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Abstract: We present the analytic forms of the principal Hugoniots of actinium (Ac) and the lan-
thanide promethium (Pm), which have both never been measured or calculated before, as well as
those of terbium (Tb), thulium (Tm), and lutetium (Lu), the three least studied of the remaining
lanthanides. They are based on our new analytic model of principal Hugoniot. A comparison of the
five Hugoniots to our own independent theoretical calculations demonstrates very good agreement
in every case, but each of the Hugoniots of Tb, Tm, and Ac from the TEFIS database, which ours are
also compared to, appear to violate Johnson’s theoretical constraint 4 < ηmax < 7 for the maximum
compression ratio ηmax, which corresponds to the Hugoniot turnaround point. Possible reason for
this behavior of the TEFIS Hugoniots is briefly discussed.

Keywords: quantum phase transitions; melting curve; shear modulus; equation of state; material
modeling

1. Introduction

Rare earth 4 f elements, or lanthanides, play a key role in modern day technological
applications, such as computer memories and permanent magnets. Similarly, 5 f element
actinides, being the backbone of nuclear fission technologies for the production of energy,
also find applications in many non-power strategic fields, from space exploration to medical
diagnostic and treatments. Specifically, the first member of the 5 f -series, actinium (Ac),
is a potential therapeutic agent for cancer and infectious diseases [1,2]. Additionally,
rare-earth superhydrides have recently been discovered to have near room temperature
Tc for superconductors above megabar pressures (1 Mbar = 100 GPa) [3–5]. As such,
understanding and predicting the material behavior of lanthanides is crucial. This can be
done using equation of state (EOS) information; however, both 4 f -electron lanthanides
and 5 f -electron actinides present a unique challenge in performing first-principles based
ab initio calculations due to their complex electronic and lattice structures. Therefore,
experimental EOS measurements are indispensable in providing benchmark data to tightly
constrain the ab initio calculations. Research efforts on Ac, as well as some lanthanides,
have been hampered by the lack of supply and the high costs of current production
methods, especially for Ac, and the radioactivity of promethium (Pm). In fact, Pm is the
only radioactive element among the lanthanides, and the second radioactive element after
technetium (Tc) that has stable neighboring elements. Thus, the EOS data on both Pm and
Ac are scarce and virtually non-existent. Lutetium (Lu), in contrast, has been the subject
of intense studies, mainly because it is the last element in the lanthanide series and has a
completely filled 4 f shell. However, even with the availability of several EOS studies [6],
there is only one published study of the shock compression of Lu, by Al’tshuler et al. [7].
Similarly, there is only one published study of the shock compression of both terbium (Tb)
and thulium (Tm), by Carter et al. [8].

The shock Hugoniot, both the principal and second-shock one, is a continuous curve
which describes the locus of all possible thermodynamic states a substance can exist
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in behind a shock propagating through it. It is usually given as a projection onto a two-
dimensional plane and is described in terms of two coordinates which can be chosen among
particle velocity behind the shock front (Up), shock velocity (Us), pressure, internal energy
(E), temperature (T), density (ρ), and degree of compression (η) called “compression” for
simplicity. Up to P of a few hundred GPa, the Hugoniot is known from experiments, and
in the vast majority of cases is described by a linear relation Us = C + B Up, between
the two main variables, Us and Up, in terms of which all other relevant quantities can be
expressed via the Rankine–Hugoniot (RH) relations (which represent the conservation of
mass, momentum, and energy, respectively):

η ≡ ρ

ρ0
=

Us

Us −Up
, P = P0 + ρ0 Us Up, E− E0 =

1
2
(P + P0)

(
1
ρ0
− 1

ρ

)
, (1)

where the subscript 0 indicates the initial (unshocked) state. For the principal Hugoniot,
P0 = 0.

