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Abstract: With the long-term running of the subway, the soil layer around the tunnel takes on the
thermal deposition effect, which can lead the air in the tunnel to heat up and pose a serious threat
to the safety operation of trains. Through taking some subway tunnels from typical zones as an
example, the influence of tunnel depth on the heat storage characteristics of the surrounding soil
mass was analyzed in the paper. The results indicate that the temperature field of the surrounding
soil mass was thermally disturbed by both the ground air temperature and the tunnel air temperature,
and there was a significant coupling point ‘O’ located at the center of the tunnel overburden. With
the extension of the heat-exchange time, the shape of the cooling ring around the tunnel gradually
changed from a circle to an oval. For the analysis of cases, from the space aspect, when the tunnel
depth was less than 30 m, the wall temperature increased gradually with the increase of tunnel depth.
From the time aspect, over time, the wall temperature gradually rose and finally reached a fixed
value. From the region aspect, the heat absorption capacity of different areas decreased gradually
with the increase of tunnel depth. When the depth exceeded 45 m, the heat absorption capacity of
certain cities became negative. In addition, three typical boundaries were discussed, and the optimal
method for evaluating the heat absorption capacity of the tunnel soil was ultimately determined.
This study has important reference value for temperature control and positioning problems in the
process of tunnel construction and operation.

Keywords: subway tunnel; soil mass; tunnel depth; thermal deposition effect; finite volume method

1. Introduction

With the rapid development of urbanization, subways are playing an increasingly
important role in alleviating and improving urban traffic congestion [1]. However, the
soil mass surrounding the tunnel can generate a thermal deposition effect during subway
operation, which inevitably results in an annual increase in tunnel air temperature [2–4].
For example, the platform temperature of Beijing Subway Line 1 has risen from 23.5 ◦C
to 28.5 ◦C over the past 40 years, and the highest temperature has reached 31 ◦C in
summer [5,6]. On London’s Central Line, it was reported that the carriage temperature
exceeded 40 ◦C, making it unbearable for passengers [7,8]. The deteriorating thermal
environment of the subway inevitably affects the comfort of the operating environment, the
efficiency of the air-conditioning system, and the stability of the tunnel surrounding struc-
ture; this can seriously threaten safe and stable operation of the subway [9,10]. Therefore, it
is essential to study the thermal transport law of tunnel surrounding soil mass.

According to Li [11], subways are typically constructed at depths ranging from 20 m
to 50 m below ground level. However, due to geological conditions, excavation periods,
economic costs, the prevention of nuclear war, or other factors, the depth of underground
tunnels varies among different countries and regions. Lian [12] mentioned that many
stations in the St. Petersburg subway are more than 60 m deep. The deepest station in Hong
Kong’s subway is the Hong Kong University Station on the Island Line, which is over 70 m
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deep. Kiev Metro Line 1’s Arsenal station is located in the middle of a mountain, about
105.5 m away from the ground. The Pyongyang subway in North Korea is the deepest
subway system in the world, with a depth of 200 m at its lowest point.

The thermal environment of the subway is influenced by many factors, with the
storage and release of heat from the tunnel soil layer being the main factors. Its forma-
tion mechanism and heat migration law have been deeply studied both in China and
abroad [13–15]. In theoretical analysis, the analytical solution for the heat transfer equa-
tions of the soil mass was derived [16–21], but the complexity of the solution expression
greatly limits its application in engineering. In addition, due to the rapid development of
numerical calculation methods, the heat transfer rules of the soil mass surrounding the
tunnel have been widely studied from various perspectives, such as mechanical ventilation
systems [22–25], heat absorption ratio [26], capillary heat exchange [27], tunnel temperature
assessment [28], heat storage effects [29], seasonal heat storage characteristics [30–35], and
thermal physical parameters [36–41]. Therefore, the heat transfer characteristics of the
tunnel soil layer have been systematically discussed above. However, there is a lack of
relevant research on the underground depth that impacts the thermal perturbation effect
from both ground air and tunnel air.

