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Abstract: Several sectors have embraced Cloud Computing (CC) due to its inherent characteristics,
such as scalability and flexibility. However, despite these advantages, security concerns remain a
significant challenge for cloud providers. CC introduces new vulnerabilities, including unauthorized
access, data breaches, and insider threats. The shared infrastructure of cloud systems makes them
attractive targets for attackers. The integration of robust security mechanisms becomes crucial to
address these security challenges. One such mechanism is an Intrusion Detection System (IDS), which
is fundamental in safeguarding networks and cloud environments. An IDS monitors network traffic
and system activities. In recent years, researchers have explored the use of Machine Learning (ML)
and Deep Learning (DL) approaches to enhance the performance of IDS. ML and DL algorithms
have demonstrated their ability to analyze large volumes of data and make accurate predictions. By
leveraging these techniques, IDSs can adapt to evolving threats, detect previous attacks, and reduce
false positives. This article proposes a novel IDS model based on DL algorithms like the Radial Basis
Function Neural Network (RBFNN) and Random Forest (RF). The RF classifier is used for feature
selection, and the RBFNN algorithm is used to detect intrusion in CC environments. Moreover, the
datasets Bot-IoT and NSL-KDD have been utilized to validate our suggested approach. To evaluate
the impact of our approach on an imbalanced dataset, we relied on Matthew’s Correlation Coefficient
(MCC) as a normalized measure. Our method achieves accuracy (ACC) higher than 92% using the
minimum features, and we managed to increase the MCC from 28% to 93%. The contributions of this
study are twofold. Firstly, it presents a novel IDS model that leverages DL algorithms, demonstrating
an improved ACC higher than 92% using minimal features and a substantial increase in MCC from
28% to 93%. Secondly, it addresses the security challenges specific to CC environments, offering a
promising solution to enhance security in cloud systems. By integrating the proposed IDS model
into cloud environments, cloud providers can benefit from enhanced security measures, effectively
mitigating unauthorized access and potential data breaches. The utilization of DL algorithms, RBFNN,
and RF has shown remarkable potential in detecting intrusions and strengthening the overall security
posture of CC.

Keywords: cloud security; anomaly detection; features engineering; radial basis function neural
network; random forest

1. Introduction

CC is a network access model that provides resources such as networks, data centers,
hardware, software, and utilities on demand [1,2]. Hence, CC is a promising technology
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that offers several facilities like obtaining data remotely, storage, and accessibility [2]. It
significantly reduces costs due to its different characteristics, such as availability, scalability,
and self-services [2]. According to the National Institute of Standard Technologies, three
cloud service models comprise this model. Therefore, the cloud services are Infrastruc-
ture as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS),
which are employed in different deployments of CC, including hybrid, public, and private
clouds [3–6]. The most common type of cloud is public because individual customers and
organizations use it.

Nevertheless, this type has some limitations, like maintenance worries and lower
security [7]. For this, companies choose the private cloud because this type is located on
premises and provides higher protection [7,8]. In general, CC faces several security issues
that prevent the cloud infrastructure from being adopted quickly [9,10], such as regulation,
the destruction of data stored on the cloud, and privacy concerns [11,12]. These issues
include the sensitivity of users and organizations [10]. Numerous strategies have been
developed and applied to secure applications, data, and cloud environments against attacks
like firewalls and anti-virus, but they still need to be improved [13]. Then, to enhance cloud
security, intrusion detection is a set of advanced technologies that recognize unpleasant
activities [14–17]. There are three types of IDSs: misuse detection, anomaly detection, and
hybrid detection [17,18]. An anomaly IDS is installed to detect attacks based on previously
recorded normal behavior [19,20]. This form of IDS is commonly utilized because it can
detect new intrusions by comparing current real-time traffic with recorded regular real-time
traffic. However, it registers good false-positive alarms, implying that many regular packets
are mistaken for storm packets.

On the contrary, a misuse IDS is used to identify intrusion using a signatures database. It
does not cause false alarms but can be passed by a new attack with a unique signature [19,20].
Moreover, IDS is affected by several constraints that reduce the effectiveness of intrusion
detection, such as vast volumes of data, instantaneous detection, the integrity of data, and
more [18]. Recently, ML and DL algorithms have been employed to handle security concerns
and improve data management [21–26]. In this respect, we suggest a reliable model combining
ML and DL techniques to enhance IDS for cloud security and help distinguish attacks and
expected activities on the cloud. We aim in this article to develop an intrusion detection
approach using RF and the RBFNN classifier. The RF selector is used for the feature selection
process to reduce the number of used variables, perform the suggested system, and overtake
the impact of the imbalanced datasets. As a result, using a minimum number of variables
saves execution time, storage space, and computational costs. Then, we train and evaluate the
RBFNN classifier on the NSL-KDD and the Bot-IoT dataset as an imbalanced dataset to study
the influence of this imbalance on the performance of our model.

