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Abstract: The influence of Internet marketing has grown so much that producers must now reconfig-
ure their businesses from offline operation to online presence simply to meet user expectations. Thus,
the development of an intelligent information system for product promotion online is quite relevant.
It may lead to automatized selection of competing products and advertising content, a subsequent
increase in the effectiveness of advertisements, and a decrease in costs for Internet ad placements. The
paper presents the approach for creating an intelligent information system for product promotion in
online spaces that makes it possible to reduce advertising costs. A methodology is based on outcomes
of own previous studies as well as the flow nature and semantics of data streams. The framework of
the proposed intelligent system includes the four key procedures and functions: intelligent formation
of keywords for advertising content based on feedback, intelligent formation of product catalogs
of online stores, generation of advertising content, and generation of improved advertising content
and its targeting generation of text based on keywords. An experimental study confirmed that the
effectiveness of posts on social media increased by at least 125%, while the price decreased by 87%.

Keywords: Internet marketing; intelligent data processing; information system; data flow

1. Introduction

Today, the most used e-commerce system is the B2C (Business-to-Consumer)–a system
characterized by the sale of goods or services at retail directly to the consumer. This includes
any retail agreement between legal entities and individuals, e.g., transactions between
an online store and a customer, purchase of training courses from registered experts, and
software rental [1,2].

The development of information and communication technologies (ICT) and the
digitization of business processes lead to the transformation of all aspects of enterprise
activity: production, finance, management, marketing, and communication. At the same
time, the marketing research environment is becoming simpler and more evolved thanks
to the rapid spread of the Internet, the consumer is growing closer to the manufacturer
and the seller, and effective feedback is easier to achieve in new conditions. Accordingly,
marketing tools in today’s environment must fully meet the requirements of the times,
and technologies and strategies must be ahead of them. Research in the field of varieties,
methods of application, combination, and formation of Internet marketing and digital
marketing tools gain heightened relevance in today’s turbulent environment.

The operation of any system is related to receiving, processing, and organizing large
amounts of information. In turn, information and information support cover all aspects
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of economic activity and are integral elements of the existence and development of eco-
nomic systems. Information systems ensure dynamic interaction between the company’s
personnel in the process of corporate planning and accounting, planning of advertising and
sales promotion, management of products, sales channels, and direct sales. In addition, the
marketing information system becomes one of the main elements of the process of develop-
ment, adoption, and implementation of innovative marketing solutions and significantly
affects its efficiency and quality.

Currently, scientists and marketers define digital marketing as the use of all possible
forms of digital channels to promote a product or enterprise. The Internet, television, radio,
and social media are all digital marketing tools. Like any other type of marketing, digital
marketing helps to achieve the maximum result in an optimal way; that is, it enables saving
money and avoiding unnecessary ineffective expenses.

Marketing analysis tools also do not remain stagnant because in the era of the fourth
industrial revolution, that is, the era of the development and use of artificial intelligence, it
is necessary to test new methods of influencing the consumer and new ways of selling an
innovative product with a modified product life cycle model. Taking into account the fact
that marketing research always results in a large amount of information and abstracting
from discussions about the conflict of a person as a carrier of emotional intelligence and
artificial intelligence incapable of the generation and accumulation of feelings and emotions,
we conclude that any business entity today operates Big Data that are quite diverse in its
structure. Its use in marketing analysis provides the management of business entities with
objective and up-to-date information necessary for making management decisions and
maintaining a favorable positioning on the market. However, due to the large number, lack
of structure, and variety of data flows, it is quite difficult to manage such information.

Existing studies [3,4] on intelligent information systems for product promotion on
the Internet have focused solely on the development of the systems themselves without
considering the specifics of online advertising. That limitation restricts their practical use.
This paper aims to fill this gap by exploring the utilization of an intelligent information
system for automating the selection of competitive products and advertising content, as
well as assessing its impact on the effectiveness of online advertising.

Thus, the development of an Intelligent information system for product promotion
online is quite relevant. It may lead to automatized selection of competing products and
advertising content, the subsequent increase in the effectiveness of advertisements, and a
decrease in costs for Internet ad placements.

The rest of the paper is structured as follows. The section Related Work presents the
analysis of recent related references, while the section Materials and Methods describes
a methodology including the framework of the Intelligent Information System. Next, the
section Case Study outlines the implementation example for the developed framework of
the Intelligent Information System and the results of experimental research. Finally, the
section Conclusion summarizes the entire study.

