of an
individual with PD is a control system with a larger delay. Thus, this larger delay, that
is, a delay beyond a certain threshold, leads to instability in the human sensorimotor
system. This observation also explains some of the clinical features of Parkinsonian rest
tremors [47,49] and provides a possible explanation of how high-frequency deep brain
stimulation suppresses low-frequency rest tremors [57]. There are some works that also
consider other possibilities for the source of instabilities including an increased gain in
the sensorimotor loop [42]. However, as stated earlier, the subsequent development will
not rely on this assumption but simply focus on the degradation of stability and will be
applicable regardless of the source of instability.

With this background, in Section 2.2, we provide the main concept of the proposed
methodology.

2.2. Proposed Approach for Detecting Presymptomatic Parkinson’s Disease (PPD)

Based on the insight of degrading stability in the sensorimotor loop, the proposed
approach hinges on the detection of the transition of the human sensorimotor system from
a stable system (healthy individual) to an unstable system (individual with PD) on the basis
of a response recorded from a simple movement control task in the clinic and repeated
several times over a period of time. Note that we expect this transition of the human
sensorimotor system from a stable to an unstable system to be gradual, as PD is a slowly
progressing disease.

In control system theory, the poles of a linearized system are a set of complex numbers
that represent the nature of (and more specifically the exponents associated with) the
transient behavior and thus the stability of that system. The poles of the dynamical system
are also roots of differential equations that govern the system’s dynamics. A system with
poles in the left-half of the complex plane is stable, that is, transient response decays with
time, whereas a system with at least one pole in the right half of the complex plane is
unstable, that is, the transient response grows with time. We therefore propose to use the
poles as a measure of stability of the representative human sensorimotor system involved
in a specified clinical task.

The proposed approach can be summarised as follows. A subject performs a series of
specific clinical tasks on several occasions repeated over a period of time (not necessarily at
equal intervals), and poles are estimated from these data using an algorithm (explained in
Section 2.3.1). Finally, a classification algorithm is applied to the estimated poles to classify
whether a particular individual is healthy or has PPD.

The degradation of stability refers to the gradual movement of at least one pole
towards the right half of the complex plane. Thus, monitoring the movement of the pole(s)
over time is necessary to observe this phenomenon, rather than evaluating them at a single



Appl. Sci. 2023, 13, 9502 5 of 20

time instant. Consequently, participants must undergo repetitive clinical movement control
tests on multiple occasions over a period of time, such as during routine yearly checkups.
The detection of significant movement of at least one estimated pole towards the right
half of the complex plane during these clinical tasks indicates the possibility of PPD. The
transition of the pole(s) towards the right-half of the complex plane occurs gradually,
thereby requiring the application of repetitive clinical movement control tests for several
years to track the movement of the pole(s) and facilitate the identification of the disease.
Therefore, the validation of our proposed approach using real subjects would necessitate a
large-scale study over a prolonged period.

We now consider a simple simulation example to further detail the proposed method.

2.3. Simulation Example

For our numerical exploration, we use a simulation example. As shown in Figure 1,
we use a simple pendulum to represent the dynamics of the task and a Proportional Integral
Derivative (PID) as a controller, along with a delay and saturation in a unity feedback
configuration. The simple pendulum has length L, mass M, and a damping coefficient C.
For our simulation, we use L = 0.65 m, M = 3.5 Kg, C = 3.375 Kgm/s, and a PID controller
with the proportional gain kp = 15, integral gain ki = 4 Hz, and derivative gain kd = 0.5 s.
All simulations were carried out using MATLAB & Simulink of MathWorks (Natick, MA,
USA).

This simulation example is similar to a movement control task in a clinic and has the same
structure as shown in Figure 1, which is similar to other examples in the literature [36,42,47,49,57].
To simulate the degradation of stability, we first consider a small and constant delay as a
representation of the human sensorimotor system of a healthy individual, and a gradually
increasing delay as a representation of the human sensorimotor system of an individual
with PPD. Note that this gradual increase in the delay is still below the delay threshold; that
is, the delay has increased but not to the extent that it destabilizes the human sensorimotor
system leading to visible motor control symptoms. Similar to delay analysis, to demonstrate
that the method works equally well for other mechanisms of instability, we subsequently
also consider a constant gain as a representation of the human sensorimotor system of
a healthy individual and a gradual increment in gain as a representation of the human
sensorimotor system for an individual with PPD. Analogous to delay, the gain is increased
but not to the extent that it destabilizes the human sensorimotor system.