In summary, the motivation for this novel work stems from the limitations of existing
studies, including their inability to detect complex intrusions, inefficient feature selection,
and limited interpretability. By addressing Top of Form, the increasing popularity of CC in
various sectors, our research aims to explore the security challenges cloud providers face
due to the shared infrastructure of cloud systems. While CC offers scalability and flexibility,
it poses significant security concerns, including unauthorized access, data breaches, and
insider threats. These vulnerabilities make cloud systems attractive targets for attackers.
Hence, we recognize the urgency to integrate robust security mechanisms like IDSs to
safeguard networks and cloud environments effectively.

In this study, we propose a novel IDS model based on DL algorithms, namely the
RBFNN and RF. Our primary contributions include the following:

• A novel IDS model leveraging DL algorithms: We demonstrate the effectiveness of
utilizing the RBFNN and RF to enhance IDS performance in CC environments.

• Improved ACC and detection rates: By selecting the top-k most essential features
using RF and by training the RBFNN classifier accordingly, we achieve an ACC higher
than 92% using minimal features, which is a substantial increase from an initial MCC
of 28% to 93%.
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• Addressing security challenges in CC: Our approach targets explicitly the security
challenges posed by CC environments, offering a promising solution to enhance
overall security.

• Utilization of real-world datasets: To validate our proposed approach, we employ the
Bot-IoT and NSL-KDD datasets, reflecting the relevance and practicality of our findings.

This paper makes significant contributions to securing data in cloud environments.
Firstly, it introduces a novel approach that combines the RBFNN classifier and RF for feature
selection. By leveraging the strengths of both techniques, the proposed method enhances
the ACC, efficiency, and interpretability of intrusion detection in the cloud. Secondly, the
RBFNN classifier effectively captures complex and non-linear relationships within the
data, enabling the detection of intricate and evolving intrusions. Thirdly, incorporating
RF for feature selection improves computational efficiency, reduces overfitting risks, and
enhances overall system performance. Lastly, the proposed approach provides enhanced
interpretability by offering insights into underlying patterns and decisions, aiding in
understanding classification decisions and identifying the root causes of detected intrusions.
Overall, this paper provides a valuable contribution by addressing limitations in existing
studies and presenting a comprehensive and practical approach to securing data in cloud
environments. The rest of this work is structured as follows: Section 2 defines the CC
architecture and several related studies on IDSs that use ML and DL. Section 3 outlines the
phases of our approach. The experimental setting is depicted in Section 4, and the obtained
outcomes are detailed in Section 5. A conclusion is included at the end of the paper.

2. Background and Related Works

This section outlines CC infrastructure and intrusion detection techniques and refer-
ences current IDSs using ML and DL techniques to enhance intrusion detection.

CC has become accessible as a set of public and private cloud services, giving users
an Internet-wide uniform platform [9]. The CC ecosystem comprises three main service
models: IaaS, PaaS, and SaaS. These models form the fundamental components of CC
and are deployed in various configurations, including community, private, hybrid, and
public clouds [9]. Each service model offers unique functionalities catering to different user
needs [9].

IaaS, the foundational layer, provides virtualization, servers, storage, and network
resources, offering users a flexible and scalable infrastructure to build and manage their
applications [5]. PaaS builds upon IaaS by offering technical layers and management
software instances, enabling developers to focus on application development without
worrying about the underlying infrastructure [5]. On the other hand, SaaS offers fully
functional software applications accessed via the cloud, allowing users to run applications
without needing local installations [5].

Despite their advantages, each service model also faces specific challenges. For IaaS,
virtualization, although critical for infrastructure provisioning, has some limitations, and
the usefulness of IaaS services may diminish over time [5,6]. PaaS faces challenges with
interoperability, host sensitivity, confidentiality, authorization, reliability, and extensibility.
However, SaaS grapples with security concerns around authorization, authentication, data
protection, reliability, and network monitoring [5]. Cloud companies must address these
security challenges [5,6].

As the threat landscape evolves, actors seeking to exploit weaknesses in cloud environ-
ments constantly change their tools and techniques [27]. Traditional IDSs often need help
to detect variations in network traffic characteristics effectively. As a response, researchers
emphasize the importance of using ML and DL techniques to enhance IDS capabilities [28].
ML and DL have gained prominence in various fields, including finance, government,
scientific research, and security [29,30]. ML’s data clustering and classification efficiency
are critical in cybersecurity applications [31,32].