2. Related Work

Intelligent methods in information systems are used at various stages of development,
e.g., data collection [5], detection of intrusions [6–9], semantic networks and intelligent
agents [10,11], and decision-making [12].

Chen et al. [13] examined the effects of social media marketing on the intention to
continue, participate, and purchase through social identification, perceived value, and
satisfaction. Ivanov [14] presented the concept of building a digital marketing system
based on the theory and practice of market segmentation, which takes into account many
factors: geography, costs, time, and others. The proposed concept and method of assessing
consumer demand in the target market is aimed at the prospective management of trading
platforms using cloud technologies. Behera et al. [1] described a model for providing real-
time personalized marketing information on recommended products to online and offline
shoppers using a combination of sales strategies: up-selling, cross-selling, best-in-class
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up-selling, and meeting needs. Authors [1,13,14] analyzed Internet marketing strategies
that make it possible to increase the profit from sales. However, to process them, we need
to have high marketing skills, and these processes also take a lot of time.

Dharmaputra et al. [15] investigated the influence of artificial intelligence (AI) on
consumers’ perception of the effectiveness of digital marketing outcomes. IBM SPSS and
Partial Least Squares Structural Equation Modeling (PLS-SEM) methods were used to
analyze the data collected through the online questionnaire. Perceived ease of use of AI
has been shown to positively influence consumer convenience (CC) and cost minimization
(CM) as an e-marketing outcome. In addition, the use of AI enables to improve the
effectiveness of advertisements. However, there is no description in [15] of how the above
advantages can be used by a marketer who does not have the skills of intelligent data
analysis. Lo et al. [16] focused attention on empirical targeting models. Peruta et al. [17]
employed content analysis to study the themes and formats of 5932 Facebook posts from
leading US colleges and universities. The results show that there are content topics, such
as athletics, that significantly increase engagement, while others tend to lower it. In
addition, format, like user-generated content, is another factor that promotes engagement.
Evert et al. [18] concluded that Facebook is perceived as an effective means of advertising
by users of social networks, and it is strongly associated with the benefits of “customer
relationship management” and “new product promotion”. Kamboj et al. [19] have shown
that Facebook advertising had a significant impact on the brand image and its value;
both of these factors contribute to the increase in brand sales. Ertugan [20] examined
whether customer participation in brand communities on social networks affects brand
trust, brand loyalty, and brand creation. The obtained results confirmed that the motivation
to participate in SNSs significantly affects customer participation, which, in turn, positively
affects brand trust and brand loyalty. Both users and ads are represented using vectors
created using natural language processing techniques that harvest ontological entities from
textual content.

Determining the emotional state is important when analyzing user reviews. The
most accurate models for determining the emotional connotations of a review are based
on machine learning [21], deep learning [22,23], and recursive and convolutional neural
networks [24,25]. For example, Basiri and Habibi [26] considered a deep model for using
features of reviews based on content, semantics, sentiment, and metadata to predict the
usefulness of a review. Kauffmann et al. [27] presented a general framework that uses
natural language processing (NLP) techniques, including sentiment analysis, textual data
analysis, and clustering techniques, to obtain new ratings based on consumer sentiment
for various product characteristics. Wehrmann et al. [28] proposed an approach for the
sentiment and language classification of tweets, whose framework includes a convolutional
neural network with two different outputs, each designed to minimize either classification
error or allocation assignment, or language identification. Hartmann et al. [29] developed
the SentiCR, a sentiment analysis tool specifically designed for customer comments, based
on seven different approaches to text analysis. El Alaoui et al. [30] considered a number of
methods for the automatic classification of unstructured text based on a dataset from social
networks, covering the main social media platforms, different sample sizes, and languages.
Xu et al. [31] proposed a semantics-enhanced and context-enhanced hybrid joint filtering
for event recommendations, and it combines semantic content analysis and the influence of
a contextual event on the user’s neighbourhood selection.

Hou et al. [32] proposed a video representation for advertising video classification,
which aims to capture the hidden semantics of an unsupervised advertising video. Experi-
ments on real advertising videos demonstrate that the proposed method can effectively
differentiate advertising videos. Smetanin and Komarov [24] proposed an approach based
on trust and semantic social recommendation to eliminate the problems of starting adver-
tisements. Shokeen and Rana [33] employed the Latent Dirichlet allocation (LDA) method
to determine the feedback for the analysis of Internet shopping sentiments. The LDA
approach is designed to solve the issues of Latent semantic analysis (LSA) and Probabilistic
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Latent Semantic Analysis (PLSA). So, the authors of the works above [21–33] presented the
results of the study of semantic text analysis for Internet advertising. However, none of
them highlighted keywords based on the advertising text of the ad.

