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Abstract: Eliminating mixed noise from images is a challenging task because accurately describing
the attenuation of noise distribution is difficult. However, most existing algorithms for mixed
noise removal solely rely on the local information of the image and neglect the global information,
resulting in suboptimal denoising performance when dealing with complex mixed noise. In this
paper, we propose a nested UNet based on multi-scale feature extraction (MSNUNet) for mixed noise
removal. In MSNUNet, we introduce a U-shaped subnetwork called MSU-Subnet for multi-scale
feature extraction. These multi-scale features contain abundant local and global features, aiding the
model in estimating noise more accurately and improving its robustness. Furthermore, we introduce
a multi-scale feature fusion channel attention module (MSCAM) to effectively aggregate feature
information from different scales while preserving intricate image texture details. Our experimental
results demonstrate that MSNUNet achieves leading performance in terms of quality metrics and the
visual appearance of images.

Keywords: multi-scale feature extraction; nested UNet; channel attention; mixed noise removal

1. Introduction

Digital images have found extensive applications in various fields, including medical
imaging, remote sensing, and semantic segmentation [1]. However, images captured
by cameras often suffer from mixed noise, which degrades image quality and affects
subsequent computer vision tasks [2]. For example, hyperspectral images commonly
exhibit a combination of additive white Gaussian noise (AWGN) and Poisson noise, while
computed tomography images and complementary DNA microarray images experience a
mixture of AWGN and impulse noise (IN) [3]. As a result, the removal of mixed noise has
become a critical and challenging problem that requires further investigation.

In recent years, researchers have proposed many effective methods for removing
combined AWGN and IN. Since IN only affects some of an image’s pixel values [4], early
methods for mixed noise removal typically adopted a two-stage approach, where IN
is first suppressed and then AWGN is removed. Garnett et al. [5] introduced the rank-
ordered absolute differences method for IN detection and integrated it into the bilateral
filter framework [6], which performs adaptive image denoising for both AWGN and
IN. Cai et al. [7] employed a variational framework with a l1 data fidelity term and the
Mumford–Shah regularization term to remove mixed noise from images. However, this
method, while preserving some edge properties, may lead to image oversmoothing as it
only considers local image information. To address this, Xiao et al. [8] proposed a l1 − l0
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double-sparsity regularization-based method. They used the l1 term to remove IN and
introduced the l0 term in an improved K-SVD algorithm to suppress residual noise after
IN detection. Liu et al. [9] developed a generalized weighted l2 − l0 method for AWGN-
IN removal based on maximum likelihood estimation and sparse representation. Jiang
et al. [10] integrated the image sparse prior and non-local similar prior into a non-local
sparse regularization term and proposed the weighted encoding with sparse nonlocal
regularization (WESNR) method. Furthermore, Huang et al. [11] considered both the non-
local self-similarity and low-rank properties of natural images and proposed a Laplace scale
mixture combined with a non-local low-rank regularization (LSLR) model. In the domain
of hyperspectral images, Zhuang et al. [12] proposed a method called FastHyMix, which
estimates mixed noise by exploiting its high spectral correlation. This method enhances the
accuracy of mixed noise estimation by utilizing a neural denoising network to learn image
priors. Liu et al. [13] proposed a mixed noise removal method that combines a deterministic
low-rank prior with an implicit regularization scheme. This method approximates the
low-rank prior of the image using the matrix logarithm norm and utilizes an implicit
regularizer to preserve image details.

Deep learning has emerged as a promising approach for removing mixed noise due
to its ability to adapt to complex data and establish relationships between noisy and
clean images. Compared to traditional denoising methods, deep learning relies on large
amounts of training data to learn stable nonlinear mappings, making it a data-driven
approach. Several deep learning-based methods have been proposed for mixed noise
removal. Islam et al. [14] proposed a transfer learning approach called TL-CNN, which
uses a convolutional neural network (CNN) to learn an end-to-end mapping from noisy to
clean images. Abiko et al. [15] introduced a blind denoising method called BDCNN, which
is entirely based on a CNN. The network structure of BDCNN consists of 50 convolution
(Conv) blocks, with the first 25 blocks used for IN removal and the last 25 blocks used
for AWGN removal. Wang et al. [16] incorporated a CNN regularizer into a traditional
model-based variational approach, resulting in VA-CNN. VA-CNN utilizes the CNN-
learned natural image prior to improve the variational method’s accuracy in estimating
noise parameters. Jiang et al. [17] proposed a non-local mean-based CNN (NM-CNN)
method. This approach first detects the locations of outlier pixels using a median filter
and replaces them with non-local mean values; subsequently, AWGN is removed using
a CNN. Lyu et al. [18] introduced a generative adversarial network (GAN) that employs
generators and discriminators for feature extraction. This method incorporates a joint loss
function based on image prior and visual perceptual metrics, further enhancing image
denoising performance. Mafi et al. [19] proposed a CNN architecture incorporating Conv,
batch normalization (BN), and rectified linear units (ReLU) as basic components for mixed
noise removal. In [20], a serial attention module-based CNN method (SACNN) is proposed,
which employs a serial attention module to better preserve texture details. Overall, these
deep learning-based methods have demonstrated significant improvements compared to
traditional denoising methods.

In summary, most existing methods for removing mixed noise do not fully utilize the
local and global information of the image, resulting in the inaccurate modeling of complex
noise during the denoising process. This leads to the deformation and distortion of the
image structure, causing the loss of fine details. To address this issue, this paper proposes
MSNUNet for mixed noise removal.

