
Citation: Hao, K.; Yang, Y.; Li, Z.; Liu,

Y.; Zhao, X. CERRT: A Mobile Robot

Path Planning Algorithm Based on

RRT in Complex Environments. Appl.

Sci. 2023, 13, 9666. https://doi.org/

10.3390/app13179666

Academic Editor: Jonghoek Kim

Received: 4 August 2023

Revised: 25 August 2023

Accepted: 25 August 2023

Published: 26 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

CERRT: A Mobile Robot Path Planning Algorithm Based on
RRT in Complex Environments
Kun Hao, Yang Yang , Zhisheng Li * , Yonglei Liu and Xiaofang Zhao

School of Computer and Information Engineering, Tianjin Chengjian University, Tianjin 300384, China;
kunhao@tcu.edu.cn (K.H.); yhpl01@163.com (Y.Y.); sanxiong_1@163.com (Y.L.); zhaoxftju@tju.edu.cn (X.Z.)
* Correspondence: lzs@tcu.edu.cn

Abstract: In complex environments, path planning for mobile robots faces challenges such as insensi-
tivity to the environment, low efficiency, and poor path quality with the rapidly-exploring random
tree (RRT) algorithm. We propose a novel algorithm, the complex environments rapidly-exploring
random tree (CERRT), to address these issues. The CERRT algorithm builds upon the RRT approach
and incorporates two key components: a pre-allocated extension node method and a vertex death
mechanism. These enhancements aim to improve vertex utilization and overcome the problem of
becoming trapped in concave regions, a limitation of traditional algorithms. Additionally, the CERRT
algorithm integrates environment awareness at collision points, enabling rapid identification and
navigation through narrow passages using local simple sampling techniques. We also introduce the
bidirectional shrinking optimization strategy (BSOS) based on the pruning optimization strategy
(POS) to further enhance the quality of path solutions. Extensive simulations demonstrate that the
CERRT algorithm outperforms the RRT and RRV algorithms in various complex environments, such
as mazes and narrow passages. It exhibits shorter running times and generates higher-quality paths,
making it a promising approach for mobile robot path planning in challenging environments.

Keywords: path planning; RRT; path optimization; complex environments

1. Introduction

Path planning is a crucial research field in the robotics industry. Its purpose is to find
a safe, collision-free path for a mobile robot to traverse from its starting position to its
destination in a specified area that contains obstacles [1]. It has widespread applications
in complex environments such as urban roads, factory production lines, and outdoor
exploration. Currently, path planning mainly uses algorithms based on search, heuristics,
and sampling. Among them, sampling-based path planning algorithms have become a
research hotspot due to their wide applicability, ease of implementation, and lack of need
to construct complex structures [2].

In the class of sampling-based algorithms, the rapidly-exploring random tree (RRT)
algorithm, which is widely used, can avoid complex space constructions by implementing a
collision check module, making it suitable for solving high-dimensional or multi-constraint
planning problems [3]. However, the efficiency of the RRT algorithm is typically affected
when it faces complex environments such as multiple obstacles, mazes, narrow passages,
and concave traps. In recent years many researchers have proposed improved RRT al-
gorithms to address these issues. For instance, Kuffner et al. propose a straightforward
and efficient bidirectional random tree algorithm, denoted as RRT-Connect [4], alternately
expands two trees to improve the algorithm’s efficiency. However, its performance still
suffers in complex environments. Tahirovic et al. introduced a rapid exploration algo-
rithm named Rapid Random Vine (RRV) [5] for efficient exploration. It determines the
local environment type using principal component analysis (PCA), a dimensionality re-
duction technique that captures the most significant variations in the data. By analyzing

Appl. Sci. 2023, 13, 9666. https://doi.org/10.3390/app13179666 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13179666
https://doi.org/10.3390/app13179666
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0001-3602-7761
https://orcid.org/0000-0003-0178-6917
https://doi.org/10.3390/app13179666
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13179666?type=check_update&version=2

Appl. Sci. 2023, 13, 9666 2 of 20

the relationships among environmental features, RRV selects an appropriate direction in
which to expand, thereby solving the narrow passage problem well. However, its perfor-
mance is poor in complex environments without passages. Hsu et al. [6] augmented the
Rapidly-Exploring Random Tree (RRT) algorithm with a bridge-testing technique, which
increased the sampling probability in narrow passages and decreased the sampling prob-
ability in non-interest regions, thereby addressing narrow passage issues. However, the
unevenness of the sampling probability may cause the algorithm to ignore some feasible
paths. Wu et al. proposed the Fast-RRT [7] algorithm, which detects narrow passages by
re-randomizing the expansion direction at collision points, but the algorithm’s stability is
poor. Cai et al. combined RRV with bridge testing [8], enabling efficient identification and
expansion in complex environments without the need for additional collision detection,
greatly reducing computational intensity, but the algorithm can generate a large number of
useless vertices in open areas. Building upon RRV and RRT-Connect, Li et al. proposed
an adaptive random tree algorithm called ARRT-Connect [9], which effectively improves
the algorithm’s performance, but the algorithm may fall into concave traps. Chi et al. [10]
introduce a heuristic path-planning algorithm based on the Generalized Voronoi Diagram
(GVD), which significantly improves the algorithm’s performance in maze environments
but requires preprocessing of the map and does not consider the narrow passage problem.
Taheri et al. proposed a Fuzzy Greedy Rapidly Exploring Random Tree (FG-RRT) [11]
algorithm, which significantly reduces computation time in maze, narrow passage, and
convex obstacle environments, but the algorithm requires the setting of nine fuzzy rules,
and the parameter settings are complex.

