Physical and Thermal Characterization of Achira (Canna edulis Ker) Fiber Obtained from Food Industry Waste in the Department of Cundinamarca, Colombia
Abstract
:1. Introduction
2. Materials and Methods
- TGA Test: TGA 550 Equipment, TA Instruments.
- DSC Test: DSC25, TA Instruments.
- FTIR Test: IRTracer-100, Shimadzu.
- Zeiss Stemi 305 Stereoscope.
- Moisture Balance PCE-MB 120C.
2.1. Thermogravimetric Analysis (TGA)
2.2. Differential Scanning Calorimetry (DSC)
2.3. Fourier Transform Infrared Spectrometry (FTIR)
2.4. Moisture Content
2.5. Moisture Absorption
2.6. Bulk Density
- Fiber samples with ambient humidity.
- Fiber samples at the point of moisture saturation.
2.7. Lignin Percentage Determination
3. Results
3.1. Thermogravimetric Analysis (TGA)
3.2. Differential Scanning Calorimetry (DSC)
3.3. Fourier Transform Infrared Spectrometry (FTIR)
3.4. Moisture Content
3.5. Determining the Moisture Absorption Percentage
3.6. Bulk Density
3.7. Determination of the Percentage of Lignin
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vinod, A.; Sanjay, M.R.; Siengchin, S. Recently explored natural cellulosic plant fibers 2018–2022: A potential raw material resource for lightweight composites. Ind. Crops Prod. 2023, 192, 116099. [Google Scholar] [CrossRef]
- Malviya, R.K.; Singh, R.K.; Purohit, R.; Sinha, R. Natural fibre reinforced composite materials: Environmentally better life cycle assessment—A case study. Mater. Today Proc. 2020, 26, 3157–3160. [Google Scholar] [CrossRef]
- Ramakrishna, G.; Kiran Babu, P.; Purushothaman, K.; Sivakumar, E.R.; Sreenivasan, M. An analysis on natural fiber composite materials. Mater. Today Proc. 2021, 45, 6794–6799. [Google Scholar] [CrossRef]
- Bruton, K.; Hazael, R.; Critchley, R.; Bloodworth-Race, S. Lignocellulosic Natural Fibers in Polymer Composite Materials: Benefits, Challenges and Applications. Encycl. Mater. Plast. Polym. 2022, 3, 353–369. [Google Scholar] [CrossRef]
- Sathish Kumar, G.; Sridhar, R.; Sivabalan, S.; Pugazhenthi, R. Dynamic analysis of the natural fiber (Coir) reinforce polyester composite material with mechanical properties. Mater. Today Proc. 2022, 69, 1292–1299. [Google Scholar] [CrossRef]
- Khalid, M.Y.; Al Rashid, A.; Arif, Z.U.; Ahmed, W.; Arshad, H.; Zaidi, A.A. Natural fiber reinforced composites: Sustainable materials for emerging applications. Results Eng. 2021, 11, 100263. [Google Scholar] [CrossRef]
- Gaurav; Gohal, H.; Kumar, V.; Jena, H. Study of natural fibre composite material and its hybridization techniques. Mater. Today Proc. 2020, 26, 1368–1372. [Google Scholar] [CrossRef]
- Gupta, A.; Sharma, R.; Katarne, R. Experimental investigation on influence of damping response of composite material by natural fibers—A review. Mater. Today Proc. 2021, 47, 3035–3042. [Google Scholar] [CrossRef]
- Kumar, N.; Singh, A.; Singh, S.; Singh, J.I.P.; Kumar, S. Napier natural fibre used as reinforcement polymer composite: As asbestos free brake friction material. Mater. Today Proc. 2022, 25, 2532–2536. [Google Scholar] [CrossRef]
- Balachandar, M.; Vetre Selvan, E.; Ponshanmugakumar, A.; Magesh, S.; Ramanan, N. Sustainable development of natural fiber composite material. Mater. Today Proc. 2021, 46, 3363–3366. [Google Scholar] [CrossRef]
- Armas-Ruiz, D.; Ruiz-Galarza, S.; Piován, M.; Carrión-Matamoros, L.; Narváez-Muñoz, C. Characterization of Mechanical Properties of Fiber Banana Crust and Stem Body. Científica 2016, 20, 21–31. (In Spanish) [Google Scholar]
- Cuéllar, A.; Muñoz, I. Bamboo fiber reinforcement for polymer matrix. Dyna 2010, 77, 137–142. [Google Scholar]