The key contributions of MSNUNet can be summarized as follows:

1. We propose a nested UNet architecture based on multi-scale feature extraction for
mixed noise removal. In MSNUNet, we introduce MSU-Subnet for multi-scale feature
extraction. These multi-scale features contain rich local and global features, which
help the model estimate noise more accurately and improve its robustness.

2. We introduce MSCAM into the MSNUNet model to effectively aggregate multi-
scale features. Additionally, MSCAM utilizes channel attention (CA) to enhance the
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extraction of important features, enabling the network to better preserve intricate
textural details in images.

3. Our experimental results demonstrate that MSNUNet achieves superior performance
in terms of quality metrics compared to state-of-the-art methods and generates visually
satisfying denoised images.

The remainder of this paper is organized as follows: Section 2 describes the related
work. Section 3 presents the mixed noise model, while Section 4 introduces the proposed
MSNUNet model. In Section 5, extensive experiments are conducted to evaluate the
performance of MSNUNet, and the conclusions of the study are presented in Section 6.

2. Related Work
2.1. Multi-Scale Feature Extraction

As CNNs typically utilize small kernels of sizes such as 1× 1 and 3× 3 for feature
extraction, CNNs can only extract local features within a small range of perceptions and
cannot extract multi-scale features. Multi-scale features represent samples of the signal at
different granularities, and different features can be observed at different granularities to
perform different tasks. Smaller or denser sampling can reveal more details, whereas larger
or sparser sampling can reveal overall trends. Multi-scale features contain overall global
information and local detailed information that is useful for image restoration tasks [21].

Multi-scale feature extraction can be achieved through two main approaches. The
first method involves employing parallel Conv with different kernel sizes, followed by
merging the features obtained from each parallel branch across channels. This structure,
illustrated in Figure 1a as the separation–transformation–fusion structure of Inception [22],
utilizes 1× 1 Conv, 3× 3 Conv, 5× 5 Conv, and 3× 3 maximum pooling operations to
obtain features at different scales. The second method utilizes sampling to acquire feature
maps at different scales. In [23], the authors proposed a feature pyramid network (FPN)
that samples features from various layers at different scales for prediction, as depicted in
Figure 1b. This approach effectively handles scale variations while maintaining a balance
between expressive power, speed, and resource consumption. Unlike traditional image
pyramid methods, the FPN approach eliminates the need to generate images at different
scales before feature extraction. In the widely used U-Net method [24], pooling operations
are employed to increase feature map channels during downsampling, and feature maps
of different scales are fused during upsampling. While this technique reduces parameter
counts and enhances network inference speed, it also leads to a loss of feature information,
which can hinder image denoising tasks. In contrast, the MWCNN approach [25] replaces
pooling operations with wavelet transforms to reduce the feature map size. Since wavelet
transforms are reversible, this network can extract multi-scale features while preserving as
many image texture details as possible.

(a) (b)

Figure 1. Illustration of multi-scale feature extraction. (a) Inception [22]; (b) FPN [23].
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2.2. Attention Mechanism

Attention mechanisms (AM) [26] are based on studies of the human eye’s vision. When
observing a given object, the human eye first focuses on its global information, followed by
local details. Introducing an AM to neural networks helps the network pay attention to and
exploit important features. AMs can take different forms, including hard attention [27], soft
attention, and self-attention. Soft attention mechanisms are preferred because they assign
weights based on the relevance of different parts of the input image rather than making
decisions based only on a subset of input image pixels as performed in hard attention
mechanisms. Spatial attention (SA) [28] and CA [29] are two types of soft AMs. SA assigns
varying weights to different spatial locations on the input feature map, while CA uses
correlations and dependencies between channels to compress and reconstruct feature maps,
thereby improving the network’s ability to learn and represent image features.

The AM approach is particularly well-suited for denoising networks for two key
reasons. Firstly, the network can automatically learn to use the AM without requiring
any additional training steps, and secondly, the AM provides a clearer modeling ability
for neural networks, making it easier to understand how the network solves the problem
of interest.

3. Noise Model

We assume that x is a noise-free image, y is a corresponding noisy image, and xi,j is the
pixel value at location (i, j). For the AWGN model, the relationship between these elements
can be written as

yi,j = xi,j + G, (1)

where G is an independent and identically distributed zero-mean AWGN.
There are two types of IN: salt–pepper impulse noise (SPIN) and random value

impulse noise (RVIN). SPIN uses two fixed extreme values of nmin = 0 for pepper noise
and nmax = 255 for salt noise to corrupt the image, whereas RVIN uses any value in the
range [nmin, nmax] to corrupt the image. The SPIN and RVIN models are as follows.

SPIN model:

yi,j =


xi,j, the probability 1− psp
nmin, the probability psp/2
nmax, the probability psp/2

. (2)

where psp denotes the probability of SPIN.
RVIN model:

yi,j =

{
xi,j, the probability 1− pr
ni,j, the probability pr

. (3)

where ni,j is a random pixel value in the range [nmin, nmax] at the location (i, j) and pr
denotes the probability of RVIN.