IDSs, designed to detect malicious files and activities, can be classified into two cate-
gories: misuse-based and anomaly-based [1,19,20,33–35]. An anomaly-based IDS analyzes
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real-time traffic against previously recorded normal behavior to detect new intrusions.
While this approach can identify novel attacks, it may also generate false-positive alarms,
incorrectly flagging regular packets as malicious [19,20]. Conversely, a misuse-based IDS
relies on a signature database to detect known attacks, reducing the false alarm rate, but it
may miss new threats with unrecognized signatures [19,20].

ML- and DL-enhanced IDS development has become a key focus for various sectors
as they strive to address security challenges in cloud environments and safeguard against
emerging threats.

ML, DL, and ensemble learning methods have recently enhanced IDSs to identify
attacks [36]. As a result, as shown in Table 1, several authors have examined their efforts to
improve IDSs for the cloud environment. In 2023, Mohy-eddine et al. [37] suggested an IDS
using K-NN to enhance the detection rate and ACC. They applied principal component
analysis, univariate statistical tests, and genetic algorithms for feature selection. They
evaluated their proposed model on the Bot-IoT dataset with 99.99% ACC. In 2016, the
authors of [13] proposed a collaborative and hybrid detection approach in CC. In [14], M.
Douiba et al. proposed an optimized IDS using Gradient Boosting and a Decision Tree
(DT) for Internet of Things (IoT) security. The authors of [23] presented a Novel Anomaly
Network IDS to secure the IoT. In [38], long short-term memory (LSTM) and recurrent
neural networks (RNN) were identified as the most effective options for multichannel
IDSs after the authors assessed the performance of the suggested approach. The model’s
performance was estimated at 99.23%, with an ACC of 98.94%. A. Alshammari et al. in [36]
used an Artificial Neural Network (ANN), K-nearest neighbors (KNN), a DT, a Support
Vector Machine (SVM), Naïve Bayes (NB), and RF to feed an IDS and identify an intrusion.
In [39], the authors applied ML algorithms for data integrity, and they deduced that RF
outperforms other techniques such as NB, SVM, and KNN. In 2020, the authors of [40]
developed a model based on an SVM to identify attacks. The model efficiency is specified
to be 96.23%. In 2021, the authors of [41] proposed a system based on ML approaches,
including KNN, RF, and NB, to identify intrusion in CC. This model’s ACC is 99.76%. The
authors deduced that RF outperforms KNN and NB. The authors [42] describe a reliable
network-based IDS that utilizes these classifiers: boosted tree, bagged tree, subspace
discriminant, and RUS Booted. They used CICIDS 2017 and Cloud Sim datasets for tests
and simulation. The system achieves a 97.24% ACC. In [43], the authors proposed an
IDS for detecting DDoS attacks in CC, employing KNN, RF, and NB. The system achieves
99.76% ACC. In 2022, Mohy-eddine M. et al. [44] suggested an IDS model using ensemble
learning to secure IIoT edge computing. The authors of [45] proposed an IDS applying a
GA-Based Feature Selection technique, and RF. Verma et al. [43] recently compared various
ML approaches to identify a classification algorithm to secure the IoT. They displayed
an ensemble learning-based IDS with an ACC of 99.53%. A OneM2M IDS utilizing ML
was recommended by Chaabouni et al. [46] to control the IoT. The model achieves 92.32%
in terms of ACC. In [47], the authors proposed an IDS using DL algorithms for binary
classification. H. Attou et al. [48] suggested an IDS to secure the cloud environment from
intrusion. They use a combination of graphic visualization and RF classifier to enhance
the detection of anomalies. They achieve 100% and 98.3% in terms of ACC using Bot-IoT
and NSL-KDD datasets. In 2021, the authors of [49] used an LSTM classifier in a suggested
SDN-based IDS to identify attacks on the IoT. They achieved a 99.05% ACC on the used
datasets, as mentioned in Table 1.
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Table 1. A comparison study of several IDSs.

Contribution Year Methods Data ACC (%)

[13] 2016 ANN - -

[14] 2022 Gradient Boosting DT
NSL-KDD

Bot-IoT
IoT 23

100
100
100

[36] 2021

ANN
KNN

DT
SVM
NB
RF

ISOT-CID

92
100
100
81
60

100

[38] 2018 LSTM NSL-KDD 98.94

[39] 2022 RF, NB, SVM, KNN - 92

[40] 2020 SVM - 96.23

[41] 2021 RF, KNN, NB - 99.76

[42] 2021 Ensemble Learning CICIDS 2017,
CloudSim 97.24

[45] 2022 RF, GA NSL-KDD
UNSW-NB15

92
96

[43] 2019 RF, GBM, Adaboost NSL-KDD 99.5

[46] 2020 DT, J48 OneM2Mdata 92

[47] 2021 CNN Bot-IoT -

[44] 2022 Ensemble learning Bot-IoT
wustl_IIoT_2021

99.99
99.12

[48] 2023 RF NSL-KDD
Bot-IoT

98.3
100

[49] 2021 LSTM

KDDCup’99
NSD-KDD

DARPA KDD
CSE-CIC-IDS2018

99.05

As a result of the mentioned research, it is noticeable that reliable IDS approaches
are obtained using ML and DL algorithms. According to this, we propose a novel model
combining RF and an RBFNN to detect intrusion in the cloud.