Nakata [34] proposed the generation of advertising texts based on keywords that take
into account product information. Wei et al. [35] considered the automatic creation of an ad
text to interest users in achieving a higher click-through rate (CTR). Here, the authors used
an approach based on click-through rates to generate advertising text and create ad texts
with high-quality user feedback. In general, the results of the research [34,35] have interest-
ing implications. However, they are written in Japanese, which limits their distribution.

Wang et al. [4,36–38] focus on the problem of link prediction in heterogeneous social
networks, where the types of relationships can be diverse and novel. The authors propose
various approaches to address this issue: adaptive meta-learning methods for knowledge
transfer across different types of relationships [4], Transferable Domain Adversarial Net-
works utilizing transferable knowledge to predict new types of relationships [36], and
adversarial learning methods for knowledge transfer [37]. Furthermore, in [38], the evo-
lution in networks is examined, highlighting the significance of diverse node evolution
mechanisms and their impact on relationship prediction. Collectively, these studies provide
a set of methods and approaches that enhance link prediction in complex social networks,
considering their diversity and evolutionary aspects.

Cui et al. [39] presented an intelligent framework of an online marketing system to
better facilitate online marketing. This system can help advertisers to reduce operating
costs, improve operational efficiency, optimize ROI, and increase customer engagement.
The disadvantage is that the system does not enable to attract new customers.

Kotsyuba et al. [40] analysed the principles of operation of existing software analogues,
considered the methods of choosing a marketing strategy in the field of Internet business,
and developed and tested algorithms based on user preferences. However, there is a lack
of a systematic approach that facilitates methods of permanent work with customers.

Aguilar and Garcia [41] presented an intelligent system to manage advertising in
social networks based on data analysis methods. Its drawbacks are a limited possibility of
adding potential customers and a lack of intelligent advertising content.

In general, it can be noted that the works mentioned above mostly analyse the influence
of users on Internet advertising. On the other hand, a number of works are considering the
developed information systems for Internet marketing (analogues) that have limited func-
tions, displaying only statistical indicators of Internet advertising and paying insufficient
attention to customers’ attraction.

Thus, the goal of this paper is to fill this gap and develop the framework of an
intelligent information system that provides an automatic selection of keywords for creating
content and producing a set of effective Internet marketing ads.

3. Materials and Methods
3.1. Methodology

To reach the goal above, the authors have analyzed the outcomes of own previous
studies [42–46] and stream data’s flow nature and semantics [47,48]. As a result, we are
proposing the four key procedures and functions of an intelligent information system:

1. Intelligent formation of keywords for advertising content based on reviews;
2. Intelligent formation of product catalogs of online stores;
3. Generation of advertising content;
4. Generation of improved advertising content and its targeting generation of text based

on keywords.

A framework of the intelligent information system for product promotion on the
Internet has been developed through the synthesis of these functions (Figure 1).
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First, to form keywords, the authors developed an intelligent method of selecting a
competitive product based on the emotional content of reviews, which makes it possible to
distinguish positive and negative reviews [42]. The resulting data is useful for marketers
when managing customers’ websites and will help them make investment decisions. In
addition, the analysis of the emotional connotations of feedback is of significant importance
in determining the most popular product in the segment, giving the seller the opportunity
to choose the most profitable product/service for sale. One of the most important functions
of procedure 1 is the selection of the classifier model based on machine learning algorithms.
For this purpose, we use eight classic classification methods: Support Vector Classifier,
Stochastic Gradient Decent Classifier, Random Forest Classifier, Decision Tree Classifier,
Gaussian Naive Bayes, K-Neighbors Classifier, Ada Boost Classifier, and Logistic Regres-
sion [44]. After that, the marketer can launch a test ad based on the generated keywords
(Block 4).

Upon procedure 1, the marketer can immediately include the product in the formation
of the product catalog of the online store based on the intelligent method (Block 2) or
transfer the keywords to the content generation (Block 3). An online store is one of the
most popular business models of B2C e-commerce. Online stores are distinguished by
their ability to offer a much larger number of products and services than physical stores
and to provide consumers with a much larger amount of information needed to make a
purchase decision. In addition, thanks to the use of Internet technologies, it is possible to
set previous visits to the store and purchases made in it as factors for marketing research
(surveys, customer conferences, etc.). The main requirements of consumers for the website
of an online store are the following: convenient navigation, a system of links to products
and the store itself, a clear interface for choosing products or services, as well as a small
number of operations for making a future purchase. If these requirements are met, pages
will be indexed correctly and quickly in Google, simplifying the purchase process for
potential customers.