In this paper, three types of mixed noise models are considered [20]:

(1) AWGN mixed with SPIN:

yi,j =


xi,j + G, the probability 1− psp
nmin, the probability psp/2
nmax, the probability psp/2

. (4)

(2) AWGN mixed with RVIN:

yi,j =

{
xi,j + G, the probability 1− pr
ni,j, the probability pr

. (5)
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(3) AWGN mixed with RVIN plus SPIN:

yi,j =


xi,j + G, the probability (1− psp)(1− pr)
nmin, the probability psp/2
nmax, the probability psp/2
ni,j, the probability pr(1− psp)

. (6)

4. MSNUNet

Most current mixed noise removal algorithms achieve good denoising results by
utilizing local information or prior knowledge of the image. However, when the noise
ratio increases or more complex noise, such as combined AWGN, SPIN, and RVIN, is
encountered, the accuracy of these methods in estimating the noise distribution significantly
decreases. This limitation hinders the model’s ability to accurately model the noise and
ultimately leads to the loss of image texture details. Additionally, although existing deep
learning-based denoising models have shown promising results, the majority of these
models perform denoising on low-resolution image blocks without considering the global
information of the image. This limitation disrupts the overall structure and consistency
of the image, thereby restricting the denoising performance of the model. In this paper,
we propose MSNUNet for mixed noise removal. Firstly, the MSU-Subnet is introduced to
enable the network to process high-resolution images more deeply and generate diverse
receptive fields, capturing rich local and global features. Then, by integrating the MSCAM
into the nested UNet architecture, MSNUNet is able to aggregate local and global features,
which assist the model in preserving the overall structure and consistency of the image,
resulting in improved denoising performance. Lastly, by introducing a channel attention
block (CAB) in the MSCAM, the model enhances its ability to learn and extract important
features, thereby preserving more image details.

4.1. Overall Pipeline

Figure 2 shows the architecture of MSNUNet for denoising images corrupted by
mixed noise. Given an image I ∈ RH×W×1, where H×W represents the spatial dimensions
of the image, MSNUNet first applies a 3× 3 Conv to extract low-level image features
F0 ∈ RH×W×C, where C denotes the number of channels. These features are then pro-
cessed by a nine-block symmetric encoder–decoder structure to obtain the depth features
Fd ∈ RH×W×C. The encoder blocks, including encoder1 and encoder2, and the decoder
blocks, including decoder1 and decoder2, are filled with MSU-Subnet, a well-configured
U-shaped subnetwork. By utilizing MSU-Subnet, MSNUNet effectively captures local and
global features at multiple scales from high-resolution images. In the subsequent blocks
with lower-resolution feature maps, downsampling further would result in the loss of valu-
able image information. To address this issue, we employ MSCAM, which combines local
feature extraction with a CAB, allowing the network to extract local features while captur-
ing channel correlations. This approach enables MSNUNet to efficiently extract multi-level
features within blocks and aggregate multi-level features between blocks. Specifically,
starting from the low-level feature F0, the encoder gradually reduces the spatial size of the
feature map while increasing the channel capacity. The decoder takes the potential feature
F1 ∈ R H

16×
W
16×16C as input and learns the noise distribution while gradually recovering

the image resolution. Pixel-unshuffling and pixel-shuffling operations are applied during
feature downsampling and upsampling, respectively [30]. The encoder is connected to the
decoder through a skip connection to facilitate the image recovery process [24]. Before this
connection, the output of the decoder is upsampled, and a summation operation is used to
ensure a consistent number of channels. These design choices have resulted in improved
quality, as described in the experimental section (Section 5). Finally, a 3× 3 Conv is applied
to the output features of the final decoder to generate the residual image R ∈ RH×W×1. This
residual image is then added to the noisy image I to obtain the restored image, Î = I + R.
In the following section, we will describe the core components of MSNUNet, including
MSCAM and MSU-Subnet, which are used to extract multi-scale features from the image.
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Figure 2. MSNUNet architecture for mixed noise removal.

4.2. MSCAM

In recent years, CNNs have gained wide adoption in image processing due to their
remarkable performance. Conv serves as a fundamental building block of CNNs and typically
includes Conv, BN, and ReLU functions. However, the standard Conv has inherent limitations
in extracting exclusively local features [31], which poses a significant disadvantage for image
processing. To overcome this limitation, MSNUNet utilizes MSU-Subnet to extract multi-scale
features that are more diverse than those obtained through a standard Conv. These features
consist of high-resolution feature maps with precise spatial information and low-resolution
feature maps with reliable semantic information. To effectively integrate these rich features,
we follow the component arrangement described in [32] and propose a new module called
MSCAM, depicted in Figure 2b. MSCAM consists of two steps.

In step 1 of MSCAM, we apply layer normalization (LN) to normalize the input feature
maps. The normalized feature maps are then processed using a 1× 1 Conv, followed by
a 3 × 3 depth-wise Conv (DConv). The DConv offers greater efficiency compared to
traditional Conv as it has fewer parameters and lower computational costs. The Gaussian
error linear unit (GELU) activation function is employed to implement the non-linear
mapping relationship. The resulting feature maps are fed into the CAB, which captures the
correlation between global feature channels. The internal structure of the CAB is illustrated
in Figure 3. Finally, a 1× 1 Conv is utilized to aggregate these features and output them to
the second step of the module.