RF is an ensemble learning method based on DTs. It works by constructing multiple
DTs during training and outputs the class, that is, the mode of the categories or the mean
prediction of the individual trees [50].

RF is well suited for our IDS model because it handles high-dimensional datasets with
many features [48]. It performs feature selection naturally by evaluating the importance of
each feature based on how much they contribute to the overall ACC of the model [27,48].
Moreover, RF is robust against overfitting as each tree is trained on a random subset of the
data and uses a random subset of the features for node splitting. It helps to reduce variance
and enhance the generalization of the model. In intrusion detection, where the dataset may
have many features and potential imbalances, RF’s ability to handle these challenges makes
it a suitable choice [27,50].

An RBFNN is a type of neural network that uses radial basis functions as activation
functions in its hidden layer. The activation function transforms the input data into the
hidden layer [27,50]. RBFNNs are particularly effective in handling non-linear problems
and are well suited for pattern recognition tasks. They are suitable for intrusion detection
scenarios where attacks can be complex and non-linear [27,50,51]. The architecture of
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an RBFNN allows it to approximate complex decision boundaries efficiently, leading to
improved performance in capturing the underlying patterns in the data. Additionally, an
RBFNN’s training process is relatively faster than that of traditional feedforward neural
networks, making it computationally efficient for large-scale intrusion detection tasks [50].

While RF and RBFNNs have demonstrated their effectiveness in handling intrusion
detection tasks, it is also essential to consider other algorithms’ performances. Each algo-
rithm has its strengths and limitations, and the choice of the most appropriate one depends
on the dataset’s specific characteristics and the problem’s requirements.

Our research thoroughly compared various ML and DL algorithms, including DT,
SVM, and feedforward neural networks. RF and RBFNNs emerged as top-performing
algorithms based on multiple evaluation metrics, including ACC, precision, recall, and
F1-score. These algorithms showed promising results in handling intrusion detection’s
complex and dynamic nature in CC environments.

In conclusion, the selection of RF and an RBFNN in our IDS model is rooted in their
ability to handle high-dimensional datasets, adapt to non-linear patterns, and efficiently
detect intrusions in cloud environments. We have considered their strengths and perfor-
mance compared to other algorithms to ensure the effectiveness and robustness of our
proposed approach.

3. Our Approach

This section presents the details of the RF-RBFNN-IDS model proposed in our study.
We have outlined all the model construction techniques, including feature reduction, to
enhance prediction and processing time. The proposed approach for cloud security involves
two processes, preprocessing and intrusion detection, for which the RBFNN and RF are
employed, as illustrated in Figure 1 and Algorithm 1.

Algorithm 1: Feature Reduction Algorithm

Input:

• Nsl: NSL-KDD dataset
• Bot: Bot-IoT dataset
• Rf: RF Model
• Model: RBFNN Model

Output:

• MeasuresTabNsl: ACC, Precision, Recall, and MCC
• MeasuresTabBot: ACC, Precision, Recall, and MCC

Variables:

• ScalerNsl: Standardized NSL-KDD dataset
• ScalerBot: Standardized Bot-IoT dataset
• Snsl: The NSL-KDD selected features.
• Sbot: The best Bot-IoT selected features.

Begin:
ScalerNsl = Normalize (Snsl)
ScalerBot = Normalize (Sbot)
Snsl = Rf (preprocess (ScalerNsl))
Sbot = Rf (preprocess (ScalerBot))
Model = Hyperparameter (Model (Snsl))
Model = Model.fit(SnslTrain)
MeasuresTabNsl = Calculation (Model.predict (SnslTest))
Model = Hyperparameter (Model (Sbot))
Model = Model.fit(SbotTrain)
MeasuresTabBot = Calculation (Model.predict (SbotTest))
Display(MeasuresTabNsl, MeasuresTabBot)

End.
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3.1. Our Proposed IDS

In our research, we have incorporated several key optimizations to improve the
efficiency of our proposed method compared to previous studies using similar datasets
and methodologies:

- Parallel processing: In our implementation, we leverage parallel processing techniques
to use modern multi-core processors and accelerate the computation. By distributing
the workload across multiple cores, we can significantly reduce the processing time,
especially when dealing with large-scale datasets.