Procedure for generating a synthetic data set: As explained in Section 2.2, a sub-
ject needs to repeat the same clinical task on several occasions over a period of time. To
mimic within-subject variability in the sensorimotor delay (or gain) values over a period
of time due to various physiological factors, we consider additional stochasticity around
the constant value of the delay (or gain) representing healthy individuals and a gradual
increasing delay (or gain) value representing PPD individuals. This stochasticity is assumed
to follow a Gaussian distribution. Further, to represent noise in the human sensorimo-
tor system, we introduce system and measurement noise with zero mean and Gaussian
distribution. Next, we use these sensorimotor delay (or gain) values in the simulation
example to generate simulated responses (similar to data from a clinical task) and generate
several instances of the same task repeated over a period of time. As an example, Figure 2
shows the simulated data of a single clinical task. Following this procedure, we generate a
synthetic data set simulating 500 instances of a sensorimotor loop system with a constant
gain and delay for healthy individuals and 500 instances of sensorimotor loop system with
a gradual increment in gain and delay representing PPD. These synthetic data represent
the 1000 individuals for training and validation needed for the machine learning algorithm.
We used 600 individuals (synthetic data set) for training (60%) and 400 individuals (40%)
to validate the machine learning algorithm. The numerical values of delays and gains for
the generated synthetic data set are given in Appendix A.1. The training data set was used
to train the model, and the validation data set was used to test the performance of the
trained model.
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Figure 2. Output of the simulation example representing data from a single clinical movement control
test with different variances of noise. Here, the sensorimotor delay value is 0.105 s with the addition
of system and measurement noise of variance 0, 0.01, and 0.1, respectively.

2.3.1. Estimation of Poles from Data

To estimate the poles from the data, we propose using the Matrix Pencil Method
(MPM) [58]. MPM approximates time series data by M complex exponentials. These
estimated complex exponents represent the poles of the system of interest (in our case, the
human sensorimotor system). The observed signal is represented as

y(t) ≈
M

∑
i=1

RieSit + n(t). (1)

Here, y(t) is the simulated response, Si values are the estimates of poles, Ri values are
coefficients, and n(k) is the noise in the simulated data. A brief overview of an algorithm
for estimating poles from data is given in Appendix A.2.

Figure 3 shows the real part of poles for simulated healthy and PPD individuals
over a period of time, estimated from a few individuals in the synthetic data generated
as described earlier. Further, it is to be noted that the synthetic data set consists of both
individuals maintaining a regular frequency of visits and individuals maintaining an
irregular frequency of visits; that is, the clinical tasks are not necessarily repeated at regular
intervals but could be at irregular intervals.

2.3.2. Machine Learning Algorithm for Classification

Once we estimate poles from the measured data, the next step is to apply a classifica-
tion algorithm for classifying whether a particular data (for example, one of the traces in
Figure 3) is from the data set representing a healthy individual or the data set representing
an individual with PPD. In the healthy individual data set, despite variabilities due to
numerous factors, we do not expect the estimates of poles to have a significant trend of
moving towards the right half of the complex plane. On the other hand, for the data set
representing individuals with PPD, we expect at least one of the estimates of poles to have
a significant trend of moving towards the right half of the complex plane. Now, one way to
identify this significant trend compared to healthy individuals is to use simple statistical
tests or a classifier based on simple thresholds. Exploring this approach with the synthetic
data, we find that a reliable classification using a threshold alone is not a robust approach.
This is partly due to the significant overlap between poles of the human sensorimotor sys-
tem for healthy and PPD groups in simulated data (representing inter-subject variability),
and perhaps partly due to the stochastic variability as apparent in Figure 3. Therefore, we
explore machine learning algorithms for a more robust classification. Typically, the input
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to the machine learning algorithm is a set of features derived from the data. For instance,
to classify whether a particular individual has a benign or malignant tumor, the tumor
size and age at diagnosis are possible features to consider [59]. Using these features, a
machine learning algorithm trains a model that best describes the relationship between
input (features) and output (class) for those data and uses this model to classify the new
data. In the following subsections, we briefly describe two machine learning algorithms.
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Figure 3. The real part of estimated poles from the synthetic data set representing the sensorimotor
loop system for ten individuals over nine time units (each unit may represent several months) for
(a) a gradual increment in delay, and (b) a gradual increment in gain. Out of 10 individual data,
5 represent simulated healthy individuals (solid blue), and 5 represent simulated PPD (dashed red).
These data also show the regular or irregular nature of clinical movement control tests over time
units. Simulations with gradual increments in gain are at regular intervals, and simulations with
gradual increments in delay are with regular and irregular intervals of clinical movement control
tests. It is clear that due to the stochasticity, the trends are not clearly distinguishable (especially if
there are only a few data points), and hence, a robust classification algorithm is needed.