Figure 3. CAB internal structure.
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The CAB implementation can be represented by the following equations [29], where
the input is denoted as c and the output is denoted as c3. These calculations are shown in
Equations (7)–(9),

c1 = FC1[g(c)] (7)

c2 = FC2[ReLU(c1)] (8)

c3 = c ∗ Sigmoid(c2) (9)

where the function g in Equation (7) represents the global average pooling. The input
feature map, c, undergoes global average pooling followed by a fully connected layer, FC1,
to obtain c1. Subsequently, c1 is passed through the ReLU activation function and another
fully connected layer, FC2 , to obtain the compressed image features, c2. The Sigmoid
function is then applied to c2, yielding weight coefficients between channels. Finally, these
weight coefficients are multiplied with the input c to obtain the final result.

In Step 2, we employ a 1× 1 Conv to enable the interaction of information among the
diverse features acquired from the previous stage.

The incorporation of the CAB in MSCAM enhances the network’s focus on important
features [33], leading to the improved utilization and preservation of image texture details.
Furthermore, residual connections are introduced to enhance the network’s performance
by aiding in the reconstruction of neglected high-frequency feature information.

4.3. MSU-Subnet

In current CNN designs, such as VGG [34], ResNet [35], and DenseNet [36], small
kernels of sizes of 1× 1 or 3× 3 are commonly used for feature extraction. However, these
small kernels have limited receptive fields, resulting in shallow output feature maps that
only capture local features and fail to capture global features. To overcome this limitation,
we propose a novel multi-scale feature extraction subnetwork, namely MSU-Subnet, to
capture multi-scale features in high-resolution feature maps. Figure 2a showcases the
structure of MSU-Subnet, which consists of three main components:

(i) A U-shaped encoder-decoder structure: The subnetwork takes intermediate feature
maps (with a size of h × w and a number of channels equal to c) as inputs and
employs a U-shaped architecture with seven blocks to extract multi-scale features.
By progressively downsampling the feature maps and encoding them into a high-
resolution feature map (with a size of h × w and a number of channels equal to
c) through progressive upsampling, skip connections, and Convs, this structure
effectively avoids the loss of fine details encountered with direct upsampling at
larger scales. Additionally, by extracting features from deeper levels, the network
can capture more diverse receptive fields and richer local and global features. The
extracted multi-scale features can represent noise detail features of various granularity,
enabling the network to capture a more accurate noise distribution and enhance the
robustness of the model.

(ii) MSCAM: Serving as the base module for both MSU-Subnet and the entire network,
MSCAM aggregates multi-scale features within the network. Not only does MSCAM
aggregate multi-scale features within the network; it also utilizes CA to extract the
correlation between feature channels. This allows the network to selectively attend to
relevant features, thereby enhancing the effectiveness of feature extraction.

(iii) Residual connection: Experimental results indicate that the denoising quality of a
network tends to decrease beyond a certain number of layers, potentially causing
image degradation during network training. To mitigate this problem, residual
connections are utilized to learn the residual mapping of the stacked layers, enabling
the easier training of deeper networks.
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By allowing the network to extract features at multiple scales, MSU-Subnet enhances
the capabilities of feature extraction. In addition, the U-structure of MSU-Subnet offers
a low computational overhead, as most operations and manipulations are applied to the
downsampled feature maps.

4.4. Loss Function

In order to ensure a fairer and more robust denoising model, we employ the peak
signal-to-noise ratio (PSNR) as a loss function for updating parameters [37]. The loss
function can be represented as

MSE(y, x) =
1

NM

N

∑
i=1

M

∑
j=1

(yi,j − xi,j)
2 (10)

L(θ) = 10 · log10(2552/MSE(y, x)) (11)

where N and M are the image dimensions. Additionally, y and x stand for a noise-free
image and the corresponding noisy image, respectively. These metrics are appealing
for several reasons, including because they are easy to calculate, possess clear physical
interpretations, and are mathematically convenient for optimization purposes.

5. Experiment and Analysis

To evaluate the denoising performance of the proposed MSNUNet, we applied
the model to three benchmark datasets: BSD100 [38], Set12 [39], and Urban100 [40].
These datasets are widely used for image denoising tasks. The BSD100 [38] dataset consists
of 100 real-world images capturing diverse scenes. Similarly, the Set12 [39] consists of
12 grayscale images that are widely used for image denoising tests. The Urban100 [40]
dataset contains 100 urban scene images with complex textures. These datasets provide
valuable resources for evaluating and comparing the efficacy of various image denoising
algorithms. Thus, we conducted experiments on these three datasets to ensure fairness
and reliability in the results. In Section 5.1, we discuss the experimental setup and provide
details about the datasets utilized. The experimental results demonstrating the performance
of the proposed MSNUNet are presented in Section 5.2. In Section 5.3, we discusses the
proposed algorithm in comparison with other recent algorithms. Finally, in Section 5.4, we
present extensive ablation experiments to evaluate the key components of MSNUNet.

5.1. Experiment Setup and Datasets

Implementation details. The proposed MSNUNet is an end-to-end trainable model
with no pre-trained network, implemented using PyTorch 1.8.0 and a single NVIDIA RTX
3090 GPU. Specifically, we trained the model for a total of 300,000 iterations using the
Adam [41] optimizer. Each 10,000 iterations corresponded to one epoch, and the entire
training process required 30 epochs in total. The exponential decay rate parameters β1, β2,
and weight decay were set as 0.9, 0.9, and 0, respectively. The initial learning rate was set
to 1× 103, gradually decreasing to 1× 106 using the cosine annealing schedule [42]. Patch
training and full image testing lead to performance degradation and denoised images with
patch artifacts, which we addressed using a test-time local converter [43].

