
Citation: Kim, K.-H.; Jeong, C.-S.

F-ALBERT: A Distilled Model from a

Two-Time Distillation System for

Reduced Computational Complexity

in ALBERT Model. Appl. Sci. 2023, 13,

9530. https://doi.org/10.3390/

app13179530

Academic Editor: Christos Bouras

Received: 18 July 2023

Revised: 14 August 2023

Accepted: 21 August 2023

Published: 23 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

F-ALBERT: A Distilled Model from a Two-Time Distillation
System for Reduced Computational Complexity in
ALBERT Model
Kyeong-Hwan Kim and Chang-Sung Jeong *

Department of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea; kyunghwan@korea.ac.kr
* Correspondence: csjeong@korea.ac.kr

Abstract: Recently, language models based on the Transformer architecture have been predominantly
used in AI natural language processing. These models, which have been proven to perform better with
more parameters, have led to a significant increase in model size and computational load. ALBERT
solves this problem by significantly reducing the number of parameters it retains by repeatedly
reusing parameters. Although ALBERT significantly reduces the parameters it maintains, it requires
a computational load similar to the original language model due to the reuse process. In this study,
we develop a distillation system that decreases the number of times the ALBERT model reuses
parameters and progressively reduces the parameters being reused. We propose a representation in
this distillation system that can effectively distill the knowledge of the original model and develop a
new architecture with reduced computation. Through this system, F-ALBERT, which had about half
the computational load compared to the ALBERT model, restored about 98% of the performance of
the original model on the GLUE benchmark.

Keywords: natural language processing; Knowledge Distillation; model compression; transformers

1. Introduction

Recent natural language processing (NLP) research has focused on Transformer-based
AI language models, which learn various contexts through unsupervised learning on
extensive text data [1–3]. These models can be broadly categorized into classification and
generation types, with BERT being a prominent classification model, known for its high
performance in context-sensitive tasks through bidirectional encoding [4]. However, this
bidirectional encoding increases complexity, leading to longer training and inference times.
Additionally, models like BERT have shown improved performance with more parameters,
leading to gradual increases in model size. Thus, research is being conducted to reduce
both the number of parameters and the computational complexity of such models [5–8].

ALBERT (A Lite BERT) [9] is a transformer-based deep learning model used for
natural language processing tasks. Compared to the traditional BERT model, ALBERT
employs parameter-sharing and factorization methods to reduce the model size while
maintaining performance, resulting in enhanced training speed and memory efficiency.
However, despite significantly reducing the number of parameters, ALBERT maintains a
similar level of computational complexity as the original BERT model. When the number of
ALBERT reuse times matches the number of identical layer modules in the BERT structure,
similar performance is observed on the GLUE benchmark. Consequently, the learning and
inference speeds are the same as those of BERT. In light of this background, this research
explores a novel approach to further enhance the efficiency and speed of ALBERT.

We propose the F-ALBERT Distillation System, designed to decrease the parameter
reuse times in ALBERT and progressively reduce the number of parameters utilized as
reuse times increase. This aims to enhance the efficiency of parameter utilization and

Appl. Sci. 2023, 13, 9530. https://doi.org/10.3390/app13179530 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13179530
https://doi.org/10.3390/app13179530
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0004-2051-994X
https://doi.org/10.3390/app13179530
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13179530?type=check_update&version=1

Appl. Sci. 2023, 13, 9530 2 of 16

minimize the model size by employing Knowledge Distillation [10], a technique focused
on distilling a more complex teacher model into a more lightweight student model.

The F-ALBERT Distillation System we propose implements this by utilizing a two-step
distillation process: Layer-Reduction ALBERT Distillation (LR-ALBERT Distillation) and
Iterative Weight Pruning ALBERT Distillation (IP-ALBERT Distillation). The first step,
LR-ALBERT Distillation, distills the teacher model into a student model with fewer layer
parameter reuse times. Subsequently, the model undergoes further distillation into the
newly proposed structure, IP-ALBERT, through IP-ALBERT Distillation. This IP-ALBERT
model applies the Iterative Weight Pruning technique, which progressively decreases the
parameters used in computation as parameter reuse iterates, reducing their number over
time. F-ALBERT is the result of the system distilling ALBERT twice.

The research presented herein primarily encompasses two main categories of contri-
bution. The first involves the development of a speed-optimization technique for models
rooted in Knowledge Distillation. A knowledge representation method for distilling AL-
BERT is introduced, accompanied by a strategy for effective knowledge transfer through
LR-Distillation and IP-Distillation. The second main area of contribution pertains to the
proposition of an Iterative Weight Pruning technique. This technique strategically prunes
parameters engaged in computation as parameter reuse progresses. A Partitioned Tran-
sition Module is proposed as part of this approach, effectively replacing the existing
Transition Module within a layer. The Iterative Weight Pruning technique is implemented
through the proposed IP-ALBERT. This optimized and distilled model, F-ALBERT, remark-
ably cuts down the computation load by about half compared to the existing ALBERT, yet
it manages to restore approximately 98% of its performance.

The composition of our manuscript is as follows. In Section 2, we elucidate the
computational process and structure of the existing BERT model, explaining how ALBERT
reuses this architecture to aid readers’ understanding. Additionally, we present the context
and direction of previous research, clearly defining our research position and contributions.
In Section 3, we introduce our specific distillation techniques, focusing on the system and
the system components that distill ALBERT into F-ALBERT. The system is organized into
two main distillation procedures, and we detail the distillation models and techniques for
each step. In Section 4, we conduct experiments by distilling the model under various
configurations and comprehensively evaluating the distilled models. Section 5 concludes
the paper by highlighting the achievements and outlining future research directions.

2. Related Works
2.1. Pretrained Language Models

The Transformer technology has brought about revolutionary developments in natural
language processing by introducing a Self-Attention mechanism to capture relationships
between words within a sentence [11]. This technology consists of encoders and decoders,
demonstrating outstanding performance in various natural language processing tasks.