- Imraan, M.; Ilyas, R.A.; Norfarhana, A.S.; Bangar, S.P.; Knight, V.F.; Norrrahim, M.N.F. Sugar palm (Arenga pinnata) fibers: New emerging natural fibre and its relevant properties, treatments and potential applications. J. Mater. Res. Technol. 2023, 24, 4551–4572. [Google Scholar] [CrossRef]
- Choi, Y.C. Hydration and internal curing properties of plant-based natural fiber-reinforced cement composites. Case Stud. Constr. Mater. 2022, 17, e01690. [Google Scholar] [CrossRef]
- Espitia, M.; Sjogreen, C.; Rodríguez, N.; Calderón, J.; Benavides, A.; Peraza, R.; Espitia, G.; Nemocon, R. Mechanical and physical characterization of Guadua angustifolia ‘Kunth’ fibers from Colombia. Rev. UIS Ing. 2018, 17, 33–40. [Google Scholar] [CrossRef]
- Gómez-Suárez, S.A.; Mora-Espinosa, W.J.; Ramón-Valencia, B. Physical and chemical characterization of the natural esparto Fiber (Juncus ramboi subsp. Colombianus) as an alternative reinforcement in composite materials. Rev. Ambient. Agua Aire Suelo 2017, 8, 27–35. [Google Scholar]
- Mora-Espinosa, W.J.; Ramón-Valencia, B.A. Thermal, mechanical, and morphological characterization of Colombian natural fibers as potential reinforcement for biocomposites. Rev. Acad. Colomb. Cienc. Exactas Fis. Nat. 2017, 41, 479–489. [Google Scholar] [CrossRef]
- Leibniz Institute of Plant Genetics and Crop Plant Research; International Plant Genetic Resources Institute. Andean Roots and Tubers: Ahipa, Arracacha, Maca and Yacon. Promoting the Conservation and Use of Underutilized and Neglected Crops; International Plant Genetic Resources Institute: Rome, Italy, 1997. [Google Scholar]
- Demirbas, M.F.; Balat, M. Recent advances on the production and utilization trends of bio-fuels: A global perspective. Energy Convers. Manag. 2006, 47, 2371–2381. [Google Scholar] [CrossRef]
- Piyachomkwan, K.; Chotineeranat, S.; Kijkhunasatian, C.; Tonwitowat, R.; Prammanee, S.; Oates, C.G.; Sriroth, K. Edible canna (Canna edulis) as a complementary starch source to cassava for the starch industry. Ind. Crops Prod. 2002, 16, 11–21. [Google Scholar] [CrossRef]
- Luziatelli, G.; Alandia, G.; Rodríguez, J.P.; Manrique, I.; Jacobsen, S.E.; Sørensen, M. Ethnobotany of Andean root crops: Tradition and innovation—Arracacha (Arracacia xanthorrhiza Bancr.), Yacón (Smallanthus sonchifolius (Poepp.) H. Rob.), Mauka (Mirabilis expansa (Ruíz & Pav.) Standl.), Ahipa (Pachyrhizus ahipa Parodi), Maca (Lepidium meyenii Walp.), Achira (Canna indica L.). In Varieties and Landraces: Cultural Practices and Traditional Uses; In the Underground Starchy Crops of South American Origin, series; Pascoli Cereda, M., Vilpoix, O.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; Volume 2, pp. 101–134. [Google Scholar] [CrossRef]
- Lobo-Arias, M.; Medina-Cano, C.I.; Grisales-Arias, J.D.; Yepes-Agudelo, A.F.; Álvarez-Guzmán, J.A. Evaluation and morphological characterization of the Colombian collection of achira Canna edulis Ker Gawl. (Cannaceae). Corpoica Cienc. Tecnol. Agropecu. 2017, 18, 47–73. (In Spanish) [Google Scholar] [CrossRef]
- Corporación Colombiana de Investigación Agropecuaria—CORPOICA. Conception of a Rural Agroindustry Model for the Production of Flour and Starch from Promising Roots and Tubers, with Emphasis on the Cases of Achira (Canna edulis), Arracacha (Arracacia xanthorriza) and Yams (Dioscorea sp.); Final Technical Report; Corporación Colombiana de Investigación Agropecuaria—CORPOICA: Mosquera, Colombia, 2003. (In Spanish) [Google Scholar]