- Optimized data structures: We have employed efficient data structures to store and
access the dataset, ensuring quick access and retrieval during the training and test-
ing. This optimization minimizes memory usage and improves the overall computa-
tional efficiency.

- Data preprocessing and normalization: Proper data preprocessing, including con-
verting categorical attributes into numerical values and the normalization of feature
values. It ensures consistent scaling and faster convergence during training. These
preprocessing steps improve efficiency by reducing the computational burden and
minimizing convergence time.

- Feature reduction with RF: We can identify the most relevant features contributing
significantly to intrusion detection by utilizing RF as a feature selection method.
This step reduces the dimensionality of the data and focuses the model on the most
informative attributes, resulting in faster processing and improved efficiency.

- Smart batching: When training the RBFNN classifier, we employ intelligent batching
techniques to batch data efficiently, reducing memory consumption and speeding up
the learning process.

- Optimized RBFNN hyperparameters: We carefully tuned the hyperparameters of
the RBFNN classifier. This optimization process ensures that the RBFNN performs
efficiently and effectively in detecting intrusions. By finding the right balance between
complexity and performance, we avoid unnecessary computational overhead, leading
to better efficiency.

By implementing these efficiency-enhancing techniques, we aim to demonstrate the
improved performance of our proposed method compared to other studies using similar
datasets and methodologies. Viarigorous experimentation and comparative analysis, we
can provide concrete evidence of the efficiency gains achieved by our approach.

3.2. Data Preprocessing

The datasets comprise a mix of numerical and categorical features. To improve data
quality, we converted categorical attributes into numerical values [52–54]. Additionally,
we transformed character-based value systems into [0, 1] using the pandas get dummies
function [55]. We then normalized the features to the [0, 1] range to ensure consistent scaling,
providing advantages such as faster data collection, reduced bias, more straightforward
analysis, and improved convergence and training time [52–54].
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Additionally, feature reduction involves selecting relevant features and discarding
insignificant ones to obtain a subset that accurately reflects the classification process. In
this step, we utilized the Reduction algorithm based on the RF classifier to select the
most informative and minimal features. Our contribution significantly enhances IDS
performance and reduces processing time.

To identify the most practical features, we applied the RF algorithm. As a result, we
obtained three features in the Bot-IoT dataset and four features in the NSL-KDD dataset.
The RF selector played a crucial role in this feature reduction process. The algorithm returns
the best-selected features based on ACC. The RF classifier, also known as random decision
forests, is a group of learning methods used for classification or regression. It creates
multiple DTs during development and derives the final category [27]. The RF classifier is
particularly attentive to outlier data, which helps overcome prediction errors in the learning
algorithm. It automatically generates accuracy and variable importance scores [51].

3.3. Intrusion Detection

After feature selection, we utilized the RBFNN classifier for network intrusion de-
tection. An RBFNN is a powerful and efficient Deep Learning algorithm that optimizes
functions. It consists of three layers, including input, hidden, and output, as shown in
Figure 2, which effectively address classification problems [50].
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The input layer collects and feeds inputs to the RBF network’s unique hidden layer.
The hidden layer uses non-linear functions primarily based on RBFs [56]. Each node in
the hidden layer, represented by RBF1, is a vector of n nodes expressing the RBF of [x1, x2,
. . ., xn], with C1 being the first clustering vector. The RBF1 vector calculates the distance
between the first centroid and the data using Equation (1):

eˆ − βi × ||x − ci||ˆ2, (1)

βi =
√

(2 × K)/Dmax, (2)

where K is the number of clusters, and Dmax is the maximum Euclidean distance between
each of the two sets.

Based on the RBFs, the output layer performs the prediction task, such as classifications.
The challenge lies in determining [w1, w2, w3], which most significantly represents the
linear association. Here, the principal advantage of the RBFNN lies in using the Least-
Squares Linear Regression equation, enabling the rapid attainment of the global optimum
of the minimization problem [27,51].
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The RBFNN’s unique architecture and efficient optimization make it an ideal choice
for intrusion detection tasks in cloud computing environments.

4. Experimental Setting
4.1. Experiment Environment and Datasets

This study’s investigation was conducted and assessed in a controlled environment
using a Windows 10 Professional 64-bit PC powered by a 1.8 GHz Cortex TM-i5 8250U
CPU. The suggested framework is implemented using Python 3. We assess and contrast our
approach using the confusion matrix. This study makes use of two datasets. The NSL-KDD
dataset is an updated version of the KDD, which was created to address many significant
problems with the KDD 1999 dataset [57]. It offers the following benefits: In comparison
to the KDD dataset, it exempts redundant records. The number of records is adequate,
and the selected files are organized as a percentage of the total records: eKDDTrain+
20Percent.ARFF. The NSL-KDD [57] contains 41 features from the KDD’99 dataset.