This paper is structured as follows: First, a numerical model is established for heat
conduction of the soil mass based on the principle of energy conservation. Second, the
governing equations of the heat transfer of tunnel soil mass are numerically solved by the
finite volume method, and the experimental results verify the effectiveness of this model.
Finally, the influence of tunnel depth on the heat storage characteristics of the surrounding
soil mass is discussed in detail. This study helps us to better understand the influence
of tunnel depth, ground air, and tunnel air on the thermal transport law of the soil mass
surrounding the tunnel.

2. Formulation of the Problem
2.1. Physical Model

To simplify the heat transfer problem, the following assumptions were proposed: (i) The
soil layer around the tunnel was homogeneous and isotropic, with no internal heat sources;
(ii) the tunnel section had a circular shape; (iii) the axial heat flow transfer was neglected,
simplifying the three-dimensional heat conduction of the subway tunnel to a two-dimensional
plane problem; (iv) the temperature fluctuation were not taken into consideration, and the
annual average temperatures of both ground and tunnel air were used as boundary conditions;
(v) the thermal properties did not vary with temperature; (vi) the latent heat and thermal
radiation of the tunnel surrounding rock wall were not considered.

Based on the above assumptions, this model is subject to four boundary conditions
as shown in Figure 1. Γ1 and Γ2 represent the boundaries for convective heat transfer; Γ3
denotes the adiabatic boundary of temperature field; and Γ4 signifies the raw soil layer
temperature. H is the depth of the metro tunnel.

In addition, the soil mass surrounding the tunnel was discretized using unstructured
triangular mesh elements, resulting in a total of 3130 cells and 1630 nodes. The closer the
grid element is to the tunnel wall or boundary of the calculation domain, the smaller its
size in the calculation area becomes. This effectively improves both the accuracy and speed
of the program.
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2.2. Mathematical Model

The integral equation for heat transmission in tunnel soil mass is written as follows [37]:

−
x

S

λ(
∂2T
∂x2 +

∂2T
∂y2 )dS =

x

S

(ρCP
∂T
∂t

)dS (1)

where T is the temperature field of the soil mass (◦C); λ is the heat conductivity coefficient
of the soil mass (W/(m•◦C)); ρ is the density of the soil mass (kg/m3); Cp is the specific
heat capacity of the soil mass (J/(kg•◦C)); x and y are the Cartesian coordinates (m); t is the
transmitting time (s); and S is the area of the integration domain (m2).

The boundary conditions:
λ ∂T

∂n

∣∣∣
Γ1

= −hM(T|Γ1
− TM f )

λ ∂T
∂n

∣∣∣
Γ2

= −hG(T|Γ2
− TG f )

q|Γ3
= 0

T|Γ4
= Tgu

(2)

where hM is the convection heat-exchange factor of the tunnel wall-air (W/(m2•◦C)); hG is
the convection heat-exchange factor of the ground surface-air (W/(m2•◦C)); TMf and TGf
are the air temperature in the tunnel and on the ground, respectively (◦C); Tgu is the raw
temperature of the soil mass (◦C), and q is the heat flux density on the tunnel wall (W/m2).

The initial condition:
T|t=0 = Tgu (3)

The physical and mathematical models above constitute the foundation for simulating
the heat conduction of the soil mass surrounding the tunnel.
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3. Solution of Governing Equation
3.1. Discretization Model

Qin et al. [42,43] proposed that the heat transfer problem can be solved using the finite
volume method. It can be expressed in the matrix form as follows:


Θe

i
Θe

j
Θe

m

 =

 kii kij kim
k ji k jj k jm
kmi kmj kmm


Ti
Tj
Tm

−
 nii nij nim

nji njj njm
nmi nmj nmm




∂Ti
∂t

∂Tj
∂t

∂Tm
∂t

 (4)

where kll = −λe(b2
l + c2

l )/3∆; kln = knl = −λe(blbn + clcn)/3∆; nll =
20∆
81 ρece; nln = nnl =

8∆
81 ρece; l, n = i, j, m, and l 6= n; Ti, Tj, and Tm represent the node (i, j, m) temperature; Θe

i , Θe
j ,

and Θe
m represent the node (i, j, m) contribution from the eth element; and e represents the

local element.
Zhang et al. [44] presented that the heat conduction problem has three main types of

boundaries. As shown in Figure 1, the fluid-solid heat transfer boundaries Γ1 and Γ2 are
called the Robin boundary condition; the boundary Γ3 is defined as the adiabatic boundary
with zero heat flux density, which is referred to as the Neumann boundary condition;
and the boundary Γ4 is called the Dirichlet boundary condition, which is a constant. The
boundary grid elements are described in matrix form as follows:{