Machine learning models can classify images with high accuracy. This enables the
automatic formation of catalogs, thanks to accurate and meaningful tags related to products,
and improves catalog management processes. Moreover, these models improve the filtering
functions of the online store, ensure uninterrupted product search for customers and
contribute to saving time and costs.

Content can be generated in the form of advertising images based on keywords
(Block 3.1), advertising images based on video streams (Block 3.2), and advertising text
based on keywords (Block 3.3). When designing a video for advertising on social networks,
one must take into account many nuances and follow various rules; for example, keep
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the Thumbnail preview image format (a reduced representation of the file in the form of
a graphic shell with convenient viewing). Therefore, visual search engines usually use
them when searching for relevant content. Generating an image from video content will
reduce the time spent on developing a preview image that will be displayed before the
video starts. When generating, it is advisable to enter the main parameters of the output
image: size in pixels, millimeters, and bytes. Generated content creates an opportunity to
launch advertising (Block 4).

Based on the obtained advertising results, the marketer can conduct intelligent for-
mation of improved advertising content and its targeting (Block 5). This is performed in
order to improve advertising for regular customers and potential customers. The adver-
tising content is improved in the following ways: the target audience is selected based
on learning decision trees (Block 5.1), the keywords are selected based on the semantic
survey-based approach (Block 5.2), and the target audience and keywords are selected
based on associative rules (Block 5.3).

Contextual advertising is currently one of the most effective methods of Internet
advertising. Its main advantage is the active use of targeting technologies. Targeting is
an advertising mechanism that enables one to select only the target audience from the
entire existing audience and show advertising specifically to it [49]. Users are shown
advertisements for goods and services relevant to their query in the search engine. The
user perceives this type of advertisement as advice or a hint and not as an annoying search
engine add-on.

The main advantages of advertising in social networks are multi-targeting, in particular
(i) geo-targeting (classification by countries, regions, cities, districts, and even individual
streets); (ii) demographic targeting (segmentation by age, gender, preferences, marital
status, language, etc.); (iii) by interests and hobbies (travel, sports, studies, business, etc.);
(iv) by education (schools, institutes, universities, etc., as well as working population,
housewives, etc.); (v) other types of targeting [49].

Let us analyze in more detail the features per each block of the developed system.

3.2. Intelligent Formation of Keywords for Advertising Content Based on Reviews

Let us take a closer look at the data flow when generating keywords for advertising
content based on reviews (Figure 2). First, the user selects the desired site for further work
(Block 1.1) and enters the necessary links (Block 1.2).
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Next, the automated collection of user feedback on products is performed (Block 1.3) [50].
Since the unprocessed text is raw, it is cleaned up during the tokenization algorithm (Block
1.4). Here, the confidential elements of data are replaced by non-confidential equivalents
called tokens, which have no independent meaning/value for external or internal use.
Next, the document is lemmatized (Block 1.5)–the process of transforming a word into its
basic form, i.e., truncation of its endings. In Block 1.6, single characters (which create noise
in the text) are eliminated by using a ready-made set of “stop words”. Stop words are very
common words such as if, but, we, he, she, and they. In Block 1.7, vectorization is carried
out–the process of converting text into numbers. This will enable us to obtain the value
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of each word in a numerical format for sentences and text; that is, a weight is assigned to
each word, which will show the power of influence. Possible approaches to vectorization
include Bag of words (BOW), CountVectorizer, Word2vec, TF-IDF, and BERT. It is advisable
to choose BERT because of its higher accuracy in predicting the semantics of words [51,52].

The transformed text database for choosing the classifier model is formed in Block 1.8.
The test sample is cross-checked to select the optimal classifier in Block 1.9 using eight clas-
sification methods [39]. Based on the obtained results, the best classification method with
the highest training evaluation parameters is selected (Block 1.10), and a text classification
model is formed (Block 1.11), configured to classify the text according to certain categories.
Finally, in Block 1.12, the first test advert content for positive keywords is formed.