1. Support Vector Machine: Support Vector Machine (SVM) [60] is a supervised machine
learning algorithm, that given the training data with their features and class labels
identified a priori, determines the maximum margin hyperplane in feature space.
Maximum margin hyperplane is a plane in feature space from which the distance
to the nearest data points of both classes is maximized. Once the maximum margin
hyperplane is determined, depending on the position of the new data set in the fea-
ture space, that is, whether new data are lying below the hyperplane or above the
hyperplane, each new data set is classified as either Class 1 or Class 2. In the case of
outliers in data or data that are not linearly separable, a variant of SVM is used that
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finds a non-linear boundary to separate both classes of data. For further details, refer
to [60].
Feature Selection: Feature selection is an important aspect of the success of ma-
chine learning algorithms. A good choice of features helps improve classification
performance, lower computational complexity, build more generalizable models and
decrease the required storage [61]. The aim of feature selection is to extract features
from data that represent the characteristics of each of the classes or groups. Since we
are interested in tracking the stability of the human sensorimotor system and only the
real part of estimated poles in the complex plane governs the stability, we only use
the real part of the estimated poles for the rest of our analysis. We explore two sets of
choices (C1 and C2) for feature selection. These choices of features are then used as
input to the SVM to classify whether a particular individual is healthy or has PPD.
C1: Since we are interested in the trend of the real part of the estimated poles over
a period of time, the percentage changes in the real parts of poles with respect to
the baseline (the estimated poles from the simulated response of the first movement
control test) and the percentage change in the successive difference in the real parts
of poles between simulated responses over a period of time are the features worth
considering. However, in reality, it is very likely that the clinical task is not performed
at fixed intervals of time for all subjects. Hence, we consider the rate of percentage
change (either per month or per year) for both of the above-mentioned quantities as
features. Based on preliminary simulation results, we find that only three features are
sufficient for robust classification, namely, minimum percentage change rate in the
real part of the poles, maximum percentage change rate in the successive difference
between tests, and real part from the first clinical movement control test.

The calculation of the percentage change rate in the real part of the poles and
percentage change rate in the successive difference between tests are given in Table 1.
Here, N is the total number of clinical movement control tests that are conducted
possibly at irregular time intervals. Tk is the time duration between two trials, where
k = 1, 2, · · ·, N − 1. x1 to xN are the real parts of estimated poles, with subscripts
indicating the test number.
C2: For a second choice of features, since we are interested in determining whether
the real part of estimated poles has an increasing trend, we use hypothesis testing
as a tool to detect a statistically significant increasing trend in the presence of noisy
data. With this approach, we use the statistical value of slope and the constant of the
real part of estimated poles as features for the classification algorithm. Further, we
also take the real part of the estimated poles of the simulation response of the first
movement control test as the third feature as an indicator of the baseline for each
individual.

Table 1. Calculation of features for C1 from the estimated poles.

Features Formula For Calculation

C1: 1. Percentage change rate in real part of pole 1
∑k

j=1 Tj
× xk+1−x1

x1
× 100

2. Percentage change rate in successive difference
of real part of poles between tests

1
Tk
× xk+1−xk

xk
× 100

xk is a sequence containing number of months at which experiment is being performed and Tk is a time interval
between trial k and trial k + 1, with k = 1 to N − 1.