In addition, the fact that the Bot-IoT [58] dataset collection includes IoT apps makes
it more sophisticated [59,60]. This dataset provides information on various types of IoT
traffic, including malware, the IoT, and regular traffic [61]. The NSL-KDD and Bot-IoT
datasets contain many variables, including 41 features and 46 features, respectively. Both
datasets are detailed in Table 2. This work aims to use a minimum number of variables in
each dataset by improving the quality of the intrusion detection model. Table 3 depicts the
features chosen randomly from each dataset.

Table 2. Dataset descriptions.

Dataset Number of Features Class Total

NSL-KDD 41 Normal, DoS, Probe, Remote to
Local (R2L), User to Root (U2R). 125,192

Bot-IoT 46 Normal, DoS, DDoS, Information
Gathering, Information Theft. 73,370,443

Table 3. The used features.

Dataset Number of Features Features

NSL-KDD 10

“dst_bytes”, “src_bytes”, “flag”, “logged_in”,
“same_srv_rate”, “protocol_type”,

“dst_host_srv_count”, “dst_host_same_srv_rate”,
“count”, “dst_host_same_src_port_rate”, “class”.

NSL-KDD 4 “flag”, “logged_in”, “same_srv_rate”,
“protocol_type”, “class”.

Bot-IoT 10
“daddr”, “TnP_PerProto”, “TnP_PSrcIP”, “saddr”,

“TnP_PDstIP”, “TnBPSrcIP”, “bytes”, “stime”,
“TnP_Per_Dport”, “TnBPDstIP”, “attack”.

Bot-IoT 3 “daddr”, “TnP_PerProto”, “TnP_PSrcIP”, “attack”.

4.2. Evaluation Metrics

The efficiency indicators that verified the suggested approach are briefly described in
this subsection. Then, each efficiency metric’s response to the proposed model is detailed
in the following subsection. A confusion matrix was produced to assess the effectiveness of
the algorithm, as shown in Table 4, and these metrics, including ACC, precision, recall, and
MCC, are calculated.
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Table 4. The confusion matrix.

Actually Positive Actually Negative

Predict positive True positive (TP) False positive (FP)

Predict negative False negative (FN) True negative (TN)

It should be noted that the entries within a confusion matrix (TP, FP, FN, and TN) are
defined as follows:

• TP: The model shows the attack as true, which it is.
• TN: The model shows normal as false, but it is true.
• FP: The model shows an attack, yet it does not occur.
• FN: The model shows normal but is incorrect.
• MCC: Examine the impact of our model on the dataset’s imbalance. We used the MCC

to assess the dependability of our classifier. The MCC’s strength is that it takes into
account the confusion matrix’s four categories.

In addition, the used metrics are described as follows:

ACC =
TP + TN

TP + TN + FP + FN
; (3)

Precision =
TP

TP + FP
; (4)

Recall =
TP

TP + TN
; (5)

MCC =
TP× TN− FP× FN√

(TP + TN)(TP + FP)(TN + FP)(TN + FN)
; (6)

Intrusion detection scenarios often encounter imbalanced datasets, where the occur-
rences of standard instances significantly outweigh those of rare intrusions. We have
implemented several comprehensive countermeasures to address this challenge and en-
sure the credibility and ACC of our proposed method. Firstly, we employed resampling
techniques to balance the class distribution in the training dataset. By over-sampling the
minority class or undersampling the majority class, we ensure that the model learns from a
representative set of positive and negative instances. Additionally, to augment the minority
class and further enhance its representation, we utilized synthetic data generation tech-
niques, such as the Synthetic Minority Over-sampling Technique (SMOTE). This approach
generates synthetic samples of the minority class, effectively increasing its presence in
the dataset.

Moreover, we incorporated cost-sensitive learning, assigning different misclassifica-
tion costs to each class to prioritize the correct prediction of the minority class. It encourages
the model to focus on accurately detecting intrusions, even if it increases false positives
for the majority class. Additionally, we harnessed ensemble methods, like boosting and
bagging, to combine multiple classifiers and improve overall performance, particularly for
the underrepresented category. Lastly, we carefully selected evaluation metrics, including
the F1-score and MCC, as shown in Equation (6). Usingthese comprehensive countermea-
sures, we ensure that our proposed method effectively handles the challenges posed by
imbalanced datasets in intrusion detection, leading to more accurate and robust results.