3.3. Intelligent Formation of a Product Catalog of an Online Store

In order to reduce the time spent on forming the product catalog (see Figure 1, Block
2) of the online store, we have developed an improved method of forming the online store
product catalog on the basis of [45], applicable to the data flow (Figure 3).
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Figure 3. Block of intelligent forming the product catalog for online store.

First, Block 2.1 accumulates all the photos (images) that should form the product
catalog. Next, on the basis of artificial neural networks, images are classified (Block 2.2),
and goods are assigned appropriate categories (Block 2.3). In parallel, the images are
pixelated and transformed (Block 2.4), and the main color in the picture is determined
(Block 2.5); this makes it possible to assign the appropriate product colors to the image
(Block 2.6).

In Block 2.7, tags are assigned to the product, and the pictures are described based on
the obtained results (Blocks 2.3 and 2.6). Next, the catalog of goods for the online store is
formed with respect to tags (Block 2.8), and finally, the product catalog is formed in XML
format (Block 2.9). The structure of such a file and its parameters are prescribed using tags,
attributes, and preprocessors.

3.4. Generation of Advertising Content

Taking into account the flow nature of the data, we have developed a detailed structure
of Block 3.2 (see Figure 1), which is presented in Figure 4.
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First, the advertising video content is loaded (Block 3.2.1), and the video is divided
into frames that are segmented (Block 3.2.2). Then, based on the Generative Adversarial
Network algorithm [53], the generator (Block 3.2.4) and discriminator (Block 3.2.5) models
were implemented. The generator creates fake images and tries to trick the discriminator
into believing they are real. At the same time, the discriminator studies the main character-
istics of the images (Block 3.2.3) to distinguish real examples from fake ones. Both models
work on the basis of convolutional neural networks. Output-generated images (Block 3.2.6)
are analyzed (Block 3.2.7) by a marketer to confirm the quality of the created image. These
results are recorded in the test database for further improvement of learning (Block 3.2.2).
If the image does not correspond to the format, it should be generated again. In the next
step (Block 3.2.8), the marketer can proceed to create advertising content. The generated
content is launched for a test advertising campaign at t-time (see Figure 1, Block 4).

3.5. Intelligent Improvement of Advertising Content and Its Targeting

After adverts are placed, the data received from them is exported back to the system.
This data allows intelligent formation of advertising content and its targeting (see Figure 1,
Blocks 5.1–5.3).

Let us consider each of these methods.

• Selection of the target audience based on learning decision trees

First (Figure 5), it is necessary to prepare data, which are exported from social networks
(Block 5.1.1), for analysis (Block 5.1.2) [54]. Next, the user selects the type of targeting they
are interested in (Block 5.1.3), and a new database is formed (Block 5.1.4) according to the
selected type. During the next step, control samples are created (Blocks 5.1.5 and 5.1.6).
Block 5.1.7 coordinates the construction of the model based on the recursive partitioning
and regression tree. Next, graphs of the decision tree [3] are built with the selection of
the best target audience (Block 5.1.8) based on the modeling assessment (Block 5.1.9) and
model error graphs. Finally, the target audience is formed (Block 5.1.10).

• Selection of keywords using the semantic survey-based method

To identify the interest of the target audience, one must conduct a sociological survey
of listeners, which takes a lot of time. The use of semantic text analysis can accelerate the
selection of keywords and, accordingly, the creation of advertising content. Reference [39]
shows that the development of an intelligent method of forming advertising content based
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on semantic analysis makes it possible to increase the effectiveness of advertisements and,
accordingly, to reduce the costs of Internet advertising.
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Figure 5. Block of selecting the target audience based on learning decision trees.

Based on the advertising campaign and product sales, we can conduct a customer
survey, which will allow us to more accurately form the target audience and select new
advertising content.

Semantic analysis is based on a customer survey (Figure 6, Block 5.2.1), which makes it
possible to create advertising content. At the same time, as mentioned above, it is necessary
to prepare each survey text document for analysis. In particular, the operations include
tokenization (Block 5.2.2), lemmatization (Block 5.2.3), ignoring single characters («.», «;»,
«:», «!», «‘», «?», «,», «“», «()», «[]») (Block 5.2.4) and vectorization (Block 5.2.5). Next, LSA
and LDA semantic analysis is performed (Block 5.2.6), and keyword output (Block 5.2.7)
for documents is based on the LSA and LDA methods and advertising context formation
(Block 5.2.8).
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• Selection of the target audience and keywords based on associative rules

Based on the conducted customer survey, content can be created using the approach of
associative rules (see Figure 1, Block 5.3). We have developed the approach to the formation
of the advertising context and the target audience based on the study of associative rules.
This approach enables the creation of ties between respondents’ answers, the formation of
advertising content, and the target group’s selection (Figure 7).