- Caicedo, G. The cultivation of achira: Production alternative for the small producer. In Raíces Andinas. Contribuciones al Conocimiento y a la Capacitación; Seminario, J., Ed.; Centro Internacional de la Papa (CIP): Lima, Peru, 2014; pp. 149–156. (In Spanish) [Google Scholar]
- Andrade-Mahecha, M.M.; Tapia-Blácido, D.R.; Menegalli, F.C. Development and optimization of biodegradable films based on achira flour. Carbohydr. Polym. 2012, 88, 449–458. [Google Scholar] [CrossRef]
- Cisneros, F.H.; Zevillanos, R.; Cisneros-Zevallos, L. Characterization of Starch from two Ecotypes of Andean Achira Roots (Canna edulis). J. Agric. Food Chem. 2009, 57, 7363–7368. [Google Scholar] [CrossRef] [PubMed]
- Peroni, F.H.G.; Rocha, T.S.; Franco, C.M.L. Some Structural and Physicochemical Characteristics of Tuber and Root Starches. Food Sci. Technol. Int. 2006, 12, 505–513. [Google Scholar] [CrossRef]
- Andrade-Mahecha, M.M.; Tapia-Blácido, D.R.; Menegalli, F.C. Physical–chemical, thermal, and functional properties of achira (Canna indica L.) flour and starch from different geographical origin. Starch 2012, 64, 348–358. [Google Scholar] [CrossRef]
- Watcharatewinkul, Y.; Puttanlek, C.; Rungsardthong, V.; Uttapap, D. Pasting properties of a heat-moisture treated canna starch in relation to its structural characteristics. Carbohydr. Polym. 2009, 75, 505–511. [Google Scholar] [CrossRef]
- Caicedo, C.; Aguirre Loredo, R.Y.; Fonseca García, A.; Ossa, O.H.; Vázquez Arce, A.; Calambás Pulgarin, H.L.; Ávila Torres, Y. Rheological, Thermal, Superficial, and Morphological Properties of Thermoplastic Achira Starch Modified with Lactic Acid and Oleic Acid. Molecules 2019, 24, 4433. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Aldapa, C.A.; Velázquez, G.; Gutiérrez, M.C.; Castro-Rosas, J.; Jiménez-Regalado, E.-J.; Aguirre-Loredo, R.Y. Characterization of Functional Properties of Biodegradable Films Based on Starches from Different Botanical Sources. Starch 2020, 72, 1900282. [Google Scholar] [CrossRef]
- Ariza-León, E.; Castro Cely, A.L.; Gómez Cañón, J.D. Feasibility study, achira’s starch use as fluid loss control agent in water-based muds drilling. Ion 2013, 26, 63–71. (In Spanish) [Google Scholar]
- Li, D.; Li, B.; Gao, H.; Du, X.; Qin, J.; Li, H.; He, H.; Chen, G. Removal of perchlorate by a lab-scale constructed wetland using achira (Canna indica L.). Wetl. Ecol. Manag. 2022, 30, 35–45. [Google Scholar] [CrossRef]
- Rodrigo-Ilarri, J.; Rodrigo-Clavero, M.-E.; Cassiraga, E. BIOLEACH: A New Decision Support Model for the Real-Time Management of Municipal Solid Waste Bioreactor Landfills. Int. J. Environ. Res. Public Health 2020, 17, 1675. [Google Scholar] [CrossRef]
- Rodríguez, G.; García, H.; Camacho, J.; Arias, F. El Almidón de Achira o Sagú (Canna edulis, ker). Manual Técnico Para su Elaboración; Corporación Colombiana de Investigación Agropecuaria, Corpoica, Ed.; Tibaitatá: Mosquera, Colombia, 2003. Available online: http://bibliotecadigital.agronet.gov.co/bitstream/11348/3744/1/Almidon%20de%20achira%20o%20sagu.pdf (accessed on 4 August 2023). (In Spanish)
- Yaruro Cáceres, N.Y. Evaluación de las Propiedades Fisicoquímicas, Térmicas y Microestructurales del Almidón de Achira (Canna edulis); Universidad Nacional de Colombia: Bogotá, Colombia, 2018; Available online: https://repositorio.unal.edu.co/bitstream/handle/unal/69533/1143232250.2019.pdf?sequence=1&isAllowed=y (accessed on 4 August 2023). (In Spanish)
- ASTM E1131-20; Standard Test Method for Compositional Analysis by Thermogravimetry. ASTM International. Book of Standards. Volume 14.01. Available online: https://www.astm.org/e1131-20.html (accessed on 4 August 2023).