Θb
i

Θb
j

}
=

{
qbilbi
qbjlbj

}
=

[
uii uij
uji ujj

][
Ti
Tj

]
−
{

vi
vj

}
(5)

Neumann boundary condition:

uii = uij = uji = ujj = 0; vi = vj = −
2
3

sb

(
2
3

qi +
1
3

qj

)
Robin boundary condition:

uii = ujj =
4hsb

9
; uij = uji =

2hsb
9

; vi = vj =
2hsbTf

3

where qi and qj represent the heat flux density at nodes i and j (W/m2); sb is the length
between node i and node j; h is the convection coefficient (W/(m2•◦C)); and Tf is the air
temperature (◦C).

3.2. Program Design

A computer program was compiled using Visual Basic language to simulate transient heat
conduction of the tunnel soil mass. The program was able to solve a system of linear equations
at each time point using the Gauss-Seidel iterative method, and the time step calculated by
equal proportion was 1.1. The Origin and Tecplot 360 EX 2017 software were employed to
post-process the numerical results. The flow chart of the program is shown in Figure 2.

3.3. Model Validation

The project team constructed a small experimental platform to conduct a 4 h indoor
temperature field test. As shown in Figure 3, the experimental model platform consisted of
three systems: the air temperature control system, the simulation experimental system, and
the temperature monitoring system. The soil was poured into a sealed box with dimensions
of 600 mm × 600 mm × 400 mm to simulate the soil layer surrounding the tunnel. The
surrounding soil mass had a thermal conductivity of 0.244 W/(m•◦C), a specific heat
capacity of 975.3 J/(kg•◦C), and a density of 1124.2 kg/m3. The walls of the box were
made of 2 mm-thick steel and wrapped with 10 mm thick insulation. A copper tube with a
diameter of 60 mm was placed in the center of the box to circulate air. The rate of convection
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heat transfer rate was 31.5 W/(m2•◦C). The initial temperature field was 32.5 ◦C, and the
recycled air temperature was maintained at 50 ◦C. Figure 4 shows that the model profile
of the soil layer around the subway tunnel, and the typical 4 monitoring points were
uniformly arranged in the model space. Point 1 from the wall was 10 mm, and the radial
interval between points was 40 mm. The established heat conduction model was used for
numerical analysis, and Figure 5 shows that the numerical results at different times are
essentially consistent with the experimental results.
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3.4. Model Parameters

China is classified into five climatic zones: the Severe Cold Zone, Cold Zone, Hot-
Summer Cold-Winter Zone, Hot-Summer Warm-Winter Zone, and Temperate Zone [45].
In this study, five typical cities were selected to calculate the thermal deposition effect of
surrounding soil mass based on climate zoning and geographical distribution, namely
Harbin, Beijing, Xi’an, Shanghai, and Shenzhen. In Figure 1, the tunnel has a radius of 3 m,
the wind speed in the tunnel is 6 m/s, and the air temperature in the tunnel is 25 ◦C [46].
Table 1 presents the correlation parameters between tunnel soil and ground air in the
aforementioned cities. Yang et al. [47] presented that the ground air speed refers to the local
meteorological data in its area, and the initial temperature of tunnel soil mass is defined
as 3 ◦C higher than the annual mean temperature of ground air. In addition, both the
Dittus-Boelter equation and empirical formula were used to calculate the heat transfer
convection coefficient [48,49].
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Table 1. Model parameters [41].