Noise ratio. We considered three types of mixed noise: AWGN+SPIN, AWGN+RVIN,
and AWGN+RVIN+SPIN. For the first type, the standard deviation σ of the AWGN ranged
from 20 to 30 in steps of 5, and the SPIN ratios were set to 15%, 30%, and 40%. For the
second type, the σ of the AWGN ranged from 15 to 25 in steps of 5, and the RVIN ratio
varied from pr = 5% to 15% in steps of 5%. For the third type, the σ of the AWGN ranged
from 5 to 15 in increments of 5, the RVIN ratio varied from pr = 5% to 15% in increments of
5%, and the SPIN ratio varied from psp = 50% to 30% in decrements of 10%.

Training datasets. We trained the proposed MSNUNet on the DIV2K [44] dataset,
which consists of 800 high-quality images for the training set and 100 images for the vali-
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dation set. These images have an average resolution of around 1920× 1080. Additionally,
these datasets contain abundant details and intricate textures, making them well-suited for
evaluating and comparing the performance of diverse image processing algorithms. The
patch size and batch size were set to 256× 256 and 8, respectively. We added three types of
mixed noise to the patches for each of the 800 training images. In addition, the same three
types of mixed noise used in the training set were applied to the 100 validation images.

5.2. Results

This section describes the extensive experiments performed to evaluate MSNUNet.
For all three noise types, we compared MSNUNet with six competing algorithms, including
two traditional methods (WESNR [10] and LSLR [11]) and four CNN-based methods (TL-
CNN [14], VA-CNN [16], DeGAN [18], and SACNN [20]). After applying the competing
methods, we calculated the PSNR and structural similarity index (SSIM) metrics of each
method’s processing results to measure the effectiveness of the diverse mixed noise removal
algorithms and evaluate the quality of the denoising results. In Tables 1–3, for each σ of a
given test set, the first line shows the PSNR, and the second line shows the SSIM.

As shown in Table 1, for the mixed AWGN+SPIN case, the denoising performance
of MSNUNet outperforms all competing methods, which demonstrates the superiority of
MSNUNet. Figure 4 illustrates the visual appearance of “Barbara” from the Set12 dataset.
Figure 4b shows an image of a parrot corrupted by AWGN+SPIN (σ = 25, psp = 30%), while
Figure 4c–i shows the processing results of the six compared algorithms and the proposed
MSNUNet. Compared to the other methods, MSNUNet preserves more of the fine texture
of the eye region, resulting in a significantly improved visualization.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 4. Denoising results on the image “Barbara”. (a) Original image. (b) Image corrupted with
AWGN+SPIN (σ = 25, psp=30%). (c) WESNR [10]. (d) LSLR [11]. (e) TL-CNN [14]. (f) VA-CNN [16].
(g) DeGAN [18]. (h) SACNN [20]. (i) MSNUNet.
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Similarly, for the mixed AWGN+RVIN case, MSNUNet achieves the best denoising
performance (Table 2). With increasing RVIN proportions and decreasing AWGN pro-
portions, the denoising performance of the competing algorithms, except for LSLR [11],
steadily improves, with the most significant improvements beinobserved for MSNUNet.
The denoising results for image 24077 of the BSD100 dataset are shown in Figure 5, where
Figure 5b is corrupted by AWGN+RVIN (σ = 20, pr = 10%). In Figure 5, the visual effect
obtained by MSNUNet is more pleasing than all the other results.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 5. Denoising results on image 24077 of the BSD100 dataset. (a) Original image. (b) Image
corrupted with AWGN+RVIN (σ = 20, pr = 10%). (c) WESNR [10]. (d) LSLR [11]. (e) TL-CNN [14].
(f) VA-CNN [16]. (g) DeGAN [18]. (h) SACNN [20]. (i) MSNUNet.

For the mixed AWGN+SPIN+RVIN case, Table 3 reveals that our proposed MSNUNet
delivers superior performance compared to nearly all the competing models at various
mixed noise levels. Although the PSNR metric of SACNN [20] exceeds that of MSNUNet
at σ = 5, pr = 5%, and psp = 50%, our model exhibits exceptional denoising capability as the
levels of AWGN and RVIN increase, highlighting its remarkable robustness. The denoising
results for image 119082 of the BSD100 dataset are shown in Figure 6. Figure 6b shows
images corrupted by AWGN+SPIN+RVIN (σ = 10, pr = 10%, psp = 40%). As shown by the
denoised images in Figure 6, DeGAN [18] and SACNN [20] effectively eliminate mixed
noise and reconstruct clear image structures. WESNR [10] and LSLR [11] cannot clearly
reconstruct the image’s content, while TL-CNN [14] and VA-CNN [16] blur the texture and
structure of the images; however, MSNUNet reconstructs fine textures more effectively
than all other competing algorithms.

To evaluate the generality of MSNUNet, we tested the performance of the model on
the color versions of the BSD100 [38] and Urban100 [40] datasets under six different mixed
noise ratios. The results are shown in Table 4. The denoising results of the proposed model
are presented in Figures 7 and 8. It can be observed that MSNUNet achieves impressive
performance in denoising color images. This demonstrates the versatility and effectiveness
of our approach in handling color image denoising tasks.
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Table 1. The PSNR (dB) and SSIM (%) results of mixed noise removal (AWGN + SPIN). The best results are marked in bold.