Models such as BERT [4] and GPT [12] utilize encoders and decoders independently for
natural language understanding (NLU) and natural language generation tasks, respectively.
While BERT offers bidirectional context, excelling in tasks like sentence classification, entity
recognition, and question answering, GPT performs well in unidirectional context tasks
like sentence completion, machine translation, and summarization.

With the advancement in computational capability and the growing demand for
complex natural language processing performance, language models have progressively
increased in size [13]. They leverage diverse datasets and numerous parameters to learn
intricate patterns and knowledge. However, the expansion in the development costs
and services has led to various studies focusing on reducing the number of parameters
and computational load in the model. This study explores the possibility of lightweight
language models through a lightweight and high-speed BERT model, aiming to minimize
the decrease in the GLUE benchmark score while achieving a high level of lightweighting.

Appl. Sci. 2023, 13, 9530 3 of 16

2.2. BERT Architecture
2.2.1. Embedding Layer Module

BERT begins by receiving a sequence of integer tokens corresponding to words as
input. The Embedding Layer converts these sequences of integer tokens into vectors using
various embedding dictionaries.

2.2.2. Transformer Layer Module

• Self-Attention Module (S): The Self-Attention mechanism allows the model to consider
other words in the context when encoding a particular word. The mathematical details
are as follows: Given an input sequence of tokens, we have embeddings Q(queries),
K(keys), and V(values), which are obtained by multiplying the input embedding
matrix by weight matrices WQ, WK, and WV , respectively.

S(Q, K, V) = so f tmax(
QKT
√

dk
)V

where dk is the dimensionality of the key vectors.
The Self-Attention values are a weighted sum of V, where the weights are determined
by the softmax scores.

• Transition Module (T): The module transforms the word vector representations x
received from the Self-Attention Module into non-linear high-dimensional vectors.
The Transition Module consists of two linear transformations with a ReLU activation
in between:

T(x) = ReLU(xW1 + b1)W2 + b2

where W1, W2 are weight matrices, and b1, b2 are bias vectors.

BERT is a structure in which the modules presented above are composed in the
following way.

Ol = Tl(Sl(Ol−1)), l = 1, 2, . . . , L

O0 = embedding vectors

2.3. ALBERT

ALBERT is a model that has successfully reduced the parameter usage of BERT.
ALBERT (A Lite BERT) comprises a Transformer layer module with the same structure
as BERT. However, ALBERT has two significant differences from BERT. The first is that it
reduces the size of the embedding parameters through weight factorization, making the
model smaller. The second is the parameter reuse technique, which shares weights between
Transformer layers. Considering parameter reuse as the focus, ALBERT can be expressed
as follows.

Ol = Tshared(Sshared(Ol−1)), l = 1, 2, . . . , L

O0 = embedding vectors

The term “shared” refers to the use of the same parameters across all layers. This is a
crucial technique for reducing the total number of parameters ALBERT maintains. Sharing
weights between layers is equivalent to reusing the Transformer layers repetitively.

2.4. Advances in Lightweight Transformer Models

Recently, as the parameters of Transformer models have become increasingly large [14],
research has been conducted to make them more lightweight [15–17]. In this context, we
briefly examine the latest research trends and our unique approaches to the subject:

1. Optimization of Intermediate Layer Feature Transfer:
Traditional research has focused on the student model transmitting features from a
limited number of Transformer layers, omitting intermediate layer features. This facil-
itates rapid learning through learning intermediate representations, but information

Appl. Sci. 2023, 13, 9530 4 of 16

loss has been a problem [18,19]. A solution to this was proposed by compressing the
teacher model’s intermediate features and delivering them to the student model [20].
Our research focuses on developing this approach by minimizing information loss
between teacher and student Transformer layers.

2. Feature Representations Transferring features in a processed rather than simple form
can lead to more effective results [8,21–23]. Examples include transformation methods
such as cosine representation or Euclidean distance. We have explored the effect of
feature representations by leveraging these techniques.

3. Combination of Weight Pruning and Knowledge Distillation: Weight Pruning is
effective for model compression but may lead to performance loss. Existing research
has considered the parts pruned and has studied techniques to focus on distilling
the pruned parts [24,25]. We extend this technique by applying it to the parameter-
reusing technique.

4. Extension of Mixture-of-Experts: The method of dividing the high-dimensional Tran-
sition Module into several parts using the Mixture-of-Experts significantly reduces
parameter retention and usage, but there are problems of performance degradation
due to dimension reduction [26,27]. We have researched a way to improve this by
varying the number of divided modules per layer, configuring some layers as high-
dimensional and the rest as low-dimensional, ensuring both parameter efficiency and
performance.

3. Methods
3.1. System Architecture

The F-ALBERT Distillation System performs the process of distilling ALBERT into
F-ALBERT. The system carries out a two-step distillation process. The first distillation
process is the LR-ALBERT Distillation, which distills the ALBERT model into LR-ALBERT.
This process consists of two components: Student LR-ALBERT Creator and LR-Distillation.
The Student LR-ALBERT Creator generates and initializes the Student LR-ALBERT using
ALBERT. LR-Distillation distills the output results of ALBERT for all dataset samples into
the Student LR-ALBERT. LR-ALBERT is the result of the first distillation process. LR-
ALBERT is structurally identical to ALBERT, but it is a model with fewer layers reused.
The second distillation process, IP-ALBERT Distillation, distills LR-ALBERT, which results
from the first distillation process, into Student IP-ALBERT. This process consists of two
components: Student IP-ALBERT Creator and IP-Distillation. The Student IP-ALBERT
Creator creates and initializes the Student IP-ALBERT using LR-ALBERT. IP-Distillation
distills the output results of LR-ALBERT for all given data samples into the Student
IP-ALBERT. F-ALBERT is the final Student IP-ALBERT model after it goes through the
distillation process. Figure 1 provides a summary of the entire process.

Figure 1. The F-ALBERT Distillation System distills ALBERT into F-ALBERT through two distillation
processes (LR-ALBERT Distillation, IP-ALBERT Distillation).