Over decades of research, shock Hugoniot measurements have been one of the most
important sources of EOS data. The use of planar shock waves to determine the EOS
of condensed materials to very high pressure (P) began in 1955 with the classic papers
of Walsh and Christian (1955) [9] and Bancroft et al. (1956) [10]. Walsh and Christian
described the use of in-contact explosives to determine dynamic pressure-volume relations
for metals and compared these to the then available static compression data. Bancroft et
al. described the first polymorphic phase change discovered in a solid via shock waves,
namely, iron. Two years later, Al’tshuler et al. (1958) [11] reported the first data for iron to
P of several Mbar, essentially in excess of P in the center of the Earth. Since that time, the
EOSs of virtually hundreds or even thousands of condensed materials have been studied,
including elements, compounds, alloys, rocks and minerals, polymers, fluids, and porous
media. These studies have employed both conventional and nuclear explosive sources, as
well as impactors launched with a range of guns to speeds of order of 10 km/s. Recently,
with the establishment of the NIF Gigabar platform at the Lawrence Livermore National
Laboratory [12], pressures of order of 1 Gbar (105 GPa, or 100 TPa), deep into the atomic
pressure regime, have been routinely achieved in their experiments [13] (in this regime,
P exceeds Pa,, the so-called atomic pressure required to significantly distort core electron
orbitals and estimated as Pa = EH/r3

Bohr = 294 Mbar, where EH is the Hartree energy and
rBohr is the Bohr radius).

The lanthanides series includes lanthanum (La) and the 14 following elements in
which the 4 f -electron shell gets progressively filled. This shell is half-filled for europium
(Eu) and fully filled for ytterbium (Yb), which is responsible for both of them being divalent,
in contrast to the remaining lanthanides, which are all trivalent, similar to their transition
metal counterparts, scandium (Sc) and yttrium (Y). Because the 4 f -electrons are localized
deep in the lanthanide atoms (specifically, in their Xe-cores), they do not participate in
metallic bonding [14], which is dominated by the 5p, 5d, and 6s valence electrons. The
typical electron structure of a lanthanide atom is [Xe] 4f n 5d0 6s2 or [Xe] 4f n−1 5d1 6s2.

The dominance of the spd-valence electrons in the bonding is responsible for the
lanthanides’ phase diagrams to vary slowly across the series so that their relations to one
another is clearly seen [15]. The well established fact about the lanthanides is that, with
increasing P, virtually all of them undergo the same sequence of phase transformations
from one hexagonal polytype to the next; it is characterized by the varying hexagonal
layer stacking of the corresponding crystal structure: hexagonal close-packed (hcp, AB)→
α-Sm (9R, ABCBCACAB)→ double-hcp (dhcp, ABAC)→ face-centered cubic (fcc, ABC)→
distorted fcc (dfcc)→ . . . Evans et al. [16] showed that the dfcc phase of praseodymium (Pr)
is hR24, another hexagonal polytype with 24 atoms per unit cell, i.e., with a stacking of 24
ABC-layers. hR24, along with two alternative crystal structures, namely, orthorhombic oI16,
and oS8, were identified as dfcc for other lanthanides. Recently, a possible extension of the
above phase transition sequence to include post-dfcc phases was suggested in Ref. [17].
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The actinides form a similar series, from Ac to lawrencium (Lr), in which the 5 f -
electron shell gets progressively filled. In this respect, a comparison of the phase diagrams
of the two series is useful and informative, but in contrast to the lanthanides, the structural
systematics for the actinides, in terms of a sequence of phase transformations on increasing
P, is much less obvious for the light actinides, but becomes more obvious for the heavier
actinies, starting with americium (Am) [18]: dhcp→ fcc→ α-U→ . . . Note that, again, in
contrast to the lanthanides, α-U is not one of the hexagonal polytypes.