Area
Soil

Property
Density Specific Heat

Capacity

Heat
Conductivity
Coefficient

Mean
Temperature of

Ground Air

Initial
Temperature of

Tunnel Soil

Ground
Wind Speed

kg/m3 J/(kg•◦C) W/(m•◦C) ◦C ◦C m/s

Harbin Silty Clay Loam 1850 1750 1.20 6.6 9.6 4.1
Beijing Sandy Loam 2300 1350 1.70 14.0 17.0 3.0
Xi’an Silt Sand 1820 1600 1.30 15.6 18.6 1.8

Shanghai Silty Clay 1788 1940 1.02 18.5 21.5 3.8
Shenzhen Sandy Clay Loam 2650 1050 2.10 23.2 26.2 3.1

4. Results
4.1. Temperature Distribution in Soil Mass Surrounding the Tunnel

The heat exchange among the ground air, tunnel air, and surrounding soil mass
belongs to the unsteady convection heat transfer. Taking the Beijing subway tunnel for
analysis, Figure 6 shows that the temperature distribution of the soil mass surrounding
the tunnel at the depth of 40 m changes at four typical time points. It can be observed that
the original temperature distribution of the soil mass is disturbed vertically by ground
air temperature and circumferentially by tunnel air temperature, respectively. When the
heat-exchange time is less than 5 years, the influence of ground air and tunnel air continues
to extend deeper. When the heat-exchange time exceeds 5 years, these disturbances exhibit
a remarkable coupled superposition effect in the tunnel overburden. For example, as can
be seen from Figure 6d, this superimposed effect is particularly significant at the depth of
20 m. However, this effect is not evident in the underlying strata, meaning that the ground
air has a limited impact on the temperature field of underground soil mass.
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4.2. Temperature Distribution along the Axis of Symmetry

Figure 7 shows the temperature variation curves along the vertical symmetry axis
in cross-sections of the subway tunnel at depths of 20 m, 40 m, and 60 m, respectively. It
can be observed that during the initial stage, the temperature curve of the overlying strata
of the tunnel presents a “Z-shaped” trend with increasing soil layer depth in the vertical
space. It displays an inverted “L-shaped” curve in the underlying strata. Furthermore, the
coupling superposition effect appears first at a tunnel depth of 20 m, followed by 40 m, and
finally 60 m. The temperature of the soil layer around the tunnel is greatly influenced by
both the ground air temperature and the depth at which the subway is buried. Meanwhile,
the shallower the depth of the underground tunnel is, the higher the temperature of the
overlying strata at that same depth is.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 16 
 

  
(c) (d)  

Figure 6. Temperature fields of the tunnel soil layer at different time points (unit: °C). (a) 1 month; 
(b) 1 year; (c) 5 years; (d) 10 years. 

4.2. Temperature Distribution along the Axis of Symmetry 
Figure 7 shows the temperature variation curves along the vertical symmetry axis in 

cross-sections of the subway tunnel at depths of 20 m, 40 m, and 60 m, respectively. It can 
be observed that during the initial stage, the temperature curve of the overlying strata of 
the tunnel presents a “Z-shaped” trend with increasing soil layer depth in the vertical 
space. It displays an inverted “L-shaped” curve in the underlying strata. Furthermore, the 
coupling superposition effect appears first at a tunnel depth of 20 m, followed by 40 m, 
and finally 60 m. The temperature of the soil layer around the tunnel is greatly influenced 
by both the ground air temperature and the depth at which the subway is buried. Mean-
while, the shallower the depth of the underground tunnel is, the higher the temperature 
of the overlying strata at that same depth is. 

   
(a) (b) (c) 

Figure 7. Temperature distribution curves of the subway tunnel cross-section. (a) Depth: 20 m; (b) 
Depth: 40 m; (c) Depth: 60 m. 

Moreover, as the heat-exchange time increases, a significant coupling point ‘O’ 
emerges near the center of the overlying strata. This coupling point ‘O’ can be more clearly 
observed in the local diagram, which is located above the center. The heat transfer rate is 
the key factor that contributes to the position of the coupling point ‘O.’ According to Equa-
tion (6) [50], it is negatively proportional to both the temperature gradient and the thermal 
diffusivity of the body. Table 2 shows the rate of heat transfer at the coupling point ‘O.’ It 
can be seen that the rate gradually increases with time when t < 10 years. Accordingly, the 
shallower the depth of tunnel, the faster its heat migration velocity will be. This is because 
the temperature difference between the tunnel air and the original soil layer is greater than 
that between the ground air and the original soil layer, resulting in a higher heat transfer 
rate below the central point compared to above it. 

p

T
C T
λ

ρ
∇= −v

 
(6) 