2. Support Vector Machine for Longitudinal Analysis (LSVM) A recently developed
method, called Longitudinal Support Vector Machine (LSVM) [62], is a method specif-
ically developed for longitudinal data. Here, each data point takes the form of a single
time series. LSVM is shown to have higher accuracy compared to SVM, linear dis-
criminant analysis (LDA), and functional linear discriminant analysis (FLDA). Note
that once we have real parts of estimated poles over a period of time, this method is
formulated such that an additional feature selection is not required.
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3. Results

In this section, we first test the robustness of MPM and discuss the classification results
of two machine learning algorithms on the synthetic data set. First, to test the robustness of
the MPM in the presence of noise, we introduce system and measurement noise with differ-
ent variances. Figure 4 shows an estimate of poles for various values of delay and gains
and the effect of noise with different variances on the estimation of poles, indicating that
the estimates from MPM are robust to noise and disturbances. For all the data generation,
we assume that system and measurement noises have the same variances.

Delay (s)

0.085 0.09 0.095 0.1 0.105 0.11

R
e

a
l 
p

a
rt

 o
f 

e
s
ti
m

a
te

d
 p

o
le

s

-5

-4

-3

-2

-1

Noise variance = 0

Noise variance = 0.01

Noise variance = 0.1

(a)

1 1.05 1.1 1.15 1.2
Gain

-3

-2.5

-2

-1.5

-1

R
ea

l p
ar

t o
f e

st
im

at
ed

 p
ol

es

Noise varience=0
Noise varience=0.01
Noise varience=0.1

(b)
Figure 4. Effect of noise variance on the estimation of poles using MPM: (a) change in poles due to
change in delay (b) change in poles due to change in gain.

3.1. Classification Results

Figure 5 shows a box-plot of the real part of the estimated pole for the synthetic data
set containing the simulated healthy and PPD groups over a period of time. The box plot
shows the median, range, and quartiles of the population distributions. It is clear from the
box plot that the real part of the estimated poles remains in the same range for simulated
healthy individuals and increases for PPD over a significant period of time. Next, we apply
machine learning algorithms to these data.

To show the efficacy of the proposed method, we compare our results of SVM
(incremental delay) with the proposed features (C1 and C2) with the results of the LSVM
(incremental delay). The classification results for the simulated (incremental delay) data
set with a noise variance of 0.01 are shown in Table 2 and those with a noise variance of 0.1
are shown in Table 3. It is seen from Tables 2 and 3 that the results of SVM with features C2
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are comparable with the results of LSVM. It is clear from Table 3 that the above results are
almost unaffected by a noise variance of 0.1. Further, on repeating the above procedure
with ten independently generated synthetic data sets, we find that the above results are
reproducible. Note that all of the methods have a high sensitivity of above 96% and speci-
ficity of above 98%. In addition, they perform very well with the validation synthetic data
set, with a sensitivity above 95% and specificity above 98%. All three approaches seem
to perform well with this synthetic data set. With a further increase in the variance of the
noise by 100%, the sensitivity and specificity only drop by a modest margin by about a
dozen percentage points despite the big bump in the noise variance, and these numbers
further improve if a longer duration is utilized. This is promising especially considering
the much larger overlap between the healthy and PPD data in such a situation.

Next, to demonstrate that the same method is effective when the source of instability
is different from an increased delay, we consider the synthetic data set with a gradual
increasing gain (as mentioned in Appendix A.1). With the C1 choice of features and the
SVM method, we observe that the sensitivity is 96% and the specificity is 94.33% with the
training synthetic data set (incremental gain), while for the synthetic validation data set
(incremental gain), the sensitivity is 98% with a specificity of 93%.

Table 2. Comparison of classification results of the synthetic (incremental delay) data set with
disturbance and measurement noise with zero mean and 0.01 variance, with the choice of features for
C1 being the minimum of the percentage change rate in the real part of the characteristic value and
the maximum of the percentage change rate in the successive difference and the choice of features for
C2 being the statistical value of the slope and the constant of a straight line fit with data and the real
part of characteristic value of the first trail as features.

Methods
Training Synthetic Data Set

Sensitivity (%) Specificity (%) False Positive (%) False Negative (%) Error in Classification (%)

LVSM 96.73 100 0 3.27 1.67

SVM (C1) 96.40 98.97 1.03 3.60 2.34

SVM (C2) 98.36 99.66 0.34 1.64 1

Validation Synthetic Data Set

LVSM 97.42 100 0 2.58 1.25

SVM (C1) 95.36 99.51 0.49 4.64 2.5

SVM (C2) 98.96 99.02 0.98 1.04 1

Table 3. Comparison of classification result of simulated (incremental delay) data set; same as Table 2
except for the variance being 0.1.