The principal Hugoniots of lanthanides have been experimentally investigated in
several studies, e.g., refs. [7,19], but only a few substances at a time. The systematic
study of the Hugoniots for the lanthanide series as a whole was carried out in Refs. [8,20].
Specifically, 13 lanthanides out of 15 were studied in [8] (in addition to Sc and Y), and 9
in [20] (in addition to Sc, Y, and hafnium (Hf)). Both sets of data are generally consistent
with each other: the numerical values of the parameters of the least-square linear fits to the
corresponding Us-Up data agree to within ∼15%. Here, Up and Us are particle and shock
velocities, respectively. The unique feature of both sets of data is that for each substance,
except cerium (Ce), the adequate description of the data in the whole Up region of up to
∼3.6 km/s requires a two-segment fit; that is, the lower and upper portions of the data
sets are described by two distinct linear segments such that the combined two-segment
graph is continuous, but not smooth, as the slope of the second segment (∼1.2–1.6) is
∼1.5 times higher than that of the first one (∼0.8–1.0). In each case, the change of slope
happens at a compression of ∼1.6; the corresponding transition P increases from ∼20 GPa
for the light lanthande members to ∼40 GPa for the heavy ones [8]. Eu and Yb are two
exceptions, for which the transition P is ∼10 GPa. Additionally, the Eu data show the
existence of a two-wave structure in the shock front, indicating a significant volume change
at the transition, whereas in most of other cases, the data indicate that the volume change
associated with this transition is either zero or very small [8]. Such Us-Up behavior is typical
of a solid–solid phase transformation or melting. In any event, the Us-Up slope being ∼50%
higher indicates that the compressibility of the emerging phase is changing more rapidly
(the value of the P-derivative of the bulk modulus is higher). Direct evidence of phase
transitions and melting along the principle Hugoniot in several lanthanide members using
in-situ laser shock diffraction at the Dynamic Compression Sector was recently presented
in [21].

In this work, we derive the analytic forms of the principal Hugoniots of Ac and Pm,
which have both never been measured or calculated before, as well as those of Tb, Tm, and
Lu, the three least studied of the remaining lanthanides. Indeed, the existing Hugoniot data
on each of these three substances can only be found in a single literature source, namely,
Ref. [8] for both Tb and Tm and Ref. [7] for Lu.

2. Principal Hugoniot in a Wide Pressure Range

We will construct the analytic models of the principal Hugoniots of the five substances,
namely, Pm, Tb, Tm, Lu, and Ac, using the analytic framework established in our previous
publication [22]. In this framework, a wide P range is divided into three regimes and
the Hugoniot is constructed in each of these regimes and then interpolated smoothly
between them. These regimes are: (i) the low-P regime in which the Hugoniot is described
by Us = C + B Up, where the values of C and B come from the experiment; (ii) the
intermediate-P regime (discussed in more detail below) where the Hugoniot is described by
the Thomas–Fermi–Kalitkin (TFK) model [23,24] Us = c + b Up + a U2

p, with the values of
c, b, and a determined virtually for all Zs (Z being the atomic number) [23–25]; and (iii) the
high-P regime in which the Hugoniot is described by the Debye-Hückel-Johnson (DHJ)
model [26–28]. The only assumption made was that the principal Hugoniot is goverened by
some function Us = Us(Up) (which is linear at low P and quadratic at intermediate P; its
high-P form was established in [22]) and that this function is continuous and smooth (the
first derivative dUs/dUp is continuous) at all Up. Then, it follows from the RH relations [22]
that η, P, and E are all continuous and smooth as well. No other assumption, and no
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additional free parameter except the six mentioned above, C, B, c, b, a, and Z,, are required
for the construction of the analytic model of the principal Hugoniot. In order to match the
next regime, the linear form of the low-P regime is modified into Us = C + B Up + A U2

p,
where A is an additional 7th parameter which introduces a very small non-linearity and is
obtained using the formula A = a − (B − b)2/(4 (c − C)) [22]. Since a = O(10−5 s/km)
and c − C = O(1 km/s) (see, e.g., Table 1 below), the value of A depends on B − b.
Typically, this difference is of the order of 0.1; hence, A ∼ 10−2 s/km. However, if this
difference is small, so is A, but U∗p in Equation (1), which determines the low-P–med-P
transition point, is large, thus pushing the upper boundary of the low-P regime closer to
the turnaround point. This is, e.g., the case of thulium considered in what follows for which
U∗p ≈ 160.5 km/s is ∼ 2/3 of Umax

p ≈ 233.4 km/s at the turnaround point (see Table 1);
typically, U∗p ∼ 0.1 Umax

p .