-100

-80

-60

-40

-20

0
12 14 16 18 20 22 24 26

-12
-10

-8
-6
-416.6 16.8 17.0 17.2 17.4

  

 

Temperature/℃

D
ep

th
/m

 1 month
 1 year
 5 years
 10 years 

'O' Point

-100

-80

-60

-40

-20

0
12 14 16 18 20 22 24 26

-22
-20
-18
-16
-1416.6 16.8 17.0 17.2 17.4

 

 

 

Temperature/℃

D
ep

th
/m

 1 month
 1 year
 5 years
 10 years 

'O' Point

-100

-80

-60

-40

-20

0
12 14 16 18 20 22 24 26

-32
-30
-28
-26
-2416.6 16.8 17.0 17.2 17.4

  

 

 1 month
 1 year
 5 years
 10 years

Temperature/℃

D
ep

th
/m 'O' Point

Figure 7. Temperature distribution curves of the subway tunnel cross-section. (a) Depth: 20 m;
(b) Depth: 40 m; (c) Depth: 60 m.

Moreover, as the heat-exchange time increases, a significant coupling point ‘O’ emerges
near the center of the overlying strata. This coupling point ‘O’ can be more clearly observed
in the local diagram, which is located above the center. The heat transfer rate is the key factor
that contributes to the position of the coupling point ‘O’. According to Equation (6) [50], it is
negatively proportional to both the temperature gradient and the thermal diffusivity of the
body. Table 2 shows the rate of heat transfer at the coupling point ‘O.’ It can be seen that the
rate gradually increases with time when t < 10 years. Accordingly, the shallower the depth
of tunnel, the faster its heat migration velocity will be. This is because the temperature
difference between the tunnel air and the original soil layer is greater than that between
the ground air and the original soil layer, resulting in a higher heat transfer rate below the
central point compared to above it.

v = − λ

ρCp

∇T
T

(6)

where v is the heat transfer rate (m/s), and ∇T is the temperature gradient (◦C/m).

Table 2. The heat migration rate at the coupling point ‘O’.

Cooling
Time

Depth: 20 m Depth: 40 m Depth: 60 m
4T/(◦C/m) T/(◦C) V/(m/s) 4T/(◦C/m) T/(◦C) V/(m/s) 4T/(◦C/m) T/(◦C) V/(m/s)

the 1st month 0.027 17.020 −8.762 × 10−10 0.001 17.000 −4.746 × 10−11 0.000 17.000 −1.281 × 10−13

the 1st year −0.382 17.025 1.227 × 10−8 −0.004 16.999 1.423 × 10−10 0.000 17.000 5.833 × 10−13

the 5th year −0.556 17.483 1.740 × 10−8 −0.149 16.826 4.853 × 10−9 −0.036 17.022 1.142 × 10−9

the 10th year −0.564 17.701 1.745 × 10−8 −0.193 16.866 6.256 × 10−9 −0.087 17.050 2.806 × 10−9
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4.3. Ventilation Time and Cooling Rings

If the excess temperature (T − Tgu) at a point within the domain exceeds 1% of the
original soil layer temperature (Tgu), then that point is considered to be inside the cooling
ring. The mathematical expression can be written as follows:

T − Tgu

Tgu
> 1% (7)

where T − Tgu is the soil excess temperature (◦C).
Figure 8 illustrates the temperature variation law of the cooling ring surrounding the

tunnel at depths of 20 m, 40 m, and 60 m. The parameter values of those cooling-ring
curves were fitted using Equation (8) and are presented in Table 3. Initially, when t < 1 year,
the cooling ring takes on a circular shape, and the values of parameters A and B are almost
equal. However, when t > 1 year, it gradually transforms into an oval shape, and the values
of A, B, and their difference all increase over time. Meanwhile, Table 3 indicates that A is
consistently greater than B. That is, the thermal disturbance velocity inside the soil body
is greater in the horizontal direction than in the vertical direction. Furthermore, in terms
of space, the values of parameter A and parameter B in deep tunnels are generally larger
than those in shallow ones at the same time. This indicates that there is a strong correlation
between the range of thermal disturbance and tunnel depth, with greater depths resulting
in larger disturbance ranges. (

X− Xc

A

)2
+

(
Y−Yc

B

)2
= 1 (8)

where A is half of the length of the major axis, B is half of the length of the minor axis, and
(Xc, Yc) denotes the center point of an elliptic equation.
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Figure 8. Ventilation time and cooling rings. (a) Depth: 20 m; (b) Depth: 40 m; (c) Depth: 60 m.