- ASTM D3418-21; Standard Test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning Calorimetry. ASTM International. Book of Standards. Volume 08.02. Available online: https://www.astm.org/d3418-21.html (accessed on 4 August 2023).
- ASTM E1252-98; Standard Practice for General Techniques for Obtaining Infrared Spectra for Qualitative Analysis. ASTM International. Book of Standards. Volume 03.06. Available online: https://www.astm.org/e1252-98r21.html (accessed on 4 August 2023).
- ASTM E871-82; Standard Test Method for Moisture Analysis of Particulate Wood Fuels. ASTM International. Book of Standards. Volume 05.06. Available online: https://www.astm.org/e0871-82r19.html (accessed on 4 August 2023).
- Moreno, L.E.; Trujillo, E.E.; Osorio, L.R. Study of the physical characteristics of Guadua Angustifolia fiber bundles. Sci. Tech. 2007, 34, 613–617. (In Spanish) [Google Scholar]
- Zhang, J.; Wang, Z.-W.; Shi, X.-M. Canna edulis Ker By-product: Chemical Composition and Characteristics of the Dietary Fiber. Food Sci. Technol. Int. 2010, 16, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Andrade-Mahecha, M.M.; Pelissari, F.M.; Tapia-Blácido, D.R.; Menegalli, F.C. Achira as a source of biodegradable materials: Isolation and characterization of nanofibers. Carbohydr. Polym. 2015, 123, 406–415. [Google Scholar] [CrossRef] [PubMed]
- Galiwango, E.; Abdel Rahman, N.S.; Al-Marzouqi, A.H.; Abu-Omar, M.M.; Khaleel, A.A. Klason Method: An Effective Method for Isolation of Lignin Fractions from Date Palm Biomass Waste. Chem. Process Eng. Res. 2018, 57, 46–58. [Google Scholar]
- Schwanninger, M.; Hinterstoisser, B. Klason Lignin: Modifications to Improve the Precision of the Standardized Determinatio. Wood Res. Technol. 2002, 56, 161–166. [Google Scholar] [CrossRef]
- Álvarez Godoy, E.; de Carvalho Rodrigues, J.C.; Martins Alves, A.M.; Álvarez Lazo, D. Estudio del contenido y la calidad de la lignina mediante pirólisis analítica en madera de Pinus caribaea. Maderas. Cienc. Tecnol. 2007, 9, 179–188. (In Spanish) [Google Scholar] [CrossRef]
- Indran, S.; Raj, R.E. Characterization of new natural cellulosic fiber from Cissus quadrangularis stem. Carbohydr. Polym. 2015, 117, 392–399. [Google Scholar] [CrossRef]
- Ramírez-Salas, E. Characterization of Textile Samples for Recycling with Mid-Infrared Spectroscopy and ATR Module. Master’s Thesis, Universitat de Lleida, Lleida, Spain, 2019. (In Spanish). [Google Scholar]
- Biswas, S.; Rahaman, T.; Gupta, P.; Mitra, R.; Dutta, S.; Kharlyngdoh, E.; Guha, S.; Ganguly, J.; Pal, A.; Das, M. Cellulose and lignin profiling in seven, economically important bamboo species of India by anatomical, biochemical, FTIR spectroscopy and thermogravimetric analysis. Biomass Bioenergy 2022, 158, 106362. [Google Scholar] [CrossRef]
- Hurtado-Riveros, S.A. Standardization of the Process for Obtaining Angustifolia Kunth Fiber as Raw Material for Composite Material. Master’s Thesis, Universidad de Santo Tomás, Bogotá, Colombia, 2017. (In Spanish). [Google Scholar]