Table 1. Numerical values of the parameters for the analytic model of the principal Hugoniot for Pm,
Tb, Tm, Lu, and Ac.

Z ρ0 C B A × 102 c b a × 105 L d f × 103 U∗
p Umax

p U∗∗
p

Pm 61 7.25 1.68 1.34 −0.401859 3.48843 1.16798 7.20958 116803 16.8604 −12.0145 21.0258 219.968 1532.46
Tb 65 8.23 1.72 1.29 −0.198052 3.53354 1.16804 6.99278 126383 36.9251 −17.0929 29.7399 224.792 1574.89
Tm 69 9.32 1.90 1.19 −6.83647×10−5 3.63814 1.16834 6.67959 136038 20.3201 −12.2217 160.493 233.381 1649.44
Lu 71 9.84 0.98 1.65 −2.15897 3.65839 1.16833 6.56206 140890 19.4395 −11.7463 11.1213 236.116 1679.54
Ac 89 10.05 1.535 1.225 −0.109446 2.49698 1.15830 6.17184 185075 6.05256 −5.71868 28.8450 201.141 1913.82

The names of the three P regimes of the principal Hugoniot may sound confusing
and may not correspond to those adapted in high-pressure research in general and phase
diagram and EOS studies in particular. Specifically, it is generally adopted that high-P
corresponds to pressures in excess of ∼100 GPa. In our case, the low-P–med-P transition
point corresponds to shock velocities of ∼10 km/s (see, e.g., Table 1); with ambient density
of∼1–10 g/cm3, corresponding to a pressure of∼100–1000 GPa. Thus, our med-P regime is
analogous to the more familiar high-P range of EOS studies. Our med-P–high-P transition
point corresponds to P ∼1–10 Gbar (105–106 GPa).

3. Methods
3.1. New Analytic Model for Principal Hugoniot

Here is a brief summary of the new analytic model, as per Ref. [22]. The new model is
based on the following representation of the shock velocity Us as a function of the particle
velocity Up over the three Up intervals, which is continuous and smooth from one interval
to the next:

Us = C + B Up + A U2
p, 0 ≤ Up ≤ U∗p = 2 (c−C)

B− b
Us = c + b Up + a U2

p, U∗p ≤ Up ≤ U∗∗p = n U∗p
Us = − d

| f | +
4
3 Up +

d Up
1+ | f |Up

, Up ≥ U∗∗p

(2)

where | f | stands for the absolute value of f .
The corresponding expressions for P along the principal Hugoniot are:

P = 4 ρ0 C2 η (η−1)
{η− B (η−1) +

√
[η− B (η−1)]2 − 4 A C (η−1)2}2

, 0 ≤ Up ≤ U∗p

P = 4 ρ0 c2 η (η−1)
{η− b (η−1) +

√
[η− b (η−1)]2 − 4 a c (η−1)2}2

, U∗p ≤ Up ≤ Umax
p =

√
c
a

P = 4 ρ0 c2 η (η−1)
{η− b (η−1)−

√
[η− b (η−1)]2 − 4 a c (η−1)2}2

, Umax
p ≤ Up ≤ U∗∗p

P = ρ0
4 | f |2

η
η−1

(√
12 d η−1

η−4 + 1 ∓ 1
)2

, Up ≥ U∗∗p

(3)
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which define pressure along the Hugoniot as a continuous and smooth function of compres-
sion ratio η ≡ ρ/ρ0, where ρ is density and the subscript 0 indicates the initial (unshocked)
state. In the last equation of (3), the “−” sign corresponds to f > 0 and the “+” sign to
f < 0. Whereas d is always positive, it appears that f is positive for about 2/3 of the
periodic table and negative for the remaining 1/3. In particular, f is negative for the entire
lanthanide series, as well as for the early actinides, including Ac. Therefore, in our study,
we use this equation with the “+” sign. The numerical values of d and f are defined by the
formulas [22]:

f =
a [(4− 3 b)