Table 3. The fitting parameters of the cooling ring curves around the tunnel at different times.

Cooling Time Depth: 20 m Depth: 40 m Depth: 60 m
Xc Yc A B R2 Xc Yc A B R2 Xc Yc A B R2

the 1st month 0.02 20.05 6.61 6.61 1.00 0.03 40.02 6.59 6.57 1.00 0.02 60.01 6.56 6.67 1.00
the 1st year 0.02 21.38 14.69 13.35 1.00 0.03 39.98 14.75 14.92 1.00 0.04 59.91 14.94 14.72 1.00
the 5th year 0.09 28.36 24.02 19.65 1.00 0.07 43.11 28.01 24.66 1.00 0.10 60.30 28.22 27.64 1.00
the 10th year 0.05 34.89 28.03 22.21 1.00 0.05 48.08 35.00 28.92 1.00 0.09 61.99 37.02 32.02 1.00
The 20th year 0.02 40.29 32.07 28.63 1.00 0.01 53.59 40.99 33.91 1.00 0.05 62.82 42.82 33.42 1.00

4.4. Influence of Buried Depth on the Thermal Deposition Effect of Tunnel Soil Layer

There is a distinct temperature difference between the top and bottom nodes along the
tunnel wall due to the influence of the ground air, particularly in shallowly buried subways.
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The inside boundary Γ1 of the tunnel is divided into n equal units. The temperatures of the
boundary nodes can be defined as T1, T2, T3, . . ., Tn. The length of each grid is U1, U2, U3,
. . ., Un, and the total perimeter is U. Thus, the circumferential temperature can be defined
using a weighted average value, as expressed in the following equation.

Tm =
(T1 + T2)

2
U1

U
+

(T2 + T3)

2
U2

U
+ . . . +

Tn + T1

2
Un

U
(9)

where Tm is the weighted mean temperature of internal boundary Γ1 (◦C), and U is the
tunnel section perimeter (m).

Meanwhile, the amount of heat dissipation on the tunnel wall can be calculated using
the Newtonian cooling formula [51]:

Q = hMU(TM f − Tm) (10)

where Q is the heat absorption capacity per unit length (W/m).
Figure 9 shows how burial depth affects the wall temperature and heat-exchange

capacity per unit length. It can be clearly observed that when H < 30 m, the wall temperature
gradually increases with increasing tunnel depth, while its heat transfer capacity exhibits
an opposite characteristic. However, when the tunnel depth exceeds 30 m, they are almost
unaffected. Furthermore, as the ventilation time increases, the wall temperature gradually
rises while its heat transfer capacity decreases. Eventually, both variables reach a fixed
value after a period of heat exchange.
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Figure 9. Variation of the tunnel wall temperature and wall heat-exchange capacity with the tunnel
depth. (a) Tunnel wall temperature; (b) Tunnel wall heat-exchange capacity.

In addition, the temperature field of the soil body gradually stabilizes after the tunnel
has been dug for five years. Generally, from first one to five years, the temperature on the
tunnel wall is lower than that of airflow in the tunnel, which has a strong ability to absorb
heat from the tunnel air. However, as the subway operation time is extended, this ability
gradually decreases until it stabilizes. Therefore, it is necessary to scientifically evaluate the
heat-exchange capacity between tunnel soil and air.

4.5. Evaluation of the Heat Absorption Capacity of Tunnel Soil in Typical Areas

Figure 10 displays the graphs of heat absorption capacity of the soil body under
different tunnel depths for typical areas in the 50th year. It can be observed that the heat
absorption capacity increases as the ground air temperature decreases, provided that the
tunnel depth remains constant. However, it gradually decreases as the depth of the tunnel
increases. Once the tunnel depth exceeds 45 m, such as the Shenzhen subway, its heat
absorption capacity become negative. Or, for the Beijing subway, when H is 15 m, the heat
absorption capacity per unit length is approximately 48.51 W/m. However, compared to
H = 50 m, the absorption capacity decreases by 15.8 W/m. According to Equation (10), the
power consumption of the subway can be calculated, yielding Equation (11). Therefore, if
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the subway were 50 km long and operated for 30 years, its total power consumption could
reach up to 2.08 × 108 KW•h.