Methods
Training Synthetic Data Set

Sensitivity (%) Specificity (%) False Positive (%) False Negative (%) Error in Classification (%)

LVSM 96.65 100 0 3.35 1.67

SVM (C1) 96.66 98.33 1.67 3.34 2.5

SVM (C2) 97.65 99.35 0.65 2.35 1.5

Validation Synthetic Data Set

LVSM 96.51 100 0 3.49 1.75

SVM (C1) 96.02 97.99 2.01 3.98 3

SVM (C2) 98.01 97.49 2.51 1.99 2.25
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Figure 5. Box plot of a synthetic data set (total 1000 individuals, 500 individuals in each group) of the
real part of estimated poles for 9 time units (each unit may represent several months) for simulated
healthy and simulated PPD for (a) a gradual increment in delay and (b) gradual increment in gain. It
is observed that the real part of the estimated poles remains in the same range for simulated healthy
individuals and increases for simulated PPD over a significant period of time.

3.2. Example Task and Physiological Measurement

One of the major requirements in designing a clinical movement control test for
detecting PPD is that the test should be simple and easy to execute. There are various
possible clinical movement control tests, such as a spiral tracing task, in which the subject
needs to trace a spiral drawn on white paper [63]; an eye tracking task, in which the subject
needs to follow a circle displayed on a screen [64,65]; a compensatory tracking task, in
which the subject needs to maintain the actual position of the arm with a zero reference (or
initial) position of an arm displayed on the screen in the presence of an outside influence
by means of compensating for the error in arm position [66]. In this work, we consider
pupil dilation/constriction data to apply the proposed method. A significant latency is
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reported during the pupillary light reflex in patients with Parkinson’s disease [67,68], and
this latency increases with the progression of the disease [69]. This latency degrades the
stability of the sensory-motor loop representing the pupillary-light-reflex. Therefore, the
proposed method is applicable in this situation. It is worth noting that the proposed method
is equally applicable to any of the other motor control tasks mentioned above.

We developed a pupilometer in the lab, as shown in Figure 6a, that uses a camera,
infrared light sources, and LEDs to stimulate the pupil (with light flashes). With this
pupilometer and its onboard microcontroller, it is possible to produce different stimulation
patterns of white LEDs switching on and off, and the resulting pupil response is recorded
as a video. Further, using relatively straightforward image processing techniques, the
pupil diameter as a function of time is estimated from the recorded video. This is a simple
portable device and a comfortable task for patients and can be conducted in any clinical
environment without any special arrangements. A sample screenshot of the video recorded
by the device after applying image processing to detect the pupil diameter is shown in
Figure 6b.

(a) (b)

Figure 6. (a) The pupilometer device developed in the lab that is used to collect experimental data
of pupil constriction/dilation dynamics that can potentially be used as a clinical test along with
the proposed method, (b) screenshot of the recorded video after image processing to identify and
estimate the pupil diameter.

The device was utilized to gather data from both age-matched healthy control sub-
jects and patients with Parkinson’s disease (PD). Prior to participating in the experiment,
all participants provided written informed consent, and the institute’s ethics committee
approved the experimental protocols. During the test, participants were instructed to focus
on the red LED located at the center of the screen, with the LED light source being turned
on for 10 s and then turned off for 10 s. The procedure was repeated five times within a
single trial, and three sets of trials were conducted. The pupil diameter data obtained from
each trial was considered a step response, and matrix pencil methods were employed to
estimate poles representing the motor control dynamics.

The output of the pupil detection algorithm for a few representative PD patients
(6) and age-matched healthy individuals (6) are shown in Figure 7. A total of 63 trials
were conducted, and MPM was used to detect poles for all these trials; the pole data are
not reported here, as the absolute values are irrelevant, and only long-term trends are
relevant. The data show the feasibility of setting up a simple clinical task and the ability to
generate good quality data that the MPM is able to process to generate estimates of poles.
The machine-learning-based classification algorithm is, however, not applied here, as that
will require long-term data from a longitudinal study. The proposed method is designed
to detect long-term trends in a single patient’s data, and therefore, a comparison across
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patients is not of value and hence the quantitative results in Figure 6b are not discussed in
detail. A longitudinal study to validate the method is planned as future work.