- López, L.; Sarmiento, A.; Fajardo, J.; Valarezo, L.; Zuluaga-Gallego, R. Determination of the percentage of humidity, soluble and insoluble in water of the fiber of Carludovica palmata (toquilla thatch). Ingenius 2013, 9, 23–27. (In Spanish) [Google Scholar]
- Felipe, A.; Vicente, J. Quality control manual in textile and related products. Universidad Politécnica de Madrid. 2015. Available online: https://oa.upm.es/38763/1/Manual_%20textiles2021.pdf (accessed on 31 July 2023). (In Spanish).
- Mohan, D.; Pittman, C.U.; Steele, P.H. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy Fuels 2006, 20, 848–889. [Google Scholar] [CrossRef]
- Grønli, M.G.; Várhegyi, G.; Di Blasi, C. Thermogravimetric analysis and devolatilization kinetics of wood. Ind. Eng. Chem. Res. 2002, 41, 4201–4208. [Google Scholar] [CrossRef]
- Kar, A.; Saikia, D. Characterization of new natural cellulosic fiber from Calamus tenuis (Jati Bet) cane as a potential reinforcement for polymer composites. Heliyon 2023, 9, e16491. [Google Scholar] [CrossRef] [PubMed]
- Lai, T.S.M.; Jayamani, E.; Soon, K.H. Comparative study on thermogravimetric analysis of banana fibers treated with chemicals. Mater. Today Proc. 2023, 78, 458–461. [Google Scholar] [CrossRef]
- Protim Mudoi, M.; Sinha, S. Thermal degradation study of natural fibre through thermogravimetric analysis. Mater. Today Proc. 2023, in press. [CrossRef]
- Chaves, Y.S.; da Silveira, P.H.P.M.; Neuba, L.M.; Junio, R.F.P.; Ribeiro, M.P.; Monteiro, S.N.; Nascimento, L.F.C. Evaluation of the density, mechanical, thermal and chemical properties of babassu fibers (Attalea speciosa) for potential composite reinforcement. J. Mater. Res. Technol. 2023, 23, 2089–2100. [Google Scholar] [CrossRef]
- MKabir, M.; Wang, H.; Lau, K.T.; Cardona, F. Effects of chemical treatments on hemp fibre structure. Appl. Surf. Sci. 2013, 276, 13–23. [Google Scholar]
- Jaiswal, D.; Devnani, G.L.; Rajeshkumar, G.; Sanjay, M.R.; Siengchin, S. Review on extraction, characterization, surface treatment and thermal degradation analysis of new cellulosic fibers as sustainable reinforcement in polymer composites. Curr. Res. Green Sustain. Chem. 2022, 5, 100271. [Google Scholar] [CrossRef]
- Gupta, M.K. Thermal and dynamic mechanical analysis of hybrid jute/sisal fibre reinforced epoxy composite. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2016, 232, 743–748. [Google Scholar] [CrossRef]
- Sanjay, M.R.; Madhu, P.; Jawaid, M.; Senthamaraikannan, P.; Senthil, S.; Pradeep, S. Characterization and properties of natural fiber polymer composites: A comprehensive review. J. Clean. Prod. 2018, 172, 566–581. [Google Scholar] [CrossRef]
- Guo, J.; Cao, M.; Ren, W.; Wang, H.; Yu, Y. Mechanical, dynamic mechanical and thermal properties of TiO2 nanoparticles treatment bamboo fiber-reinforced polypropylene composites. J. Mater. Sci. 2021, 56, 12643–12659. [Google Scholar] [CrossRef]