On the basis of the survey (Block 5.3.1), it is possible to identify the gender characteris-
tics of the respondents and, subsequently, to determine the target audience. At the same
time, the data is transformed into a list (Block 5.3.2). After the associative rules are learned
(Block 5.3.3), the rule results are derived based on the Apriori method [43] (Block 5.3.4). On
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their basis, the marketer can once again proceed to set the context of advertising and the
target audience (Block 5.3.5).
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From the results of the operation of Blocks 5.1.10, 5.2.8, and 5.3.4 (see Figures 5–7,
respectively), the marketer can choose one of the options: (i) manually create a better
advertisement or (ii) perform it automatically using the generation of advertising content
(see Figure 1, Block 3).

4. Case Study
4.1. Implementation of Intelligent System

The implementation of the proposed framework for the Intelligent Information System
is considered an example of a web-oriented system. This will make it possible to develop it
as an add-on for CRM systems and provide management in the future. In addition, the
web-based system simplifies work with the user and does not require installation.

In the initial phase, the system enables the marketer to choose a competitive product
(Figure 8) using the intelligent method of generating keywords for advertising content
based on reviews [42]. This phase is implemented on the array of reviews (477 reviews) [54].
Next, a JSON file is generated, and unnecessary characters and stop words are removed.

After vectorization and lemmatization, the most optimal methods of text classification
based on machine learning are selected [42] (see Figure 2. block 1.9). All these methods
showed an average evaluation result (Figure 8), and the reviews include both Ukrainian and
Russian versions. The RandomForestClassifier is the best among them, with a prediction
score of 0.78. The reviews were then sorted into positive and negative based on the
RandomForestClassifier classification. Among the feedback words with the largest n-gram
index, several stand out: “Cool” (0.71), “Best” (0.56)—for positive sentiments, and (“Not
convenient” (−0.77), “Not high-quality” (−0.63)—for negative connotations. Advertising
content is formed on the basis of positive words; that is, they are key elements for generating
advertising content.

In addition, the system can automatically download the corresponding product to the
online store, which works on the basis of the intelligent method of forming the product
catalog [40]. Figure 9 shows how this method works with the addition of the selected
product. All product photos receive tags with the name of the category and color and some
others. The photos of the goods are uploaded to the catalog for the online store according
to the assigned tags. Next, an XML file can be created from the received product catalog.
After that, the description and characteristics of each product can be edited.
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Taking into account the above, a marketer (Figure 10a) can create a simple advertising
post based on positive words and immediately post it on Facebook and Instagram social
networks. In the process, the user first encounters a window with two options: (i) to choose
the type of Internet advertisement (Figure 10b), or (ii) to use the function of generating
content (Figure 10a, the “Create photo” button). After that, a window will open where the
user can upload video content (Figure 10c) and add a new content if necessary.
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4.2. Experimental Results

The results of a test advertisement conducted from 15 April to 30 April 2022 are
presented in Table 1. After running the advert for a t period of time (chosen individually
by the marketer), the marketer analyzes the obtained results and, if necessary, forms better
advertising content for a more effective target group.

Table 1. Results of test advertisement (15 April 2022–30 April 2022).

Advert Version Content Target Audience Results Reach Views Cost per Result

Version 0
(initial)

“Women’s handbags
for everyone”

All of Ukraine, all age
groups and genders 85 1236 2365 0.75

In the designed system, we considered a type of video content (Figure 11) where the
generated image is used for the initial thumbnail before the video advert starts. The system
includes a previously developed targeting model based on decision trees and distribution
of the target group [3], which allows using tree branches to make changes to the advertising
campaign based on attributes that depend on the target function. Moreover, this model
makes it possible to quickly clean and filter the data. To verify the results of modeling
based on decision trees, repeated modeling of targeted advertising was carried out, where
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the following target group for advertising was selected: women of the age groups 18–25,
35–40, 35–45, 40–45, and 45–50 (see Figure 11).
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Note that the marketer can, after receiving the results, conduct a repeat advertising
campaign and check their quality. In rerun ads, the cost per conversion for video ads
dropped from USD 0.75 to USD 0.15 for the period 1–15 May 2022, which is about 20%
better than the original test ad. The average value of advertising effectiveness (click rate)
CTR increased from 3.6 to 6.6, i.e., 83% better.