Figure 7. Plots of normalized pupil diameter as a function of time for both age-matched healthy
subjects (green) and PD patients (red). The plots show one subtrail each for 12 subjects with pupil
diameter increasing when LED in the pupilometer device is switched off. The data are plotted after a
moving-average filter is applied to smooth out the noise. The MPM method is applied to these data
to estimate the poles. The machine-learning-based detection algorithm, however, cannot be applied
at the moment, as that algorithm is meant to detect long-term trends with a longitudinal data set.
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4. Discussion

Continuing with the approach and simulation results presented in this paper, a longi-
tudinal study using real patient data is necessary to further investigate the effectiveness
and robustness of the methods. While the proposed methodology shows potential, further
testing is required to refine and develop it into a practical early-diagnosis device. The
proposed methodology has potential applications in other situations, including motor per-
formance in multiple sclerosis [70], stability of balance control [71,72], characterizing slow
eye movements [73], wearable health monitoring [74], and cerebral autoregulation [75,76].

The sequence of steps required to implement the proposed approach in a clinical
setting is described in Figure 8. In summary, a subject performs a series of clinical move-
ment control tests on several occasions over a period of time (not necessarily at equal
intervals) and all data are recorded. After a few clinical movement control tests spanning a
significant amount of time (say several months or years), using an algorithm (explained
in Section 2.3.1), poles are estimated from these data for a particular individual. Finally, a
classification algorithm is applied to the estimated poles. The output of the classification
algorithm classifies whether a particular individual is healthy or has PPD. This classifica-
tion will directly aid clinicians in identifying individuals who are at risk of developing
PD in the near future and taking necessary precautions or applying certain interventions
as appropriate.

Classification

 (PPD or Healthy)

Estimate poles from a longitudinal data

Start

Stop

Apply machine learning algorithm

on features selected from estimated poles

Perform a movement control task and

repeat the same movement control task on 

several occasions over a period of time

Figure 8. Flowchart of a proposed methodology for detecting PPD in a clinical setting.

One possible clinical task with a simple pupilometer outlined in Section 3.2 can be
utilized for generating data. Further, one can also choose other clinical tasks, as discussed
earlier, with a step input (step change), as this is easy to implement while at the same
time yielding a response that can directly be used to estimate the poles of the system. An
example of a step input is a step change in the circular target position, that is, considering a
circular target initially at some arbitrary position, and the target instantly moves to another
position and stays there.

The present study pertains to the movement-based diagnosis of Parkinson’s disease
(PD) and can be compared to previous research in this domain. The authors [14] examined a
multitude of studies and found that the mean reported accuracy was approximately 89.1%.
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The accuracy of the presented study is superior to this previously reported average and is
comparable to the findings of reference [77]. However, the classification accuracy is affected
by the amount of feedback noise, as an increase in variance leads to a decrease in accuracy
for the same time interval. Nevertheless, the classification accuracy range of the current
study remains within the range reported in reference [78]. The authors of reference [79]
also conducted a review of various algorithms for the early diagnosis of PD and reported
a mean accuracy of 93.84%. In contrast, the accuracy of the current study surpasses this
reported average.

There are several limitations of the current study. First, we only tested the performance
of the trained machine learning model on a relatively small sample size, so future work
is needed to validate the performance of the trained model on a large independent data
set. Second, the validation of the proposed method with the synthetic data and plausible
examples of clinical tasks for a clinical diagnostic process is at a preliminary stage. Hence,
future work will focus on a longitudinal study in people who are at a high risk of developing
PD and healthy control subjects to validate these findings. With further increase in noise
variances, the performance metrics are degraded but can be improved/restored by using a
longer time frame for methodology, which suggests that the time frame of the data utilized
in the methodology can be used as a design parameter to be tweaked to obtain reliable
and robust detection of PPD in real populations. This aspect may also be assessed in the
longitudinal study. Further, the proposed method analyzes the degradation of stability
in the sensorimotor loop by monitoring pole movement, which can indicate the presence
of PD when at least one pole moves to the right half of the complex plane. However, this
transition occurs slowly and requires repetitive clinical movement control tests conducted
over several years. Thus, validating our approach with real subjects would require a
large-scale study over a prolonged period.