- Ahmad, M.N.; Ishak, M.R.; Mohammad Taha, M.; Mustapha, F.; Leman, Z.; Irianto. Mechanical, thermal and physical characteristics of oil palm (Elaeis guineensis) fiber reinforced thermoplastic composites for FDM—Type 3D printer. Polym. Test. 2023, 120, 107972. [Google Scholar] [CrossRef]
- Krishnasamy, S.; Thiagamani, S.M.K.; Muthu Kumar, C.; Nagarajan, R.; Shahroze, R.M.; Siengchin, S.; Ismail, S.O.; IndiraDevi, M.P. Recent advances in thermal properties of hybrid cellulosic fiber reinforced polymer composites. Int. J. Biol. Macromol. 2019, 141, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sgriccia, N.; Hawley, M.C. Thermal, morphological, and electrical characterization of microwave processed natural fiber composites. Compos. Sci. Technol. 2007, 67, 1986–1991. [Google Scholar] [CrossRef]
- Maity, S.; Vajpeyee, P.; Pandit, P.; Singha, K. Orange fibre. In Sustainable Fibres for Fashion and Textile Manufacturing; Elsevier: Amsterdam, The Netherlands, 2022; pp. 273–285. [Google Scholar] [CrossRef]
- Ferfari, O.; Belaadi, A.; Bedjaoui, A.; Alshahrani, H.; Khan, M.K.A. Characterization of a new cellulose fiber extracted from Syagrus Romanzoffiana rachis as a potential reinforcement in biocomposites materials. Mater. Today Commun. 2023, 36, 106576. [Google Scholar] [CrossRef]
- Rwawiire, S.; Tomkova, B. Morphological, Thermal, and Mechanical Characterization of Sansevieria trifasciata Fibers. J. Nat. Fibers 2015, 12, 201–210. [Google Scholar] [CrossRef]
- Bekele, A.E.; Lemu, H.G.; Jiru, M.G. Experimental study of physical, chemical and mechanical properties of enset and sisal fibers. Polym. Test. 2022, 106, 107453. [Google Scholar] [CrossRef]
- Suryanto, H.; Marsyahyo, E.; Irawan, Y.S.; Soenoko, R. Morphology, Structure, and Mechanical Properties of Natural Cellulose Fiber from Mendong Grass (Fimbristylis globulosa). J. Nat. Fibers 2014, 11, 333–351. [Google Scholar] [CrossRef]
- Serra-Parareda, F.; Tarrés, Q.; Espinach, F.X.; Vilaseca, F.; Mutjé, P.; Delgado-Aguilar, M. Influence of lignin content on the intrinsic modulus of natural fibers and on the stiffness of composite materials. Int. J. Biol. Macromol. 2020, 155, 81–90. [Google Scholar] [CrossRef]
- Flandez, J.; González, I.; Resplandis, J.B.; El Mansouri, N.-E.; Vilaseca, F.; Mutjé, P. Management of corn stalk waste as reinforcement for polypropylene injection moulded composites. BioResources 2012, 7, 1836–1849. [Google Scholar] [CrossRef]
- López Gorría, A. Comparative Study of Different Types of Natural Fibers for the Manufacture of Biodegradable Composite Materials. Master’s Thesis, Universidad Carlos III de Madrid, Getafe, Spain, 2017. (In Spanish). [Google Scholar]
- Manfredi, L.B.; Rodríguez, E.S.; Wladyka-Przybylak, M.; Vázquez, A. Thermal degradation and fire resistance of unsaturated polyester, modified acrylic resins and their composites with natural fibres. Polym. Degrad. Stab. 2006, 91, 255–261. [Google Scholar] [CrossRef]
- Maitlo, G.; Ali, I.; Maitlo, H.A.; Ali, S.; Unar, I.N.; Ahmad, M.B.; Bhutto, D.K.; Karmani, R.K.; Naich, S.u.R.; Sajjad, R.U.; et al. Plastic Waste Recycling, Applications, and Future Prospects for a Sustainable Environment. Sustainability 2022, 14, 11637. [Google Scholar] [CrossRef]