η = QLt/τ (11)

where η is the power consumption (KW•h), L is the length of the tunnel in the direction of
airflow (m), and t is the time (s). τ is 3,600,000, used for unit conversion.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 16 
 

heat from the tunnel air. However, as the subway operation time is extended, this ability 
gradually decreases until it stabilizes. Therefore, it is necessary to scientifically evaluate 
the heat-exchange capacity between tunnel soil and air. 

4.5. Evaluation of the Heat Absorption Capacity of Tunnel Soil in Typical Areas 
Figure 10 displays the graphs of heat absorption capacity of the soil body under dif-

ferent tunnel depths for typical areas in the 50th year. It can be observed that the heat 
absorption capacity increases as the ground air temperature decreases, provided that the 
tunnel depth remains constant. However, it gradually decreases as the depth of the tunnel 
increases. Once the tunnel depth exceeds 45 m, such as the Shenzhen subway, its heat 
absorption capacity become negative. Or, for the Beijing subway, when H is 15 m, the heat 
absorption capacity per unit length is approximately 48.51 W/m. However, compared to 
H = 50 m, the absorption capacity decreases by 15.8 W/m. According to Equation (10), the 
power consumption of the subway can be calculated, yielding Equation (11). Therefore, if 
the subway were 50 km long and operated for 30 years, its total power consumption could 
reach up to 2.08 × 108 KW•h. 

/QLtη τ=  (11) 

where η  is the power consumption (KW•h), L is the length of the tunnel in the direction 
of airflow (m), and t is the time (s). τ is 3,600,000, used for unit conversion. 

 
Figure 10. Curves of heat absorption capacity for tunnel walls in typical areas. 

4.6. Comparison Analysis of Three Typical Models 
To accurately analyze the thermal deposition effect of a tunnel soil body, constructing 

a precise physical model is necessary. Figure 11 depicts the schematic diagram of the 
physical model under three typical boundary conditions, and Table 4 summarizes the rel-
evant contents. 

0 10 20 30 40 50 60
-20

0

20

40

60

80
Q

/(W
/m

)

Depth/m

 Harbin   Beijing   Xi’an 
 Shanghai   Shenzhen

Heat storage capacity is negative
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4.6. Comparison Analysis of Three Typical Models

To accurately analyze the thermal deposition effect of a tunnel soil body, constructing a
precise physical model is necessary. Figure 11 depicts the schematic diagram of the physical
model under three typical boundary conditions, and Table 4 summarizes the relevant contents.
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Figure 11. Typical boundary diagram.

Table 4. The settings of three typical boundary conditions.

Boundary Conditions Case One
[15,25,33–36,41] Case Two [30,32] Case Three [28,37]

Boundary Γ1 Robin Boundary Robin Boundary Robin Boundary
Boundary Γ2 Dirichlet Boundary Robin Boundary Robin Boundary
Boundary Γ3 Dirichlet Boundary Dirichlet Boundary Neumann Boundary
Boundary Γ4 Dirichlet Boundary Dirichlet Boundary Dirichlet Boundary
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Figure 12 displays the comparison results of these three typical cases at different
depths. It can be observed that the results of the calculations for case one and case two are
almost identical. This indicates that as the depth of the tunnel increased, both cases yielded
similar results. The main difference between these two methods is the distinct setting of the
boundary Γ2. When the ground air temperature (TRf) of the Robin boundary in case two is
equal to the ground wall temperature (TDW) of the Dirichlet boundary in case one, due to
thermal resistance, the ground wall temperature (TRW) in case two should be higher than
the ground wall temperature (TDW) of case one after numerical calculation. Therefore, for
the shallow tunnel, the heat absorption capacity of tunnel soil layer calculated in case two
is slightly smaller than that calculated in case one. However, as the tunnel depth increases,
the influence of ground air temperature gradually diminishes until the results obtained by
both methods converge.
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When the time of heat exchange between the soil surrounding the tunnel and the air
inside it exceeds a certain value, the amount of heat transfer calculated by case one and
case two is smaller than that calculated by the third method. The reason is that the vertical
boundary (Γ3) in the third case is an adiabatic boundary, meaning there is no heat flow
in or out in the horizontal direction. And in the vertical direction, the soil body only is
affected by the ground air temperature. For the first two cases, the vertical boundary (Γ3)
was set as the Dirichlet boundary. However, due to the lack of consideration for the ground
air temperature, there is continuous heat flowing into the computational domain in the
horizontal direction, resulting in a lower long-term heat storage capacity. In general, the
third kind of method should be the most consistent with reality and should be the first
choice for calculation.