Appl. Sci. 2023, 13, 9530 5 of 16

3.2. LR-ALBERT Distillation
3.2.1. Student LR-ALBERT Creator

This component creates and initializes the Student LR-ALBERT model, the student
model for the first distillation. The Student LR-ALBERT is generated to have the same
structure as ALBERT. However, the number of times the layer parameters are reused is set
to be less than it is with ALBERT. The initialization process involves copying ALBERT’s
parameters to the student model. Using the original ALBERT parameters can significantly
reduce the distillation time. We distill LR-ALBERT with various reuses and measure its
performance, thus proposing the most effective number of parameter reuses.

3.2.2. LR Distillation

LR Distillation involves teaching the Student LR-ALBERT model based on the output
from the last layer of the ALBERT model for all given data samples. However, the student
model has lower computational complexity than the teacher model. This results in a de-
crease in the expressiveness of the model, making it difficult to approximate the output
generated by the teacher model directly [28]. If approximated directly, performance degra-
dation is possible due to noise learning. Therefore, instead of directly learning the output of
the teacher model, we describe the summarized relationships between the word vectors cre-
ated by the teacher model and train that relationship [21]. The Transformer layer that makes
up ALBERT takes vector sequences corresponding to word tokens as input and, with each
layer iteration, returns an encoded vector sequence of the received sequences. Let us denote
the encoded vector sequence output from an arbitrary layer as V = (v1, v2, v3, . . . , vn).
The method for mapping this to Relational Knowledge Representation uses the following
suggested Relational Knowledge Mapper F(V).

F(V) =

v1·v1
‖v1‖‖v1‖

· · · v1·vn
‖v1‖‖vn‖

...
. . .

...
vn ·v1
‖vn‖‖v1‖

· · · vn ·vn
‖vn‖‖vn‖

 (1)

Relational Knowledge Mapper transforms all output word vectors into a cosine simi-
larity matrix between words. This matrix summarizes the relationships between words
and is lightweight and normalized for faster training speed. Furthermore, as this is a
summarized representation of the original output, training through this minimizes noise
and allows for learning only the critical features for relationship restoration. Let us call
the sequence of output encoding word vectors of the teacher and student models T and S,
respectively. The Loss Function used to train this representation in the LR-ALBERT model
is as follows.

Loss Function(F(S), F(T)) = ∑ MSE(F(S), F(T)) (2)

This loss function is used to calculate the difference between the teacher and the
student and update the parameters of the student. While there are various functions
to convey Relational Knowledge, considering our experimental results, it is the most
appropriate representation to deliver. LR-ALBERT is the intermediate model, distilled
through the Mapper and Loss Function for all datasets. Figure 2 provides a summary of
the entire process of LR-Distillation.

Appl. Sci. 2023, 13, 9530 6 of 16

Figure 2. The LR-Distillation Loss Function converts the output of the teacher and student models for
a given sample into relational knowledge. Training proceeds so that the student model approximates
the relational knowledge of the teacher model.

3.3. Introduction to IP-ALBERT

IP-ALBERT is a modified version of the original ALBERT structure, using our pro-
posed Partitioned Transition Module instead of the original ALBERT Transformer layer’s
Transition Module. The Partitioned Transition Module manages all the parameters of the
existing Transition Module by partitioning them into equal parts [27], selecting and com-
bining the divided parameters according to the number of reuses of the layer, and utilizing
them. Additionally, we introduced an Iterative Weight Pruning technique that gradually
reduces the number of partitions to be combined whenever a layer is reused. IP-ALBERT
implements a Partitioned Transition Module and is a structure in which the Iterative Weight
Pruning technique is applied to gradually reduce the number of parameters to be combined
each time a layer is reused.

3.3.1. Partitioned Transition Module

The Partitioned Transition Module is a modified structure of ALBERT’s existing Transi-
tion Module, enabling efficient parameter management. The key function of the Transition
Module is to affine an input vector into a high-dimensional intermediate representation
and then convert it back to its original dimension. This performs a total of two affine trans-
formations. One affine transformation uses a linear transformation matrix parameter and a
translation transformation vector parameter. A feature of the Partitioned Transition Module
is that the parameter matrices used for transformation are divided into N equal parts and
managed. This property provides efficiency and scalability in handling high-dimensional
data transformations. This N is designated by pre-determining the number of parameters
to be divided. The Partitioned Transition Module receives the connection length C as an
input value each time it is called. C determines the number of pieces to be combined for
each partitioned parameter matrix, and C pieces are selected from the front among the N
equally divided parameters and combined. The combined parameters perform the vector
mapping operation, which is the role of the Transition Module. The Partitioned Transition
Module effectively manages computational complexity by enabling the flexible use of as
many parameters as necessary.

3.3.2. Iterative Weight Pruning

Iterative Weight Pruning is a technique that optimizes the model’s performance by
gradually reducing the number of parameters while focusing on critical parameters. This
technique is practically implemented by combining the Partitioned Transition Module,
a core element of the IP-ALBERT model, and the connection length C. The Partitioned
Transition Module manages parameters for complex operations in multiple parts, and C
decides how many partitions to combine. As the model progresses, each time a layer
is reused, the connection length C decreases gradually, thereby reducing the number of
parameters participating in the operation. This process gradually eliminates unimportant
parameters each time they are reused, allowing for more focus on important parameters.

Appl. Sci. 2023, 13, 9530 7 of 16

Through this process, the overall computational complexity of the model can be reduced,
and the performance of learning and inference can be improved.

3.4. IP-ALBERT Distillation
3.4.1. Student IP-ALBERT Creator

This component takes LR-ALBERT as input and generates and initializes the Student
IP-ALBERT model, the second distillation student model. The Student IP-ALBERT is
created to have the same structural hyperparameters and the same number of layer reuses
as LR-ALBERT. However, the Partitioned Transition Module is created by partitioning
each of the parameters constituting the existing Transition Module based on the parameter
partition parameter N. The Student IP-ALBERT can significantly reduce the distillation
time by copying and reusing the parameters of LR-ALBERT. At this time, the parameters
of the Transition Module are copied after partitioning. Additionally, Student IP-ALBERT
needs to set an appropriate connection length schedule C = [C0, C1, C2. . . , CIter] by setting
an appropriate Ci for each layer module reuse count i. We propose a method to schedule
the optimal C through experiments.