√
c
a n− 3 c (1+n2)]

3 a [L+ c
√

c
a n (1+n2)]− c (4− 3 b) n2 ,

d = L
{

a [(4− 3 b)
√

c
a n− 3 c (1+n2)]

3 a [L+ c
√

c
a n (1+n2)]− c (4− 3 b) n2

}2
,

(4)

with n = U∗∗p /Umax
p , U∗∗p being the (only positive) solution of Equation (5) below. The

functions of Z, d, and f are shown, respectively, in Figures 1 and 2, and are are not presented
in [22].

0 20 40 60 80

0.1

1

10

100

1000

Z

d

Figure 1. The value of d in the last lines of Equations (2) and (3) as a function of Z.
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Figure 2. The value of f in the last lines of Equations (2) and (3) as a function of Z.
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In Equations (2) and (3), 0 ≤ Up ≤ U∗p corresponds to the low-P regime, and
U∗p ≤ Up ≤ U∗∗p and Up ≥ U∗∗p to the med-P and high-P regimes, respectively. The
value of U∗∗p is found from Equation [22]:

[
c +

(
b − 4

3

)
U∗∗p + a U∗∗2p

]2
= L

(
b − 4

3
+ 2 a U∗∗p

)
, (5)

where [22]:

L =
875 Z2.4

A
≈ 875 Z2.4

2 Z + 0.006 Z2

(
km

s

)2
, (6)

where A is the atomic mass.

3.2. The Choice of the Five Sets of the Hugoniot Parameters

Whereas the parameters c, b, and a for the med-P regime are available for all substances,
and, therefore, d and f for the high-P regime can be calculated for all substances from
Equation (4) with n = U∗∗p /Umax

p , where Umax
p =

√
c/a and U∗∗p satisfies Equation (5),

the parameters C and B for the low-P regime must be specified (and then A = a −
(B − b)2/(4(c − C)) [22]). Here, we use the original version of the analytic Hugoniot
model [22], which describes the entire low-P regime in terms of a single (C, B, A) parameter
set, regardless of whether the actual low-P portion of the Hugoniot is multi-segment (two
or more linear segments forming a continuous broken line, just as for the lanthanides), or
multi-linear (two or more quasi-parallel segments, which is the case of, e.g., zirconium [29]),
or a combination of both. In our case of the four lanthanides, it is logical to describe the
low-P regime in terms of the corresponding parameters of the upper segment of the two-
segment portion in order to match the upper segment directly with the med-P regime.
These values come from [8] for Tb and Tm, and from [7] for Lu. Since no (C, B) data exist on
Pm, we obtain both values from smooth interpolation of the corresponding values for other
members across the entire lanthanide series based on the results of [8,20]. For Ac, for which
no (C, B) data exist either, assuming that it is a single-phase material (in fact, Ac is fcc, and
there is no evidence for a phase transition to any other solid phase [18]), two parameters
can be calculated as [26,27] C =

√
Bs(ρ0)/ρ0 and B = (B′s(ρ0) + 1)/4, with bulk modulus

Bs(ρ0) and its P-derivative B′s(ρ0) coming from the corresponding EOS. The best fit to
the ab initio data on the EOS of Ac of Ref. [30] of the third-order Birch–Murnaghan form
results in Bs(ρ0) = 23.7± 3.7 GPa and B′s(ρ0) = 3.9± 0.3; therefore, with ρ0 = 10.05 g/cm3,
C =

√
23.7/10.05 = 1.535 km/s, and B = (3.9 + 1)/4 = 1.225. Table 1 contains all the five

complete sets of the Hugoniot parameters.