Dataset
psp = 15% psp = 30% psp = 40%

WESNR LSLR TL-CNN VA-CNN DeGAN SACNN MSNUNet WESNR LSLR TL-CNN VA-CNN DeGAN SACNN MSNUNet WESNR LSLR TL-CNN VA-CNN DeGAN SACNN MSNUNet

BS
D

10
0

σ = 20 27.16 28.70 28.62 28.79 28.47 29.07 29.76 26.70 28.05 27.93 27.77 27.87 28.63 29.17 25.78 27.65 27.42 26.98 27.47 28.12 28.81
74.36 76.31 76.84 77.14 77.62 78.30 84.30 72.22 75.43 76.14 76.48 76.44 77.58 82.68 71.26 74.23 73.94 75.99 74.25 76.15 81.69

σ = 25 26.20 27.71 27.62 27.85 27.58 27.95 28.77 25.63 27.17 26.99 27.15 26.94 27.54 28.32 24.81 26.77 26.50 26.69 26.43 27.11 27.97
72.55 74.63 74.85 75.31 74.73 76.36 81.04 70.64 72.23 72.44 73.04 74.35 75.74 79.76 70.43 71.02 71.13 72.71 72.65 74.12 78.53

σ = 30 25.31 26.89 26.77 27.15 26.85 27.21 28.03 24.91 26.51 26.02 26.55 26.43 27.04 27.61 24.46 26.13 25.49 26.11 26.10 26.83 27.32
70.11 70.92 71.56 72.37 72.14 74.81 78.42 69.12 70.43 70.86 71.14 72.61 74.46 77.04 69.11 69.38 70.25 70.47 70.64 72.77 76.06

Se
t1

2

σ = 20 28.84 30.41 30.28 30.46 30.15 30.75 31.45 28.46 29.79 29.70 29.53 29.78 30.35 30.91 27.55 29.43 29.15 28.75 29.20 29.88 30.57
78.36 80.34 80.86 81.19 81.63 82.35 88.33 77.06 80.29 80.98 81.37 81.28 82.41 87.52 76.57 79.50 79.23 81.3 79.5 81.41 86.96

σ = 25 27.65 29.35 29.25 29.49 29.22 29.60 30.39 27.32 28.85 28.64 28.83 28.62 29.21 29.99 26.47 28.44 28.19 28.41 28.13 28.79 29.66
77.84 79.92 80.15 80.66 80.08 81.70 86.34 76.53 78.21 78.42 79.01 80.24 81.69 85.70 76.94 77.57 77.67 79.24 79.20 80.66 85.05

σ = 30 26.91 28.45 28.36 28.73 28.42 28.83 29.62 26.49 28.09 27.61 28.17 28.06 28.62 29.21 26.06 27.70 27.08 27.71 27.67 28.41 28.92
76.42 77.21 77.88 78.65 78.44 81.09 84.75 76.03 77.35 77.83 78.12 79.56 81.40 83.99 76.44 76.68 77.57 77.86 77.94 80.11 83.40

U
rb

an
10

0

σ = 20 28.87 30.44 30.38 30.52 30.21 30.82 31.49 28.40 29.70 29.59 29.43 29.71 30.32 30.84 27.37 29.22 29.04 28.55 29.08 29.72 30.41
81.52 83.51 84.05 84.38 84.83 85.46 91.49 80.21 83.44 84.06 84.44 84.41 85.53 90.64 79.60 82.55 82.26 84.39 82.57 84.55 90.04

σ = 25 27.74 29.22 29.15 29.38 29.07 29.45 30.29 27.17 28.71 28.50 28.68 28.48 29.06 29.86 26.20 28.18 27.90 28.12 27.87 28.52 29.39
81.11 83.24 83.37 83.88 83.34 84.97 89.60 79.86 81.44 81.64 82.31 83.58 84.94 88.98 80.11 80.72 80.77 82.36 82.31 83.79 88.19

σ = 30 26.76 28.34 28.21 28.58 28.31 28.67 29.47 26.33 27.95 27.45 27.95 27.87 28.43 29.02 25.76 27.42 26.81 27.40 27.43 28.15 28.63
79.83 80.61 81.30 82.03 81.81 84.56 88.13 79.39 80.74 81.12 81.38 82.89 84.69 87.30 79.63 79.92 80.76 80.98 81.10 83.32 86.56

Table 2. The PSNR (dB) and SSIM (%) results of mixed noise removal (AWGN + RVIN). The best results are marked in bold.

Dataset
σ = 25, r = 5% σ = 20, r = 10% σ = 15, r = 15%

WESNR LSLR TL-CNN VA-CNN DeGAN SACNN MSNUNet WESNR LSLR TL-CNN VA-CNN DeGAN SACNN MSNUNet WESNR LSLR TL-CNN VA-CNN DeGAN SACNN MSNUNet

BSD100 24.17 23.14 25.97 24.78 27.13 27.73 28.74 24.56 19.12 26.61 24.91 27.73 28.11 29.22 25.14 16.70 27.23 25.93 28.04 28.77 29.92
73.02 72.56 73.64 74.25 77.56 78.14 80.89 73.38 71.58 78.63 74.14 77.62 79.36 82.74 74.07 67.32 77.84 74.98 78.11 80.74 85.26