3.4.2. IP Distillation

IP Distillation involves having the student model approximate the output occurring
in all Transformer layers of the teacher for all provided data samples. Like LR-Distillation,
it approximates the summarized Relational Knowledge instead of directly copying the
Transformer layer outputs. The difference from LR Distillation is that the number of times
the given model is reused is the same, so the outputs per reuse can be matched one-to-one.
Following is the distillation loss function for module outputs.

Loss Function =
Iter

∑
i=0

MSE(F(Si), F(Ti)) (3)

This provides more specific learning instructions to the student model, enabling faster
and more accurate training of the model. In addition, it allows for training pruned weights
to operate more efficiently for each reuse count. F-ALBERT is a result distilled with a
mapper and loss function for all data sets. Figure 3 provides a summary of the entire
process of IP-Distillation.

Figure 3. The IP Distillation Loss Function converts the outputs generated from iterations of all layers
of teacher and student into relational knowledge and proceeds to approximate all layers.

4. Experiments
4.1. Experimental Setup
4.1.1. Teacher Models

We selected two ALBERT models according to the parameters scale: ALBERT-Base
(hidden size = 768, layer iteration = 12) and ALBERT-Large (hidden size = 1024, layer
iteration = 24). We evaluate the process of distilling these two models and the results of
distillation. By comparing these results, we analyze the size-dependent variable of the
proposed distillation techniques. Both models process the input stream using the same

Appl. Sci. 2023, 13, 9530 8 of 16

tokenizer and have the same embedding dictionary size (vocab size = 30,000). Both models
were pre-trained with the same dataset: the BookCorpus [29] and the Wiki Corpus. These
models were trained for 125,000 steps with a batch size of 4096. The learning rate started at
0.00176 and was updated using the LAMB optimizer [30].

4.1.2. Corpus Datasets

The existing teacher model was pre-trained on Wiki Corpus and BookCorpus. We
utilized the C4 (Common Crawl’s Web Crawl Corpus) Dataset [31] in the model distillation
process. C4 is a dataset that extracts text from web pages and removes web page elements
like HTML tags, scripts, styles, etc. Moreover, only text written in the main languages
was extracted through language detection, and noise such as typos, grammar, informal
language use, special characters, etc., was removed. Using a dataset from which noise has
been removed using various techniques can prevent a decrease in training efficiency due to
noise during the training process. By distilling the model using a new dataset instead of
the existing one, we can obtain the effects of learning from various data and improving
generalization performance.

4.1.3. GLUE Benchmark Datasets and Downstream Setup

The GLUE (General Language Understanding Evaluation) benchmark [32] is a col-
lection of standardized datasets for evaluating natural language understanding (NLU). It
comprises various natural language processing (NLP) tasks to assess a model’s overall
language understanding capability. The GLUE benchmark includes several subtasks:

• Multi-Genre Natural Language Inference (MNLI): Classifying the relationship between
two sentences. Given two sentences, it determines whether the second sentence is in
an entailment, neutral, or contradiction relationship with the first one.

• Quora Question Pairs (QQP): This binary classification task involves determining
whether pairs of questions collected from Quora are semantically identical.

• Stanford Sentiment Treebank (SST): This binary classification task categorizes the
sentiment of sentences extracted from movie reviews as positive or negative.

• Corpus of Linguistic Acceptability (CoLA): This binary classification task involves
judging whether a sentence is grammatically correct.

• Microsoft Research Paraphrase Corpus (MRPC): This binary classification task in-
volves determining whether two sentences are paraphrases of each other.

• Recognizing Textual Entailment (RTE): This binary classification task involves deter-
mining whether the second sentence can be inferred from the first when two sentences
are given. This task is similar to the MNLI task but uses a smaller dataset.

• Question Natural Language Inference (QNLI): This binary classification task requires
determining if a given sentence answers a specific question. It tests the model’s ability
to infer information within a question-answering context.

By synthesizing the evaluation results of each subtask, we evaluate the model’s overall
natural language understanding capability. Most recent NLP models are evaluated through
the GLUE benchmark, and their performance continually improves.

4.2. Relational Knowledge Distillation

We configured the output as Relational Knowledge to effectively distill the Trans-
former Layer output of the language model. To check the effect of constructing Relational
Knowledge Distillation using this expression, we compare the model’s performance dis-
tilled using traditional Knowledge Distillation and the GLUE Benchmark. In addition,
by actually applying various loss functions that convey relational knowledge, the proposed
Loss Function proves to be effective.

4.2.1. Comparison of Traditional Knowledge Distillation

Typically, traditional Knowledge Distillation [10] transforms the output zi of the
teacher into a So f tmax classification probability qi and trains it on the student model. Given

Appl. Sci. 2023, 13, 9530 9 of 16

the probability qi of the teacher for the i-th class, the probability pi of the student after the
same So f tmax transformation and the temperature T, the loss function is composed using
a KL Divergence function.

qi =
exp(zi/T)

∑j exp(zj/T)
, loss = ∑

j
KL(qi, pi) (4)

We configured student models from the ALBERT-Base and ALBERT-Large teacher
models, each having half the original layer reuse number. We performed distillation using
LR-Distillation and traditional Knowledge Distillation methods for the ALBERT-Base and
ALBERT-Large models and compared their GLUE performances. Figure 4 shows the result.

Figure 4. Distillation Results of ALBERT-Base and ALBERT-Large with Reduced Layer Reuse.

Experimental results showed that the model distilled through Relational Knowl-
edge Distillation performed better in the GLUE benchmark score. Existing traditional,
probability-based distillation techniques are suitable for distilling the information gen-
erated by the head layer for classification. They are not ideal for directly training the
knowledge of the complex encoding layer generated by the model. Also, using the so f tmax
function, information corresponding to a specific range is lost or underestimated. Addi-
tionally, it can distill the results of the classification head used for learning the existing
language model, but it is inefficient regarding the data set and learning cost.