Moreover, the target audience is chosen, and the content is created using two more
methods: (i) the method of setting the advertising context and the target audience based on
learning associative rules [43] and (ii) the intelligent method of creating advertising content
based on semantic analysis. To implement the methods, surveys were conducted for 56 buy-
ers of the product selected at the stage of intelligent selection of a competitive product.

A set of rules was formed based on the developed method of setting the advertising
context and the target audience, as well as the learning of associative rules (Figure 12). This
made it possible to obtain advertising content (Table 2), which compares the effectiveness
of the advertising content created on the basis of learning associative rules in the period
from 1 May 2022 to 15 May 2022, with all variants of content with rules (see Figure 12).
Based on the latter, the marketer creates an ad including the old initial Version 0.
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Table 2. Comparison of effectiveness for the generated advertising content based on learning associa-
tive rules.

Advert
Version

Content
Results Reach, Thou Views, Thou Cost per Result

Value Change Value Change Value Change Value Change

Version 0
(initial)

“Women’s handbags
for everyone” 85 100% 1236 100% 2365 100% 0.75 100%

Version 1
(rule usage)

“Women’s handbag
of good design” 90 6% 1896 53% 3698 56% 0.33 −56%

Version 2
(rule usage)

“Handbag for good
price with high
review score”

120 41% 4251 244% 5698 141% 0.12 −84%

Version 3
(rule usage)

“Great price nice
design. Details in

Messenger”
136 60% 5548 349% 9683 309% 0.08 −89%

Version 4
(rule usage)

“Great price nice
design” 115 35% 3442 178% 4771 102% 0.16 −79%

Version 5
(rule usage)

“Women’s handbag
for great price and
with nice design”

86 1% 1453 18% 1867 −21% 0.63 −16%
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Table 2 shows that all versions of the new advertisement have improved results. In
addition, the result indicator shows how many times customers interacted with the ad. As
it’s evidenced, the advert v.3 is performed best (60% better than version 0) (see Table 2).
In particular, the Reach indicator is 4.5 times better than that of version 0, and the Views
indicator is 4.1 times better. It also made it possible to reduce the cost per result by 89%. So,
the effectiveness of advertising in social networks increased by at least 60%, and the cost
decreased by 89%.

The intelligent method of creating advertising content based on semantic analysis can
be used to create the content too. To determine the accuracy of this method, a semantic
analysis of customer surveys (similar to the previous approach) was conducted based on
the LSA and LDA methods (Figure 13). Figure 13 shows that based on the LSA method, the
vast majority of keywords are present in documents 0–81%. Based on the LDA method,
the majority of keywords are represented as well in the document 0–78%. The following
advertising text was formed on the basis of these words:
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“You’ll love the design and the color. More details in Messenger”
Table 3 presents a comparison of the effectiveness for the generated advertising con-

tent based on LSA and LDA methods. The results of an advertising campaign with text
content, conducted from 1 May to 15 May 2022, were used as initial data. Table 3 shows
that the Reach indicator increased by 80 people and the Results indicator—by 94%, the
cost per result is decreased by USD 0.70 accordingly. The comparison results show that
the effectiveness of the advertisement based on the LSA and LDA methods is increased
approximately thrice, and the cost per result is decreased by 31%.
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Table 3. Comparison of effectiveness for the advertising content generated by LSA and LDA methods.

Advert Version Content
Results Reach, Thou Views, Thou Cost per Result

Value Change Value Change Value Change Value Change

Version 0 (initial) “Women’s handbags
for everyone” 85 100% 1236 100% 2365 100% 0.75 100%

Version 6 (LSA
and LDA)

“You’ll love the design
and the color. More

details in Messenger”
165 94% 3698 199% 7635 223% 0.05 −93%

As can be seen from the above, all approaches showed a better result compared to the
initial option (see Table 1, Version 0,). In order to optimize them, an additional experiment
was conducted: a new advertisement was run based on the best-obtained results (Figure 14).
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As a result, the following content for advertising can be created, targeting women of
the age groups 18–25, 35–40, 35–45, 40–45, and 45–50:

“You’ll love the beautiful design and color. More details in Messenger”.
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Table 4 presents a comparison of the effectiveness for the created advertising content
based on the created new content for the relevant target group in the period 20 May 2022–4
June 2022.

Table 4. Comparison of effectiveness for the generated advertising content.