Set12 25.87 24.85 27.64 26.49 28.85 29.44 30.44 26.37 20.91 28.42 26.70 29.55 29.93 31.03 27.04 18.62 29.14 27.85 29.95 30.63 31.81
78.69 78.17 79.30 79.84 81.23 83.75 86.51 78.39 76.58 83.69 79.18 83.6 84.41 87.75 78.15 71.43 81.95 79.09 83.17 84.85 89.34

Urban100 25.87 24.86 27.67 26.50 28.84 29.45 30.47 26.36 20.86 28.38 26.66 29.49 29.88 30.99 26.94 18.45 28.99 27.68 29.79 30.51 31.69
82.09 81.65 82.72 83.30 85.64 87.22 89.93 81.60 79.81 85.87 82.35 86.79 87.51 90.93 80.95 74.25 84.73 81.81 85.96 87.65 92.14

Table 3. The PSNR (dB) and SSIM (%) results of mixed noise removal (AWGN + RVIN + SPIN). The best results are marked in bold.

Dataset
σ = 5, pr = 5%, ps = 50% σ = 10, pr = 10%, ps = 40% σ = 15, pr = 15%, ps = 30%

WESNR LSLR TL-CNN VA-CNN DeGAN SACNN MSNUNet WESNR LSLR TL-CNN VA-CNN DeGAN SACNN MSNUNet WESNR LSLR TL-CNN VA-CNN DeGAN SACNN MSNUNet

BSD100 21.53 19.36 24.01 22.84 28.46 32.66 31.52 21.24 17.30 23.77 22.63 28.15 29.20 29.93 20.84 16.04 23.80 22.18 27.76 27.46 28.74
70.29 63.52 72.65 73.21 77.58 87.69 90.77 69.53 59.24 70.48 71.35 74.03 76.75 86.37 67.32 55.31 69.82 69.76 75.54 75.98 82.35

Set12 23.49 21.31 26.00 24.80 30.41 34.62 33.48 23.04 19.07 25.55 24.41 29.96 30.96 31.71 22.49 17.68 25.46 23.86 29.43 29.12 30.40
72.69 65.85 75.08 75.58 78.92 90.06 93.15 73.08 62.77 74.06 74.94 78.56 80.26 89.92 72.32 60.26 74.74 74.72 78.52 79.98 87.32

Urban100 22.86 20.69 25.40 24.19 29.80 34.03 32.88 22.46 18.49 25.01 23.82 29.34 30.45 31.15 22.12 17.36 25.12 23.47 29.09 28.74 30.04
74.12 67.36 76.39 76.97 78.37 91.43 94.56 75.29 64.94 76.21 77.11 79.69 82.41 92.08 74.92 62.92 77.44 77.41 81.20 81.66 89.99
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Table 4. The PSNR (dB) and SSIM (%) results for color image denoising.

Dataset σ = 20, ps = 15% σ = 25, ps = 30% σ = 30, ps = 40% σ = 25, pr = 5% σ = 20, pr = 10% σ = 15, pr = 15%

BSD100 31.69 30.28 29.15 30.59 31.10 31.82
88.46 85.64 83.97 86.43 87.54 89.44

Urban100 32.96 31.32 30.08 31.92 32.47 33.13
87.73 87.16 85.41 87.53 87.66 89.52

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 6. Denoising results on image 119082 of the BSD100 dataset. (a) Original image. (b) Image
corrupted with AWGN + SPIN + RVIN (σ = 10, pr = 10%, psp = 40%). (c) WESNR [10]. (d) LSLR [11].
(e) TL-CNN [14]. (f) VA-CNN [16]. (g) DeGAN [18]. (h) SACNN [20]. (i) MSNUNet.

(a) (b) (c)
Figure 7. Denoising results on image 12084 of the BSD100 dataset. (a) Original image. (b) Image
corrupted with AWGN + SPIN (σ = 20, psp = 15%). (c) MSNUNet.
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(a) (b) (c)
Figure 8. Denoising results on image 105025 of the BSD100 dataset. (a) Original image. (b) Image
corrupted with AWGN + RVIN (σ = 15, pr = 15%). (c) MSNUNet.

5.3. Discussion

As mentioned in Section 5.2, the proposed MSNUNet algorithm demonstrates power-
ful performance in removing mixed noise, specifically AWGN+RVIN and AWGN + RVIN
+ SPIN. It surpasses state-of-the-art methods in terms of quality metrics and the visual
appearance of the images. The effectiveness of MSNUNet in denoising can be attributed to
its efficient extraction of multi-scale features. MSU-Subnet generates multiple receptive
fields, providing rich local and global features for extraction. Given that mixed noise has a
more complex distribution than a single source of noise, it is crucial to incorporate both
local and global image information in the process of removing mixed noise. On the other
hand, MSCAM utilizes a CAB to dynamically adjust the weights of individual channels
in the global feature space. This helps in aggregating multi-scale features and allocating
weights to relevant features based on their channel-wise correlations, thereby preserving
more image details.

In the task of removing mixed noise, the network’s primary objective is to learn the
mapping relationship between clean and noisy images. DEGAN [18] used a generative
adversarial network for this purpose. DeGAN [18] utilizes a generator to learn the direct
mappings between clean and noisy images, generating new images with a distribution
similar to clean images. The generated images are then evaluated by a discriminator, pro-
viding feedback to the generator for generating more realistic clean images. However, the
training process of GANs is unstable, leading to convergence difficulties for the generator
and discriminator. Consequently, DeGAN [18] performs poorly when image details are
severely corrupted. In our approach, the symmetric UNet structure effectively extracts
image features, and the residual connections stabilize the training process, preventing
gradient vanishing.