4. Results

The five principal Hugoniots of the substances discussed in this work are shown in
Figures 3–7, in which the five Hugoniots are compared to both independent theoretical
calculations and the available experimental data.

In addition to the available experimental data (for Tb, Tm, and Lu), for the purpose of
comparison to the new analytic model, we have carried out theoretical Hugoniot calcula-
tions using: (i) the relativistic Green’s function quantum average atom code Tartarus [31,32]
for Pm and Lu; and (ii) the Thomas–Fermi model with corrections [33] for Tb, Tm, and Ac,
for which Lambert’s orbital-free molecular dynamics (OFMD) code used, e.g., in a study
on the transport properties of lithium hydride [34], was modified appropriately. These
simulations are similar to those of Ref. [35] for platinum. The (V, P) points that map out
the Hugoniot (presented in the η-P coordinates upon conversion of the (V, P) points into
the (η, P) ones) are found from the RH relation for internal energy: E− E0 = P (V0 −V)/2.
We also used three Hugoniots from the TEFIS database [36,37] for Tb, Tm, and Ac for the
comparison to the new model, as well as to the Thomas–Fermi model with corrections.
We note that, although Lu is an example of the application of Tartarus to a real material
considered in detail in Ref. [32], the Lu Hugoniot shown in Figure 4 is not presented in [32].
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Figure 3. The principal Hugoniot of Pm: new analytic model vs. theoretical calculations using the
relativistic Green’s function quantum average atom code Tartarus [31,32].
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Figure 4. The principal Hugoniot of Tb: our new analytic model vs. the experimental data of Ref. [8]
(Carter et al.), the Tb Hugoniot from TEFIS database (TEFIS), and our theoretical calculations using
the Thomas–Fermi model with corrections (Thomas–Fermi Corr.).
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Figure 5. The principal Hugoniot of Tm: our new analytic model vs. the experimental data of Ref. [8]
(Carter et al.), the Tm Hugoniot from TEFIS database (TEFIS), and our theoretical calculations using
the Thomas–Fermi model with corrections (Thomas–Fermi Corr.).
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Figure 7. The principal Hugoniot of Ac: our new analytic model vs. the Ac Hugoniot from TEFIS
database (TEFIS) and our theoretical calculations using the Thomas–Fermi model with corrections
(Thomas–Fermi Corr.).

Similar to P = P(η), E along the Hugoniot can be calculated using the corresponding
RH relation (1) for E,

E = E0 +
P

2 ρ0

(
1 − 1

η

)
, (7)

and Equations (3) for P = P(η) in the corresponding Up intervals. Figure 8 shows E = E(η)
for Ac (we assumed E0 = 0, for simplicity).
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Figure 8. Internal energy along the principal Hugoniot for Ac: the new analytic model (curve) vs.
our own theoretical calculations using the Thomas–Fermi model with corrections (symbols).
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It is clearly seen that the forms of P = P(η) and E = E(η) are very similar to each
other. The form of T = T(η) is also expected to be similar to both P = P(η) and E = E(η).
However, the accurate calculation of T = T(η) requires the knowledge of the specific
heat along the Hugoniot; hence, this calculation goes well beyond the scope of this work.
We can, however, estimate the value of T, based on that of E, and compare it to the
corresponding value from the TEFIS tables. For an ideal gas (which the system well above
the turnaround point represents), E ≈ 3/2 kBT, at the upper limit of E = E(η) kBT ≈ 2/3 E.
The uppermost TEFIS point in Figure 7 corresponds to η ≈ 5.04. At this η, the TEFIS table
of T = T(η) gives T = 104 eV (a table of E = E(η) does not exist), and our value of E is
E(η = 5.04) ≈ 3.8× 104 eV/mol; therefore, the above relation gives T ≈ 2.5× 104 eV. Thus,
our value of T is about 2.5 times larger than TEFIS’ one, which directly corresponds with
the fact that our P is larger than TEFIS’ one by roughly the same amount, as can be clearly
seen in Figure 7.