4.2.2. Loss Function Comparison

Various loss functions can be used to distill relational knowledge. We constructed
and evaluated the LR-Distillation Loss function using the frequently used regression loss
function (MAE, MSE). Using the previous method, we build a student model with half
layers and large teacher models in each base and proceed with distillation. The Shannon
information content change in the vector generated in the last layer of LR-ALBERT distilled
in each method was measured. The Shannon information quantity is a unit for measuring
the quantity of information in terms of information theory. If the amount of information
is high, it can be indirectly confirmed that the corresponding vector captures complex or
various features well. so f tmax probability p(x) is converted to for the model’s output
vector x, and the Shannon entropy H is measured as

H(x) = −∑
x

p(x) log2 p(x) (5)

Appl. Sci. 2023, 13, 9530 10 of 16

We prepared 10,000,000 data samples and proceeded with distillation for one epoch.
One epoch comprises six steps, and the Shannon entropy of the learned model output at
each training step was measured and recorded in Figure 5.

Figure 5. Entropy trend during distillation using the MAE and MSE methods, according to the
learning process (Left: Base-size model, Right: Large-size model).

Overall, the base model has more information in the model’s output trained by MSE.
However, the large model had more information in the model’s output trained with MAE
up to the fourth step. This reflects the tendency of the MAE function to distill a model
quickly but ignore some complex patterns. MSE takes more time to learn complex patterns
and sparse features but can have a richer amount of information. Since the output of
the language model is significant for very sparse pattern features, MSE may be more
appropriate. We constructed an additional experiment to see if the model with a large
amount of information performed excellently in the fine-tuning task. The GLUE benchmark
performance of the Base and Large models trained up to six steps with MAE and MSE was
measured and compared. Table 1 presents the measurement results.

Table 1. MAE vs. MSE GLUE benchmark.

MNLI QNLI QQP RTE SST MRPC CoLA AVG

MAE
BASE 81.1 90.1 87.3 71.1 90.6 86.9 48.1 79.31

MSE
BASE 82.3 89.4 87.3 73.8 90.2 86.7 52.5 80.3

MAE
LARGE 83.3 90.8 90.1 75.1 91.8 89 56.3 82.34

MSE
LARGE 85.3 91.1 89.5 78.5 92.7 90 59.3 83.77

Even in the GLUE benchmark performance, the average score of the model trained by
MSE is higher. In particular, tasks for small-scale learning data environments such as RTE
and CoLA were much higher. This shows that the model trained with the MSE function can
grasp the complex patterns of the language model and simultaneously have outstanding
generalization ability for new data.

4.3. LR-ALBERT Performance Test

LR Distillation distills the teacher model into the student model based on RKD. At this
time, the student model can have various reuse counts. We distill the ALBERT-Base
and ALBERT-Large models into student models with various reuse counts. The GLUE
benchmark table and computing performance (Memory Usage, Fine-tuning, Throughput
per Second) of LR-ALBERT after distillation are presented. The performance presented in
Figure 6 is normalized as a percentage by dividing the measurement result of LR-ALBERT
by the measurement result of the existing teacher model.

Appl. Sci. 2023, 13, 9530 11 of 16

(a) (b)

(c) (d)

Figure 6. GLUE Average Benchmark scores and Throughput per Second performance according to
the number of layer reuses ((a): Base-size model, (c): Large-size model), Fine-Tuning Throughput per
Second and Memory Usage according to the number of layer reuses ((b): Base size model, (d): Large
size model).

According to the results, the base and large models exhibited good performance
when distilled into LR-ALBERT, which has approximately half the number of layer reuse
instances. The GLUE benchmark performance of the LR-ALBERT model, with a half level
of layer reuse, dropped by around 1–2%, but the memory usage decreased to about half,
and the processing speed increased by roughly two times. We suggest setting the layer-
reuse frequency of LR-ALBERT to half of its original number as a reasonable benchmark.

4.4. IP-Distillation Scheduling Experiments

To maximize the calculation speed and generate F-ALBERT with minimal performance
degradation, it is necessary to schedule an effective connection length according to the
number of reuses of IP-ALBERT. There are many very diverse cases for the connection
length schedule. We propose effective schedules for the distilled LR-ALBERT base and
large models with half the number of layer reuses. To construct an effective schedule, we
analyze the change in output as the number of reuses of LR-ALBERT increases and suggest
several schedules based on this. According to the proposed schedule, we proceed with
IP-Distillation and present the final performance of F-ALBERT.

4.4.1. Analysis of Difference in Relational Knowledge in LR-ALBERT

IP-ALBERT combines and utilizes partitioned parameters according to the number of
layers reused. A layer takes a recursive configuration, receiving the previous layer’s output
as input. Since the distribution of input changes as layers are repeated, even if a module
composed of the same parameters is reused, each layer operates differently. We assume that
with each layer iteration, the parameter and amount of parameters primarily involved in
interpreting the input gradually decrease. We prepare LR-ALBERT (Base) and LR-ALBERT
(Large) by distilling ALBERT (Base) and ALBERT (Large) into half layers to measure the
size of the change per layer. We prepared an evaluation dataset from a corpus not used in

Appl. Sci. 2023, 13, 9530 12 of 16

training (sample = 15,000) and transformed the output results of LR-ALBERT, depending
on the parameter reuse, into Relational Knowledge. Figure 7 shows the comparison of the
Euclidean Distance of the final layer result.

Figure 7. Trend of the change in Euclidean Distance between the final output Relational Knowledge
of LR-ALBERT and the Relational Knowledge of each layer.

It can be observed that the amount of change varies significantly until the reuse of the
second layer, and the amount of change decreases considerably from the reuse of the second
layer before output. The rest of the layers show similar variations. We propose scheduling
the connection length by partitioning it into three steps using this result. We now set the
partition size to four through empirical results. Since the layer module significantly changes
the vector in the first step, all partitions are connected. In the second step, the amount of
change is less than that of the first step, but the difference is maintained at a certain level.
Therefore, this step connects all partitions or removes one partition. The last step reduces
the variance, significantly reducing the connection partition. The following Schedule is
the scheduling for the LR-ALBERT base model and the Large model distilled with half the
number of reuses, respectively.