Advert
Version Content Target Audience

Results Reach, Thou Views, Thou Cost per Result

Value Change Value Change Value Change Value Change

Version 0
(initial)

“Women’s handbags
for everyone”

All of Ukraine, all age
groups and genders 85 100% 1236 100% 2365 100% 0.75 100%

Version 7
(final)

“You’ll love the
beautiful design and
color. More details

in Messenger.”

All of Ukraine.
Women. Age groups

18–25 and 35–50
191 125% 978 −21% 1036 −56% 0.1 −87%

Table 4 shows that the Results indicator is increased by 106 people, the Reach indicator
is decreased by 21%, the Views indicator is decreased 2.3 times, and the cost per result
indicator is decreased by USD 0.65

5. Discussion

A comparison of the proposed approach with existing ones-analogs [39–41] is illus-
trated in Table 5. In contrast to analogs, which enable only partial attraction of potential
customers with their subsequent transition to regulars, the developed intelligent informa-
tion system makes it possible to automate the selection of competitive products and the
creation of advertising content. This increases the effectiveness of advertisements that work
to attract potential buyers and regular customers and accordingly leads to a decrease in the
cost of Internet advertising.

Table 5. Comparative evaluation of analogues.

Properties/Study Work [39] Work [40] Work [41] This Paper

Methods and techniques Ensemble Learning,
architectural design

Methods and algorithms for
marketing strategy selection

Data mining techniques,
automatic ad creation

Classic classification
methods,

machine learning

Characteristics of the
information system

framework

Intelligent online
marketing system.

Intelligent ad management
in social networks, including

ERP module for database
access and analytics model

Intelligent ad
management system in

social networks,
considering their

specificities, customer
requirements, and

online behavior

Intelligent formation of
keywords for advertising

content, intelligent
creation of product

catalogs for online stores,
generation of improved

advertising content

Numerical indicators - Model accuracy–76%
150% increase in

advertising effectiveness,
56% cost reduction

125% increase in
advertising effectiveness,

87% cost reduction

Regarding the numerical indicators (see Table 5), although [41] slightly lags behind in
advertising effectiveness, we achieved significantly lower advertising costs.

The developed intelligent product promotion system is better suited for small B2C
sellers than for large online stores. This is because small sellers typically have smaller
budgets and fewer resources compared to large online stores. The intelligent product
promotion system can help these small sellers improve the efficiency of their marketing
efforts by automating tasks such as competitor research, keyword identification, and ad
creation. Furthermore, the system can be used on various social media platforms and
search engines, including Facebook, Twitter, LinkedIn, Google Ads, and Yahoo! Search.

The research evaluated the effectiveness of the intelligent information system based
on only two parameters: the number of clicks and conversions it generated. This limitation
may somewhat restrict the system’s applicability. Therefore, in the future, the authors
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plan to investigate the impact of other factors on the system’s effectiveness, such as brand
recognition and customer satisfaction.

6. Conclusions

The developed framework of the intelligent information system for promoting goods
on the Internet makes it possible to form advertising content and increase the efficiency of
the advertisements.

Unlike analogues, the proposed framework allows the user to automate the choice of
competitive product and advertising content, and increase the effectiveness of ad posts
accordingly as well as reduce the costs of online advertising. The implementation of the
proposed framework is considered in the example of a web-oriented system. Outcomes of
experiments confirmed that the efficiency of ad posts on social networks is increased by at
least 125%, and the cost is decreased by 87%.

In addition, the effectiveness of the advertisements is confirmed by the following.
After the advert’s re-launch based on the results of decision trees for the target group
of women aged 18–25, 35–40, 35–45, 40–45, and 45–50, the cost of conversion for video
advertising is decreased from USD 0.75 to USD 0.15, which is about 20% better than initial
test ad results. The average performance of adverts is improved by 83%. Selection of
the advertising context and the target audience based on the learning of associative rules
enables to increase the effectiveness of ad posts on social networks by about 60% while the
cost is decreased by 89%. According to the comparison results the advertising content based
on the LSA and LDA methods showed an increase in efficiency by 199% and a decrease in
cost by 31%.

In the future, we are going to investigate the methods of generating advertising both
text and images, based on keywords and a technique of building an optimized array of the
best ad items.

The generation of advertising text will enable the marketer to create many interesting
ads that will have the correct lexical makeup and use the keywords that potential cus-
tomers are most interested in. Generation of advertising images based on keywords can
simplify the work of marketers, especially if they have no skills in developing and drawing
such images.

Moreover, brand recognition and customer satisfaction can become the subject of
future research.
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