5. Discussion

As Figures 3–7 clearly demonstrate, in each of the five cases, the agreement between
the new analytic model and independent data is very good except for the three Hugoniots
from the TEFIS database. As a matter of fact, the three TEFIS Hugoniots appear to violate
Johnson’s constraint 4 < ηmax < 7, which is based on rigorous theoretical grounds. (We
have determined that this is the case for the vast majority of TEFIS Hugoniots for other
substances.)

It is worthwhile to dwell on Johnson’s constraint in some more detail. In Ref. [38],
Johnson derives the formula for the maximum compression on the princial Hugoniot:

ηmax =
4 (1 + 7 C)

1 + 4 C , (8)

where C ∼= 0.011 A Z4.2/[ρ0 (1 + Z)4]. As can be clearly seen in Figure 4 of [22], this ηmax
and the one given by the new analytic model are in very good agreement with each other,
which lends further support to both formulations. Johnson’s constraint now follows directly
from (8):

ηmax =
4 + 28 C
1 + 4 C <

7 + 28 C
1 + 4 C = 7, (9)

and:
ηmax =

4 + 28 C
1 + 4 C >

4 + 16 C
1 + 4 C = 4. (10)

We believe, the reason for this behavior of TEFIS Hugoniots is the way these Hugoniots
are constructed; specifically, the scheme used in Refs. [39,40] for the interpolation between
the portion of the Hugoniot below and across the turnaround point described by the TFK
model, and that above the turnaround point, which incorporates electron shell effects, such
shell effects are clearly seen in Figures 4, 5, and 7 for Tb, Tm, and Ac, respectively. In other
words, the violation of Johnson’s theoretical constraint by the TEFIS Hugoniots may be the
artifact of the interpolation scheme used for their construction. Otherwise, for P below and
above the turnaround point, 1 < η

<∼ 4 and ∼ 4.5 < η
<∼ 6, agreement between the TEFIS

Hugoniots and both the new analytic model and the Thomas–Fermi model with corrections
is generally good.

Let us note that in a more realistic case of a shock compression of a substance beyond
the corresponding turnaround point, the Hugoniot must be modeled by taking into account
the well-known effects of the contribution of both the equilibrium radiation of hot plasma
and relativistic effects [41–44]. Indeed, at a turnaround point, Up ∼ 200–250 km/s (see

Table 1), which constitutes <∼ 0.1% of the speed of light, and at the med-P–high-P transition
point, Up ∼= 1700± 200 km/s, about 0.5% of the speed of light. Hence, as the system enters
the high-P regime, relativistic effects are expected to start manifesting themselves and
eventually to dominate the evolution of the system at even higher Up. Our model can, in
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principle, be modified to incorporate these effects. For instance, taking into account the
radiation-dominated (or the so-called strong shock) regime can be done by replacing equa-
tions for Us(Up) and P(η) describing the high-P regime with their counterparts stemming
from the physics of a photon gas. This goes beyond the scope of the present work, but will
be undertaken in one of our subsequent studies.

The new model discussed in this work does not incorporate potential electronic
shell effects in the high-P regime. If present, they manifest themselves in terms of some
“irregularities”, that is, changes of the sign of dP/dη of the continuous line P = P(η) over
some (small) regions of P; such “irregularities” are seen, e.g., in the Tartarus Hugoniots of
both Pm and Lu around 105–106.5 GPa in Figures 3 and 6, respectively, since Tartarus takes
electronic shell effects into account explicitly. Similar irregularities are present in the TEFIS
Hugoniots, but the corresponding changes of the sign of dP/dη are very abrupt. This is
because these Hugoniots are constructed the way that causes the violation of Johnson’s
theoretical constraint, as discussed above. In contrast to Tartarus, the orbital-free procedure
of the OFMD code treats all electrons on an equal footing, albeit approximately, with no
distinction between bound and ionized electrons. This is why any shell-ionization related
effects are absent in the corresponding Hugoniots, as seen in Figures 4, 5, and 7. Such
effects cannot be predicted by the new model, but, if firmly established, they can be added
to the model by considering additional region(s) of P described by the corresponding
Us = Us(Up) functional forms. We plan to undertake such an addition of electronic shell
effects to the new model in one of our subsequent studies on this subject.