- Khalifa, A.A.; Ibrahim, A.-J.; Amhamed, A.I.; El-Naas, M.H. Accelerating the Transition to a Circular Economy for Net-Zero Emissions by 2050: A Systematic Review. Sustainability 2022, 14, 11656. [Google Scholar] [CrossRef]
- Girisha, C.; Srinivas, G. Sisal/Coconut Coir Natural Fibers—Epoxy Composites: Water Absorption and Mechanical Properties. Int. J. Eng. Innov. Technol. 2012, 2, 166–170. [Google Scholar]
- Salvador, M.D.; Amigó, V.; Nuez, A.; Sahuquillo, O.; Llorens, R.; Martí, F. Characterization of vegetable fibers used as reinforcement in thermoplastic matrices. In X National Congress of Materials; Spanish Society of Materials: San Sebastián, Spain, 2008. (In Spanish) [Google Scholar]
- Otálora Ortega, H.Y. Development of a Composite Material Based on Guadua Angustifolia for Structural Applications. Master’s Thesis, Universidad de los Andes, Bogotá, Colombia, 2016. [Google Scholar]
Sample | Moisture Content (%) |
---|---|
1 | 10.56 |
2 | 10.00 |
3 | 11.37 |
4 | 11.01 |
5 | 11.53 |
6 | 11.23 |
7 | 11.31 |
Sample | Moisture Absorption (%) |
---|---|
1 | 80.06 |
2 | 81.85 |
3 | 82.35 |
4 | 82.08 |
5 | 81.01 |
6 | 81.48 |
7 | 82.24 |
Sample | Density at Zero Humidity g/m3 | Density at the Saturation Point of Humidity g/m3 |
---|---|---|
1 | 0.67 | 0.23 |
2 | 0.77 | 0.23 |
3 | 0.72 | 0.23 |
4 | 0.63 | 0.23 |
5 | 0.46 | 0.24 |
6 | 0.72 | 0.22 |
7 | 0.50 | 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Rosales, Z.-E.; Rodrigo-Ilarri, J.; Castiblanco-Moncada, L.-J.; Rodrigo-Clavero, M.-E.; Solano-Meza, J.-K.; Orjuela-Yepes, D. Physical and Thermal Characterization of Achira (Canna edulis Ker) Fiber Obtained from Food Industry Waste in the Department of Cundinamarca, Colombia. Appl. Sci. 2023, 13, 9522. https://doi.org/10.3390/app13179522
Gómez-Rosales Z-E, Rodrigo-Ilarri J, Castiblanco-Moncada L-J, Rodrigo-Clavero M-E, Solano-Meza J-K, Orjuela-Yepes D. Physical and Thermal Characterization of Achira (Canna edulis Ker) Fiber Obtained from Food Industry Waste in the Department of Cundinamarca, Colombia. Applied Sciences. 2023; 13(17):9522. https://doi.org/10.3390/app13179522
Chicago/Turabian StyleGómez-Rosales, Zully-Esmeralda, Javier Rodrigo-Ilarri, Leidy-Juliana Castiblanco-Moncada, María-Elena Rodrigo-Clavero, Johanna-Karina Solano-Meza, and David Orjuela-Yepes. 2023. "Physical and Thermal Characterization of Achira (Canna edulis Ker) Fiber Obtained from Food Industry Waste in the Department of Cundinamarca, Colombia" Applied Sciences 13, no. 17: 9522. https://doi.org/10.3390/app13179522
APA StyleGómez-Rosales, Z. -E., Rodrigo-Ilarri, J., Castiblanco-Moncada, L. -J., Rodrigo-Clavero, M. -E., Solano-Meza, J. -K., & Orjuela-Yepes, D. (2023). Physical and Thermal Characterization of Achira (Canna edulis Ker) Fiber Obtained from Food Industry Waste in the Department of Cundinamarca, Colombia. Applied Sciences, 13(17), 9522. https://doi.org/10.3390/app13179522