5. Conclusions

In this paper, we proposed a novel methodology for detecting the degradation of
stability in the sensorimotor loop, which is applicable to detection of PPD even before
the appearance of clinical symptoms in PD. This proposed method is based on the key
insight that the gradual development of motor symptoms in PD can be seen as a gradual
degradation in the stability of the sensorimotor loop and the fact that the location of poles
of a closed-loop system in the complex plane characterizes the stability of the system.
Therefore, the key idea is to detect the gradual progression of the stability of the human
sensorimotor system (before the system actually becomes unstable) from experimental data
collected by performing a simple clinical movement control test on several occasions over a
period of time. The proposed method is evaluated on a synthetic data set and is seen to
show promise and potential for use for detecting PPD through an early diagnostic device.
An example task with physiological measurement that can potentially be used as a clinical
movement control test along with representative data was also presented, demonstrating
the feasibility of performing a longitudinal study to validate and test the robustness of the
proposed method.
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Appendix A

Appendix A.1. Numerical Simulation of Data Set Using Simulation Example

To mimic the variability in the delay values due to various physiological conditions
over a period of time, we choose the constant value of delay to be 0.088 s and considered
small stochasticity around the constant value of the delay for healthy individuals and small
stochasticity around the gradual increase in delay values (from 0.088 s to 0.11 s) for PPD
individuals. These stochastic variabilities follow Gaussian distribution and are generated
such that the signal-to-noise ratio is 30 dB. To simulate instability due to gain, we chose
a gradual increment in gain with a 0 to 20% increase in controller gains (kp from 15 to 18,
ki from 4 to 4.8 Hz and kd from 0.5 to 0.6 s) with the small stochasticity around a constant
0.088 s delay. Further, we introduced system and measurement noise (with zero mean and
0.01 variance) in the simulation example. Next, we ran the simulation with a step input for
each value of the delay and gains. From the step response data, we estimated poles using
MPM. We followed the same procedure for all values of delay and gains to obtain a real
part of estimated poles over a period of time for each of the individuals. Figure 3 shows
an example of a simulated data set of the real part of estimated poles for healthy and PPD
individuals over time.

Appendix A.2. Matrix Pencil Method (MPM) [58]

The MPM approximates time series data by a sum of complex exponentials as

y(t) = x(t) + n(t) ≈
M

∑
i=1

RieSit + n(t); (A1)

where
y(k) = observed time response data
x(k) = original signal
n(k) = noise in the system and measurement
Ri = coefficient and
Si = −σi + jωi = poles.

Due to noise in the data, we used a total-least-squares MPM. In this, we formed a data
matrix,

[Y] =


y(0) y(1) ..... y(L)
y(1) y(2) ..... y(L + 1)

...
...

...
...

y(N − L− 1) y(N − L) ..... y(N − 1)


(N−L)×(L+1)

,

where L is noise filtering parameter and for efficient filtering, which should be between
N/3 to N/2. Next, we found a singular value decomposition (SVD) of the matrix [Y]

[Y] = [U][Σ][V]H , (A2)
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where the superscript H denotes the conjugate transpose. To select M, we compared the
ratio of the various singular values to the largest one. Generally, we considered the singular
values σc such that σc

σmax
≈ 10−p, where p is the number of significant decimal digits in the

data. Therefore, M is the value at which the above ratio is greater than equal to 10−p. Next,
we constructed a matrix [V′], which is called a “filtered” version of [V] and contains only
M dominant right-singular values of [V]. Therefore,

[Y1] = [U][Σ′][V′1]
H and [Y2] = [U][Σ′][V′2]

H , (A3)

where [V′1] is obtained by deleting the last row of [V′] and [V′2] is obtained by deleting the
first row of [V′]. [Σ′] is obtained from M column of [Σ] corresponding to M dominant
singular values. Finally, the poles (zi) can be obtained by solving the generalized eigenvalue
problem of the following matrix

{[V′2]− λ[V′1]
H} ⇒ {[V′1]H}†{[V′2]H}† − λ[I]. (A4)

Once zi are values known, the residual Ri values are solved from the following least-
square problem 

y(0)
y(1)

...
y(N − 1)

 =


1 1 . . . 1
z1 z2 . . . zM
...

...
...

zN−1
1 zN−1

2 . . . zN−1
M




R1
R2
...

RM

. (A5)
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