6. Conclusions

Here is a brief summary of the findings of this work. We have presented the principal
Hugoniots of actinium and the lanthanide promethium, which have both never been
measured or calculated before, as well as those of terbium, thulium, and lutetium, the three
least studied of the remaining lanthanides. We used the analytic framework established in
our previous publication [22]. All five sets of the relevant parameters are summarized in
Table 1. The five principal Hugoniots are compared to the available experimental data (for
Tb and Tm only) and independent theoretical calculations in Figures 3–7. As can be clearly
seen in these figures, in each of the five cases, the agreement between the new analytic
model and independent data is very good except for the three Hugoniots from the TEFIS
database, which all violate Johnson’s theoretical constraint on the maximum compression.
Their behavior is analyzed in some detail in our paper. We anticipate that new experimental
measurements could shed more light on a potential systematics of the lanthanide Hugoniots
in terms of the values of the parameters C and B, the maximum compression ηmax, etc. We
expect our results to serve as the initial guidance for such experiments.

Our new analytic model of the principal Hugoniot [22] can be used for the validation of
the P-V-T EOS by comparing the Hugoniot produced by the EOS to that given by the model.
Additionally, the new model itself can be used as a basis for EOS construction. Indeed, if the
Grüneisen parameter along the Hugoniot is available, e.g., using the approach discussed in
this work, then it can be used in the Mie-Grüneisen-type EOS P− PH = γH ρ (E− EH) [45],
where the subscript “H” implies that the corresponding variable is in shock-compression
conditions. This EOS can then be brought in direct correspondence to the more familiar
Mie-Grüneisen (M-G) EOS, P− Pc = γ ρ (E− Ec), where the subscript “c” implies the cold
(T = 0) conditions, since there exists a direct algebraic connection between γH (of this
work) and γ of the M-G EOS [45].

The analytic model developed in our previous study [22] and applied to five substances
in this work can be used to calculate of the Hugoniots of other substances, specifically, other
lanthanides and/or actinides. In this respect, the analytic knowledge of the regimes of the
Hugoniot past the turnaround point is very important. In a very recent publication [46], a
team of astronomers report a detailed study of a pair of shock waves produced by a collision
of two clusters of galaxies that occurred roughly a billion years ago. The shocks that are
associated with cluster mergers are known as radio relics and they can be used to probe the
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properties of the intergalactic space within the cluster, known as the intracluster medium,
as well as intracluster dynamics. The study focused on a particular cluster called Abell 3667,
which at least 550 galaxies are associated with and which is still coming together. It was
concluded that the shock waves are propagating through it at velocities of ∼1500 km/s,
which are 5–6 times larger than the velocities corresponding to turnaround points [22],
Umax

s = 2c + b
√

c/a ≈ b
√

c/a ∼ 1.2 Umax
p ∼250–300 km/s (see Table 1). Moreover, at such

shock velocities, many elements, especially the low-Z ones, will be under the conditions
that are beyond the validity of Kalitkin’s parabolic representation (5), i.e., in the high-P
regime considered in this work. Hence, to predict the properties of the intracluster medium
and to describe intracluster dynamics, an analytic model of the principal Hugoniot in the
high-P regime is a must. Once the analytic formulas describing the high-P regime are
available (the last lines of both systems of Equations (2) and (3)), the basic mechanical
and thermodynamic properties of a material under intergalactic shock, such as the bulk
modulus, the Grüneisen parameter, energy, temperature, etc., along the principal Hugoniot
can be derived from the RH relations and Equation (16) using the new model and some
additional assumptions on the Grüneisen γ.
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