4.4.2. F-ALBERT Performance

F-ALBERT is the result of distilling LR-ALBERT into IP-ALBERT. Based on LR-
ALBERT, which reuses half of the layers as before, we proceeded with distillation on
IP-ALBERT with the schedule presented above. The performance presented in Figure 8
is normalized as a percentage by dividing F-ALBERT’s measurement result by that of the
existing LR-ALBERT model.

Figure 8. Measurement of F-ALBERT’s computing and GLUE average score performance based on
different schedule configurations (left: Base-size model, right: Large-size model).

Our experiments confirmed that when the connection length was additionally reduced
in reusing the second step, a decrease in the Glue benchmark performance of 1 to 2%
occurred. Through this, it was confirmed that the scheduling technique based on the

Appl. Sci. 2023, 13, 9530 13 of 16

amount of change was valid. We present the final F-ALBERT standard schedule as Y for
the base model and N for the large model. Compared to LR-ALBERT, the base model
increased in speed by 20% and decreased in memory usage by 15%, and the large model
increased in speed by about 40% and decreased in memory usage by 15%. Table 2 is the
final GLUE-benchmark result of F-ALBERT.

Table 2. NLU benchmark performance according to schedule configuration for each model.

Schedule MNLI QNLI QQP RTE SST MRPC CoLA AVG

X 81 88.8 89 71.1 91.7 85.2 52.4 79.886
Y 80.6 88.4 89.3 72.3 91.5 87.5 48.3 79.7
M 83.3 90.2 89.1 76.1 92.4 89.8 54.3 82.17
N 82.6 89.6 89 75.2 91.3 89.2 52.1 81.29

F-ALBERT comprises various hyperparameters that can directly affect the model’s
generalization performance. We identify crucial parameters that exert a direct influence on
F-ALBERT’s functionality, proposing hyperparameter settings rooted in previously con-
ducted experiments. Hyperparameters can be divided into two facets: learning progression
and model composition.

In the learning dimension, the epoch count is vital. We employed the C4 dataset
for distillation, observing that when the number of epochs exceeded two, there was a
marginal reduction in benchmark performance. Therefore, we suggest training on a range
of non-overlapping datasets or configuring training with a lower number of epochs for
distillation tasks.

Regarding model composition, the careful configuration of LR-ALBERT’s constituent
layers is essential. As per Tables 3 and 4, if LR-ALBERT is configured with fewer than
half of the original layers, performance markedly declines. LR-ALBERT exhibited optimal
performance when composed of half the number of the original teacher layers.

Table 3. GLUE the benchmark for various layers of base LR-ALBERT.

MNLI QNLI QQP RTE SST MRPC CoLA AVG

ALBERT-Base +12 Layer 84.7 90.5 89 77.9 92 88.9 55.5 82.64

LR-ALBERT +8 Layer 81.9 89.1 89.9 74.3 91.6 85.3 53.1 80.74

LR-ALBERT +6 Layer 81.3 89.4 89.3 73.8 91.2 86.7 52.5 80.6

LR-ALBERT +4 Layer 79.2 86.5 86.6 64.6 91.2 81.1 45.3 76.3

LR-ALBERT +2 Layer 72.7 80.8 86 63.5 87 76.5 20 69.5

Table 4. GLUE benchmark for various layers of large LR-ALBERT.

MNLI QNLI QQP RTE SST MRPC CoLA AVG

ALBERT-Large +24 Layer 87.1 91.8 90.1 80.3 92 91 60.9 84.74

LR-ALBERT +18 Layer 85.3 91.76 90.3 80.5 93.6 90.2 58.3 84.28

LR-ALBERT +12 Layer 85.3 91.1 89.5 78.5 92.7 90 59.3 83.77

LR-ALBERT +6 Layer 81.8 88.5 89 68.5 92.3 86.9 47.6 79.23

Moreover, IP-ALBERT’s schedule is a key model hyperparameter. In Tables 5 and 6,
we have presented schedules for LR-ALBERT according to its sizes. Specifically, Schedules
Y and N are those with minimized computational requirements that can ensure general-
ization performance. Based on empirical findings, establishing a schedule with even less
computation led to a generalization performance decrease of more than 15%. Therefore, we
recommend employing the proposed Y and N schedules.

Appl. Sci. 2023, 13, 9530 14 of 16

Table 5. LR-ALBERT (base) IP-Distillation Schedules.

Schedule 1 2 3 4 5 6

X 4 4 4 4 2 1
Y 4 4 3 3 2 1

Table 6. LR-ALBERT (large) IP-Distillation Schedules.

Schedule 1 2 3 4 5 6 7 8 9 10 11 12

M 4 4 4 4 4 4 4 4 4 4 2 1
N 4 4 3 3 3 3 3 3 3 3 2 1

The Table 7 compares distilled models possessing the same structure of the Transformer
layer as the proposed F-ALBERT, including TinyBERT [33], DistillBERT [34], ALP-KD [19],
and LAD [20], all of which are composed of six Transformer layers of similar size to
F-ALBERT. Since F-ALBERT reuses parameters, it exhibits approximately six times the
parameter efficiency of existing methods. This allows it to operate efficiently in embedded
environments where GPU memory resources are limited. Additionally, while existing
methods focus solely on reducing layers through distillation, our approach gradually
reduces computation parameters layer by layer through additional distillation in the IP-
ALBERT structure, recording a speed increase of approximately 20%. Moreover, by distilling
Relational Knowledge, we have secured generalized performance across various NLU
tasks. Furthermore, F-ALBERT, with its large size, demonstrated higher compression ratios
compared to its base size, along with a 30% improvement in speed. However, parameter
reuse ultimately led to a performance decrease of up to 5% due to insufficient parameters
compared to other methods. We verified that this can be resolved by expanding the size of
one Transformer, as demonstrated in F-ALBERT (base) and F-ALBERT (large).