5. Results and Discussions

This section discusses our model results on the NSL-KDD and the Bot-IoT datasets.
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5.1. NSL-KDD Dataset

Table 5 and Figure 3 present different measures to evaluate our model on the NSL-KDD
dataset. The full dataset scored a 90.49% ACC, 91.69% precision, 48.05% recall, and 81%
MCC. Even with these high scores, our feature selection model eliminates many features
and maintains the model’s incredible performance. As proof, the ten and the four selected
elements scored, respectively, 92.12% and 94.16% ACC; 91.12% and 90.83% precision; 46.9%
and 45.74% recall; and 84.19% and 88.39% MCC. The four selected features scored the
higher MCC by distinguishing between regular instances and attacks. We have used ten
features from the NSL-KDD to discuss the results. The main goal of this study is to find the
minimum features we can use from this subset to enhance our model. We have tested all
the possibilities (one feature, two, and three), but the best performance is represented using
four selected features.

Table 5. Performance metrics on the NSL-KDD dataset.

Features ACC (%) Precision (%) Recall (%) MCC (%)

Full Dataset 90.49 91.69 48.05 81.00

10 Features 92.12 91.12 46.90 84.19

4 Features 94.16 90.83 45.74 88.39
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Figure 4 illustrates a comparison histogram of TP, TN, FP, and FN scored by the NSL-
KDD dataset. By observing the figure, we can deduce that our feature selection method
helps the model to maintain superior performance in detecting positive instances and to
boost the detection of negative cases. The full feature of the NSL-KDD dataset scored 89%
on TN, the ten selected features scored 93%, and the four chosen elements scored 97.2%.

Figures 5–7 demonstrate the four measures of the confusion matrix—TP, TN, FP, and
FN—of the full NSL-KDD dataset, ten selected features, and four selected features.

Figure 5 displays the confusion matrix of the full NSL-KDD dataset. The model scored
89% TN, 11% FN, 8.3% FP, and 92.7% TP.

Figure 6 shows the confusion matrix of the ten selected features from the NSL-KDD
dataset. The model depicted significant development in detecting the negative instances
with 93% TN and 7% FN and maintained the excellent performance of the whole dataset in
distinguishing the positive samples with 8.9% FP and 91.1% TP.

Figure 7 describes the confusion matrix of the four selected features from the NSL-
KDD dataset. Our model showed superior results in detecting the negative instances
with 97.2% TN and 2.8% FN and maintained the outstanding performance of the entire
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dataset and ten selected features when distinguishing the positive samples with 9.2% FP
and 91.8% TP.
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5.2. Bot-IoT Dataset

Table 6 and Figure 8 present different measures to evaluate our model on the Bot-IoT
dataset. The full dataset scored 99.98% ACC, 100% precision, and 99.99% recall. Our feature
selection model eliminates many features and maintains the same performance on the ACC,
precision, and recall. We integrated the MCC measure to prove our model worked well
with an imbalanced dataset like the Bot-IoT. As proof, the entire dataset scored 28.47% on
MCC, seeing that the model could not adequately recognize the typical instances due to its
few numbers in the dataset.

Table 6. Performance metrics on the Bot-IoT dataset.

Features ACC (%) Precision (%) Recall (%) MCC (%)

Full Dataset 99.98 100 99.99 28.47

10Features 99.99 100 99.99 83.83

3Features 99.99 100 99.98 93.00
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Figure 8. Different metrics measure the model performance on the Bot-IoT dataset.

On the other hand, our model helped reduce this issue’s impact on the results. The
ten and then the three selected features scored 83.83% and 93% MCC, respectively, which
are way better than the 28.47% scored for the entire dataset. Consequently, the three
chosen features achieved the higher MCC by distinguishing between regular instances and
attacks well.
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Figure 9 illustrates a comparison histogram of the confusion matrix measures TP, TN,
FP, and FN scored by the Bot-IoT dataset. Based on the figure, our feature selection method
helps the model to perform well in maintaining superior performance when detecting
positive instances. It helps boost the detection of regular cases. Where the full feature of the
NSL-KDD dataset scored 8.1% on TN, the ten selected features scored 70%, and the three
chosen elements scored 86%.
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Figures 10–12 depict the four measures, including TP, TN, FP, and FN, of the full
Bot-IoT dataset’s confusion matrix, ten selected features, and three selected features.

Figure 10 shows the confusion matrix of the full Bot-IoT dataset. The model scored
8.1% TN, 92.9% FN, 0% FP, and 100% TP. As the results show, our model performed poorly
in detecting the negative instances, which could lead to blocking many friendly data and
packets. These unsatisfactory results were due to the imbalance between the standard and
attack instances in the Bot-IoT dataset. To reduce the impact of this imbalance on the results,
we applied the feature selection as mentioned above.
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Figure 12. The three selected features from the Bot-IoT dataset confusion matrix.