5. Discussions

Safety, economy, and energy efficiency are vital factors in the design and operation of
subway tunnels. The paper reveals the influence of tunnel depth on the heat transfer char-
acteristics of the surrounding soil mass. The heat storage characteristics of subway tunnel
soil mass are generally consistent with the existing literatures [30,36,37]. It demonstrates a
strong heat storage capacity in the initial stage, which gradually decreases over time until
it reaches a stable state. In addition, on the one hand, the shallower the depth of subway
tunnels, the greater the impact of ground air on the heat storage capacity of the surrounding
soil mass. This is mainly reflected in two aspects: first, the thermal stress generated by the
periodic ground air temperature will affect the geological safety around the tunnel; second,
it poses higher requirements for the design of the subway environmental control system.
On the other hand, the deeper the subway tunnel is buried, the higher the economic cost
of tunnel excavation and the additional geological risk in the process of operation are.
Therefore, the influence of buried depth on subway tunnel operation should be analyzed
comprehensively, considering both short-term and long-term benefits.
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6. Conclusions

In this work, the finite volume method was used to discuss the influence of under-
ground depth on heat transfer law of the soil mass around the tunnel. The main conclusions
are as follows:

(1) After the excavation of the tunnel, both ground air temperature and tunnel air
temperature thermally disturbed the temperature field of the soil mass. Meanwhile, in
the overlying soil layer of the tunnel, there was a significant coupling effect between
the disturbance domain of tunnel air to the soil layer and of ground air to the soil layer.
Furthermore, there was a significant coupling point ‘O’ located in the disturbance domain,
which was situated near the center of the overlying rock layer of the tunnel. The location
and time of the coupling point ‘O’ were greatly influenced by both the heat transfer rate of
the tunnel soil body and its depth.

(2) Initially, when t < 1 year, the cooling ring around the tunnel was approximately
circular in shape. Subsequently, after one year, the shape gradually transformed into an
oval, and the values of the oval’s parameters A and B gradually increased over time, as
did the difference between them. At the same time, the range of thermal disturbance in the
tunnel soil body was greater along the horizontal direction than along the vertical direction.
Moreover, the parameter values of deep tunnels, A and B, were generally larger than those
of shallow tunnels.

(3) In terms of space, as the depth of the tunnel increased when H < 30 m, the
temperature on the tunnel wall gradually rose while its heat absorption capacity exhibited
an opposite trend. However, when H > 30 m, the depth of the tunnel had almost no effect on
them. In terms of time, the temperature of tunnel wall was generally lower than that of the
tunnel airflow from the first one to five years, and it had a strong ability to absorb the heat
emitted from the tunnel air. However, as the ventilation time increased, the temperature
and heat transfer rate of the tunnel wall eventually reached a constant value.

(4) The thermal deposition effect of the soil body surrounding the tunnel was analyzed
in five typical areas. The results revealed that the heat absorption capacity gradually
decreased with the increase in tunnel depth across different areas. When the tunnel
depth was the same, the long-term heat absorption capacity increased as the ground air
temperature decreased.

(5) The study compared the heat-exchange capacity of three typical models. We found
that the results of the calculations for case one and case two were almost identical, with
this characteristic becoming more pronounced as the tunnel depth increased. Moreover,
the heat absorption per unit length of the tunnel surrounding soil body calculated in case
one and case two was lower than that calculated using the third method. According to the
theory, the third method could be considered as the most accurate way to evaluate the heat
absorption capacity of tunnel soil mass.
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