In SACNN [20], local image features are extracted using Conv, and a hybrid attention
mechanism is employed to learn weights for the image, incorporating SA and CA. With
the powerful feature extraction capability of Conv, SACNN [20] effectively extracts local
features and assigns weights through the hybrid attention mechanism in both the channel
and spatial dimensions. This empowers the network to fully utilize valuable features and
restore the corrupted details of the image. In our approach, we also employ CA to learn
weights for feature information in the channel dimension. However, our method goes
beyond SACNN [20] by extracting multi-scale features from high-resolution images using
MSU-Subnet, which includes both local and global features. Throughout the denoising
process of MSNUNet, MSCAM is utilized to effectively aggregate multi-scale features. As a
result, MSNUNet outperforms SACNN [20] in denoising performance.

5.4. Ablation Studies

In our ablation experiments, the denoising model was trained for only 150,000 itera-
tions. The tests were performed on BSD100 [38] and analyzed for a challenging AWGN
+ SPIN case (σ = 25, psp=30%). Tables 5–7 indicate the quality of improvements in perfor-
mance achieved for various configurations. We then describe the impact of each component.
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Table 5. Influence of image size. The best results are marked in bold.

Image Size FLOPs (B) PSNR (dB) SSIM (%)

128× 128 29.02 27.84 78.41
192× 192 63.26 28.08 79.25
256× 256 116.11 28.16 79.66

Table 6. Influence of MSCAM. The best results are marked in bold.

Network Component FLOPs (B) PSNR (dB) SSIM (%)

MSNUNet

(a) Resblock 95.83 27.78 77.94
(b) MSCAM-C 110.32 28.03 79.12
(c) MSCAM-D 105.93 27.92 78.44
(d) MSCAM 116.11 28.15 79.67

Table 7. Influence of MSU-Subnet. The best results are marked in bold.

Network Component FLOPs (B) PSNR (dB) SSIM (%)

UNet (a) UNet with Resblock 92.84 27.64 77.82
(b) UNet with MSCAM 108.46 28.01 79.10

MSNUNet (c) U-block with Resblock 100.85 27.79 78.36
(d) U-block with MSCAM 116.11 28.15 79.66

Effect of input size. We computed the FLOPs, PSNR, and SSIM for image sizes of
128× 128, 192× 192, and 256× 256, respectively. As shown in Table 5, the PSNR gain
becomes larger as the image size increases, and the FLOPs also increases. In this paper, we
used patches with an image size of 256× 256 as network inputs.

Effect of MSCAM. To fully validate MSCAM, we replaced all MSCAM blocks in
MSNUNet with Conv-based Resblocks [35], while the others were left unchanged. In
addition, we removed DConv and CAB from MSCAM, resulting in two MSCAM variants,
MSCAM-C and MSCAM-D.

Table 6(d) demonstrates the exceptional progress achieved by our MSCAM approach,
surpassing the standard Resblock (Table 6(a)) by an impressive 0.37 dB. Furthermore, the
localization introduced by DConv enhances the robustness of MSCAM since its removal
causes a decrease in PSNR (see Table 6(b)). In addition, including CAB produces a notewor-
thy enhancement of 0.23 dB, as revealed in Table 6(c). To further illustrate the effectiveness
of MSCAM, Figure 9b,c shows the two cases of MSNUNet equipped with Resblock and
MSCAM, respectively. It is evident that MSNUNet equipped with MSCAM restores addi-
tional details of the human within the image, which confirms that our method is able to
retain more texture details.

(a) (b) (c)
Figure 9. Denoising results on image 14037 of the BSD100 dataset. (a) Original image. (b) MSNUNet
equipped with Resblock. (c) MSNUNet equipped with MSCAM.

Effect of MSU-Subnet. Table 7(d) demonstrates that including a U-block design
improves the denoising performance by 0.14 dB compared to a conventional U-network
(see Table 7(b)). Furthermore, replacing the standard Resblock with MSCAM in the U-block
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enhances the aggregation of multi-scale features, as shown by a decrease in PSNR upon its
removal. Overall, MSNUNet contributes a substantial gain of 0.51 dB over the baseline (see
Table 7(a)).

6. Conclusions

In this paper, we propose MSNUNet, a mixed noise removal method based on nested
UNet and multi-scale feature extraction. In MSNUNet, the two-layer nested UNet structure
can deeply extract multi-scale features from high-resolution images and aggregate these
features more efficiently using the proposed MSCAM. This approach not only accurately
models mixed noise by leveraging the richer local and global information in the original
image but also effectively extracts important features of the image through CA, thus
preserving more image texture details. The experimental results clearly demonstrate that
MSNUNet can achieve leading quality measures and fine textures that outperform all other
contemporary competing methods.

In the future, we will further develop our work in two aspects. On the one hand,
we will focus on developing a lightweight solution for image denoising models. Due to
the limited cost of hardware devices in real-world applications, most of the current deep
learning-based denoising models cannot be deployed on hardware. We will explore two
alternatives to address and alleviate this issue. Firstly, we will design more efficient neural
network components, such as DConv, to reduce computational complexity. Secondly, we
will optimize existing models using currently available lightweight techniques. On the
other hand, we plan to design a versatile model for low-level computer vision tasks.
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