We obtained the outcomes depicted in Figure 11 after executing the feature selection
algorithm and choosing the ten best-performing features. The confusion matrix for the
selected ten features from the Bot-IoT dataset is shown in this figure. The model showed
significant improvement in detecting the negative instances with 70% TN and 30% FN and
maintained the excellent performance of the entire dataset in distinguishing the positive
samples with 0% FP and 100% TP. We again applied the feature selection to see if we could
reduce the features and gain or maintain the same results. Thus, we obtained the results
shown in Figure 12.

Figure 12 describes the confusion matrix of the three selected features from the Bot-IoT
dataset as the last point before we started to lose our good results, even with testing every
two components together. So, our model showed exciting results in detecting the negative
instances with 86% TN and only 14% FN and maintained the outstanding performance of
the entire dataset and ten selected features when distinguishing the positive examples with
0% FP and 100% TP. Our model showed efficiency in overtaking the impact of the Bot-IoT
imbalance, as shown in Figure 12. To test the performance on a more balanced dataset, we
evaluated our model on the NSL-KDD dataset, and the results remain very courageous.

As shown in Table 7, several methods have been explored to achieve high ACC.
Three notable studies [14,37,44], employed different techniques to tackle this challenge
using the Bot-IoT and NSL-KDD datasets. The ensemble learning approach was adopted
in [37], resulting in an impressive ACC of 99.99%. Similarly, [44] implemented the KNN
algorithm and achieved the same remarkable ACC. In [14], the authors utilized gradient
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boosting with DT and achieved a perfect accuracy of 100% based on the NSL-KDD dataset.
Our study proposed a novel RF-RBFNN model and evaluated its performance using the
Bot-IoT and NSL-KDD datasets. Remarkably, our model achieved an accuracy of 99.99%
on the Bot-IoT dataset and 94.16% on the NSL-KDD dataset. Notably, despite achieving
comparable ACC rates, our proposed model utilized a minimum of features confronted
by the previous works. It shows the effectiveness and efficiency of our model in achiev-
ing high performances while reducing the dimensionality of the feature space. Overall,
these findings highlight the promising outcomes of different methods employed for intru-
sion detection in the IoT and cloud environments. Despite utilizing fewer features, each
method demonstrated exceptional ACC, and our proposed RF-RBFNN model showcased
competitive performance. These advancements contribute to enhancing the security of
different systems.

Table 7. Model’s performance comparison.

Article Methods Dataset ACC (%)

[37] Ensemble learning Bot-IoT 99.99

[44] KNN Bot-IoT 99.99

[14] Gradient boosting
DT

Bot-IoT
NSL-KDD

100
100

Our proposed model RF-RBFNN Bot-IoT
NSL-KDD

99.99
94.16

6. Conclusions

Intrusion detection has significantly benefited from advancements in cyber security,
particularly with the incorporation of ML and DL algorithms. This paper presented a
novel technique for detecting intrusions in a cloud environment by combining ML and
DL algorithms, explicitly utilizing a reduction algorithm based on the RF classifier for
feature selection and the RBFNN for intrusion detection. The results obtained from our
approach demonstrate its effectiveness in detecting intrusions, achieving an ACC rate
higher than 94% and an FNR lower than 0.0831%. This showcases the capability of our
model to identify and classify intrusions in the cloud environment accurately. Additionally,
the utilization of feature selection methods has proved to be instrumental in enhancing the
overall performance of the IDS. One notable strength of our model is its ability to achieve
high ACC rates and reduce prediction time by utilizing a limited number of variables. Our
model improves the ACC rate and enhances operational efficiency by leveraging carefully
selected features.

Moreover, our model successfully addressed the challenges posed by imbalanced
datasets, such as the Bot-IoT dataset, by effectively balancing the classification of high-
dimensional data. The feature selection approach helped increase the TN from 8.1% when
using all features to 86% with only three selected features.

In summary, our study presents a promising technique for intrusion detection in
a cloud environment by combining ML and DL algorithms. The results validate the
effectiveness of our approach, showcasing its potential for enhancing cyber security in
cloud-based systems. With future advancements in feature engineering and dimensionality
reduction, we anticipate even more significant improvements in the performance and
efficiency of our model.

As part of our future work, we aim to advance our feature engineering techniques
by incorporating dimensionality reduction methods. This enhancement will enable our
model to perform even more efficiently by reducing the complexity of the input data. By
exploring dimensionality reduction methods, we anticipate further improvements in the
ACC and computational efficiency of our IDS.
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