Table 7. Performance analysis of the proposed F-ALBERT compared to existing methodologies.
The speedup factor measures how much faster F-ALBERT (base) is relative to the corresponding
method. Additionally, the experiment recorded inference scores for various NLP tasks.

Model Parameters Speedup CoLA RTE MNLI MRPC QNLI

F-ALBERT (base) 12 M 1.0× 48.3 72.3 80.6 87.5 88.4
TinyBERT 66 M 1.2× 50.1 70.0 81.2 87.3 90.4

DistillBERT 66 M 1.2× 45.3 65.5 80.5 85 89
ALP-KD 66 M 1.2× - 68.59 81.86 85.05 89.67

LAD 66 M 1.2× - 68.59 83.78 84.56 90.74
F-ALBERT (large) 18 M 2.5× 52.1 75.2 82.6 89.2 89.6
BERT-PKD (large) 180 M 3.0× 56.4 76.5 84.1 90 91.1

5. Conclusions

In this study, we presented a novel approach to enhance the efficiency of the ALBERT
model for natural language processing tasks. Utilizing Knowledge Distillation, we devel-
oped a system that transformed the existing ALBERT model into F-ALBERT, a significantly
faster variant.

Our research contributions can be categorized into two primary areas. Firstly, we
proposed a speed-optimization technique for models based on Knowledge Distillation.
We introduced an innovative knowledge representation method specifically designed
for distilling ALBERT. Additionally, we developed effective strategies for knowledge
transfer through LR-Distillation and IP-Distillation. Secondly, we presented a new Iterative
Weight Pruning technique, which systematically pruned computational parameters at each
instance of parameter reuse. We proposed a Partitioned Transition Module to implement
this technique, which replaced the existing Transition Module within a layer.

Appl. Sci. 2023, 13, 9530 15 of 16

We demonstrated that our final distilled model, F-ALBERT, substantially reduced the
computational load by approximately half compared to the original ALBERT. Remark-
ably, despite the reduction in computational load, F-ALBERT retained nearly 98% of the
original model’s performance. The results of our research underlined the potential of dis-
tillation techniques for model optimization, suggesting a promising avenue for achieving
a balance between high performance and computational efficiency in natural language
processing tasks.

In our research, the F-ALBERT model has demonstrated strengths in high parameter
efficiency and low memory utilization. Future research will focus on enhancing throughput
in embedded environments through the quantization, optimization, and expansion of the
IP-ALBERT structure, leveraging these advantages. Quantization will enable its efficient
execution in small-scale embedded settings, while the IP-ALBERT structure is anticipated
to improve performance by exploring optimized parameter connections for each layer.
Moreover, we will concentrate on the development and optimization of models specialized
for specific industries and application areas through the extension of these technologies.
In this way, we plan to explore performance enhancements and new possibilities in various
environments and application fields, maximizing the efficiency and versatility of F-ALBERT.

Author Contributions: Conceptualization, K.-H.K. and C.-S.J.; methodology, K.-H.K. and C.-S.J.;
software, K.-H.K.; validation, K.-H.K. and C.-S.J.; formal analysis, K.-H.K. and C.-S.J.; investigation,
K.-H.K.; resources, K.-H.K.; data curation, K.-H.K.; writing—original draft preparation, K.-H.K.;
writing—review and editing, K.-H.K. and C.-S.J.; visualization, K.-H.K.; supervision, C.-S.J.; project
administration, K.-H.K. and C.-S.J.; funding acquisition, C.-S.J. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: This work was supported by the artificial intelligence industrial convergence
cluster development project funded by the Ministry of Science and ICT (MSIT, Korea) and Gwangju
Metropolitan City.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.

Adv. Neural Inf. Process. Syst. 2017, 2017, 5999–6009.
2. Mars, M. From Word Embeddings to Pre-Trained Language Models: A State-of-the-Art Walkthrough. Appl. Sci. 2022, 12, 8805.

[CrossRef]
3. Garrido-Muñoz, I.; Montejo-Ráez, A.; Martínez-Santiago, F.; Ureña-López, L.A. A survey on bias in deep NLP. Appl. Sci. 2021,

11, 3184. [CrossRef]
4. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT. In Proceedings of the NAACL HLT 2019—2019 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, MN, USA,
2–7 June 2019; Volume 1, pp. 4171–4186.

5. Sun, Z.; Yu, H.; Song, X.; Liu, R.; Yang, Y.; Zhou, D. MobileBERT. arXiv 2020. [CrossRef]
6. Mehta, S.; Ghazvininejad, M.; Iyer, S.; Zettlemoyer, L.; Hajishirzi, H. Delight: Deep and light-weight transformer. arXiv 2020,

arXiv:2008.00623.
7. Wang, Z.; Wohlwend, J.; Lei, T. Structured pruning of large language models. In Proceedings of the EMNLP 2020—2020

Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference, Virtual, 16–20 November
2020; pp. 6151–6162. [CrossRef]

8. Liu, H.; Yan, H.; Xia, J.; Ai, Y. Entropy targets for adaptive distillation. In Proceedings of the ICRAI ’20: Proceedings of the 6th
International Conference on Robotics and Artificial Intelligence, Singapore, 20–22 November 2020; pp. 179–183. [CrossRef]

9. Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma, P.; Soricut, R. Albert: A lite bert for self-supervised learning of language
representations. arXiv 2019, arXiv:1909.11942.

http://doi.org/10.3390/app12178805
http://dx.doi.org/10.3390/app11073184
http://dx.doi.org/10.18653/v1/2020.acl-main.195
http://dx.doi.org/10.18653/v1/2020.emnlp-main.496
http://dx.doi.org/10.1145/3449301.3449332

Appl. Sci. 2023, 13, 9530 16 of 16

10. Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531.
11. Clark, K.; Khandelwal, U.; Levy, O.; Manning, C.D. What does bert look at? an analysis of bert’s attention. arXiv 2019,

arXiv:1906.04341.
12. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.

Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901.
13. Shoeybi, M.; Patwary, M.; Puri, R.; LeGresley, P.; Casper, J.; Catanzaro, B. Megatron-LM: Training Multi-Billion Parameter

Language Models Using Model Parallelism arXiv 2019, arXiv:1909.08053.
14. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I.; et al. Language models are unsupervised multitask learners.

OpenAI Blog 2019, 1, 9.
15. Gou, J.; Yu, B.; Maybank, S.J.; Tao, D. Knowledge Distillation: A Survey. Int. J. Comput. Vis. 2021, 129, 1789–1819. [CrossRef]
16. Tang, J.; Shivanna, R.; Zhao, Z.; Lin, D.; Singh, A.; Chi, E.H.; Jain, S. Understanding and Improving Knowledge Distillation. arXiv

2018, arXiv:2002.03532.
17. Fournier, Q.; Caron, G.M.; Aloise, D. A practical survey on faster and lighter transformers. ACM Comput. Surv. 2021, 55, 304.

[CrossRef]
18. Sun, S.; Cheng, Y.; Gan, Z.; Liu, J. Patient Knowledge Distillation for BERT Model Compression. arXiv 2019, arXiv:1908.09355.
19. Passban, P.; Wu, Y.; Rezagholizadeh, M.; Liu, Q. ALP-KD: Attention-Based Layer Projection for Knowledge Distillation. arXiv

2020, arXiv:2012.14022.
20. Lin, Y.J.; Chen, K.Y.; Kao, H.Y. LAD: Layer-Wise Adaptive Distillation for BERT Model Compression. Sensors 2023, 23, 1483.

[CrossRef]
21. Park, W.; Corp, K.; Kim, D.; Lu, Y. Relational Knowledge Distillation (CVPR, 2019). In Proceedings of the IEEE International

Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3967–3976.
22. Heo, B.; Kim, J.; Yun, S.; Park, H.; Kwak, N.; Choi, J.Y. A comprehensive overhaul of feature distillation. In Proceedings of the

IEEE International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1921–1930.
[CrossRef]

23. Wu, X.; Liu, Y.; Zhou, X.; Yu, D. Distilling knowledge from pre-trained language models via text smoothing. arXiv 2020,
arXiv:2005.03848.

24. Wang, T.; Zhou, W.; Zeng, Y.; Zhang, X. EfficientVLM: Fast and Accurate Vision-Language Models via Knowledge Distillation
and Modal-adaptive Pruning. arXiv 2022, arXiv:2210.07795.

25. Peng, Y.; Sudo, Y.; Muhammad, S.; Watanabe, S. DPHuBERT: Joint Distillation and Pruning of Self-Supervised Speech Models.
arXiv 2023, arXiv:2305.17651.

26. Zuo, S.; Zhang, Q.; Liang, C.; He, P.; Zhao, T.; Chen, W. MoEBERT: From BERT to Mixture-of-Experts via Importance-Guided
Adaptation. arXiv 2022, arXiv:2204.07675.

27. Fedus, W.; Zoph, B.; Shazeer, N. Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity.
arXiv 2021, arXiv:2101.03961.

28. Shaw, P.; Uszkoreit, J.; Vaswani, A. Self-attention with relative position representations. In Proceedings of the NAACL HLT
2018—2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, New Orleans, LO, USA, 1–6 June 2018; Volume 2, pp. 464–468. [CrossRef]

29. Zhu, Y.; Kiros, R.; Zemel, R.; Salakhutdinov, R.; Urtasun, R.; Torralba, A.; Fidler, S. Aligning Books and Movies: Towards
Story-Like Visual Explanations by Watching Movies and Reading Books. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), Santiago, Chile, 11–18 December 2015.

30. You, Y.; Li, J.; Reddi, S.; Hseu, J.; Kumar, S.; Bhojanapalli, S.; Song, X.; Demmel, J.; Keutzer, K.; Hsieh, C.J. Large batch optimization
for deep learning: Training bert in 76 minutes. arXiv 2019, arXiv:1904.00962.

31. Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the limits of transfer
learning with a unified text-to-text transformer. J. Mach. Learn. Res. 2020, 21, 5485–5551.

32. Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; Bowman, S.R. GLUE: A multi-task benchmark and analysis platform for natural
language understanding. arXiv 2018. [CrossRef]

33. Jiao, X.; Yin, Y.; Shang, L.; Jiang, X.; Chen, X.; Li, L.; Wang, F.; Liu, Q. Tinybert: Distilling bert for natural language understanding.
arXiv 2019, arXiv:1909.10351.

34. Sanh, V.; Debut, L.; Chaumond, J.; Wolf, T. DistilBERT, a distilled version of BERT: Smaller, faster, cheaper and lighter. arXiv 2019,
arXiv:1910.01108.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11263-021-01453-z
http://dx.doi.org/10.1145/3586074
http://dx.doi.org/10.3390/s23031483
http://dx.doi.org/10.1109/ICCV.2019.00201
http://dx.doi.org/10.18653/v1/n18-2074
http://dx.doi.org/10.18653/v1/w18-5446

	Introduction
	Related Works
	Pretrained Language Models
	BERT Architecture
	Embedding Layer Module
	Transformer Layer Module

	ALBERT
	Advances in Lightweight Transformer Models

	Methods
	System Architecture
	LR-ALBERT Distillation
	Student LR-ALBERT Creator
	LR Distillation

	Introduction to IP-ALBERT
	Partitioned Transition Module
	Iterative Weight Pruning

	IP-ALBERT Distillation
	Student IP-ALBERT Creator
	IP Distillation

	Experiments
	Experimental Setup
	Teacher Models
	Corpus Datasets
	GLUE Benchmark Datasets and Downstream Setup

	Relational Knowledge Distillation
	Comparison of Traditional Knowledge Distillation
	Loss Function Comparison

	LR-ALBERT Performance Test
	IP-Distillation Scheduling Experiments
	Analysis of Difference in Relational Knowledge in LR-ALBERT
	F-ALBERT Performance

	Conclusions
	References