To address the problem of low-quality generated paths, the RRT* algorithm was intro-
duced by Karaman et al. [12], which introduced the ChooseParent and Rewire processes
when adding new nodes to the tree, making the algorithm asymptotically optimal. As
the number of iterations tends to infinity, the probability of finding the optimal solution
approaches 100%. RRT* is a milestone in the development of RRT. To improve the conver-
gence speed of the RRT* algorithm, numerous scholars have conducted extensive research,
mainly optimizing the sampling, ChooseParent, and Rewire processes of RRT*. Islam et al.
put forth an intelligent sampling tree named RRT*-Smart [13] to expedite the convergence
rate of the algorithm, but the quality of the generated path depends largely on the initial
solution. Inspired by node exclusion, Gammell et al. [14] employ a direct sampling method
within the hyperellipsoid to enhance algorithm performance, but the algorithm is no longer
applicable when the ellipsoid is larger than the planning domain. P-RRT* [15] combines
APF and RRT* to provide feasible directions for sampling exploration, which speeds up the
convergence speed. Jeong et al. improved the ChooseParent and Rewire procedures using
the triangle inequality to propose the Quick-RRT* [16], which generates better initial paths
and faster convergence. Inspired by Quick-RRT*, F-RRT* [17] creates a parent node near the
obstacle for each sampled point, obtaining better initial solutions and faster convergence
speed than Quick-RRT* and RRT* under the same conditions. Although algorithms based
on the RRT* framework can find the optimal or approximate optimal solution, they all
require a large number of samples to gradually search for the optimal path. Therefore,
when the important parameter for an algorithm is its running speed, optimizing the path
directly generated by RRT is necessary. To optimize the initial path generated by RRT,
Qian et al. [18] proposed a method to optimize the initial path generated by RRT by merging
trees based on the initial path to form a closed-loop path and then performing optimization
to obtain the relatively optimal path. Chen et al. [19] introduced a bidirectional pruning
optimization strategy that prunes redundant nodes from both the starting and ending
points of the path and selects the shortest optimized path, effectively improving the quality
of the path.

In conclusion, extensive research has been conducted on path planning utilizing the
RRT algorithm in complex environments. However, no algorithm currently exists that
effectively and simply addresses the dual issues of subpar performance in complex environ-
ments and inferior path quality. To remedy this, the present paper proposes the complex

Appl. Sci. 2023, 13, 9666 3 of 20

environments rapidly-exploring random tree (CERRT) path planning algorithm inspired
by RRV, which greatly improves the efficiency of the algorithm in complex environments
and optimizes the generated initial feasible paths.

The main contributions of this paper are as follows:

(1) We have designed a new process for environmental perception. This process deter-
mines the type of environment by sampling the local area, eliminating the need for
principal component analysis and significantly reducing computational complexity.

(2) We propose a pre-allocated vertex expansion method in conjunction with a vertex
death mechanism. This approach foregoes the expansion of inactive tree vertices to
prevent the algorithm from getting stuck in concave areas. When combined with the
environment-aware capability, the algorithm deftly navigates complex environments
such as mazes, narrow passages, and concave regions.

(3) We also suggest a bidirectional contraction optimization strategy. Once a feasible path
is identified, its points are contracted in both directions, yielding a more streamlined
and efficient path.

The rest of this paper is structured as follows: Section 2 outlines the mathematical
definition of the planning problem along with a brief introduction to the core principles of
RRT, RRV and Fast-RRT. Section 3 offers an in-depth description of our proposed CERRT
algorithm framework. Section 4 presents simulation experiments that compare the new
algorithm against RRT and RRV. Finally, Section 5 concludes the paper.

2. Background

In this section, we first introduce the mathematical definition of the path planning
problem and then briefly describe the RRT and RRV algorithms.

2.1. Problem Definition

Let X be the configuration space, Xobs be the obstacle region, and Xfree = X/Xobs be
the feasible region. (X, Xstart, Xgoal) defines a path planning problem, where xstart ∈ Xfree is
the initial state and Xgoal ⊂ Xfree is the goal area. Let a continuous function σ:[0, n]→ X of
bounded variation be a path, where n is the path point number. If ∀τ ∈ [0, n], σ(τ) ∈ Xfree,
then σ is a feasible path, defined as σf ree.

Definition 1. Feasible Path Solution.
For the (X, Xstart, Xgoal) problem, if ∃σ ∈ σf ree, where σ(0) = Xstart and σ(n) ∈ Xgoal, then

the path is called a feasible path solution σ∗; otherwise, report a path planning failure.

Definition 2. Approximate Optimal Path Solution.
For the (X, Xstart, Xgoal) problem, if ∃σ∗ satisfies C(σ∗) ≤ min

{
C(σ) : σ ∈ σf ree

}
∗ 1.05,

then output path σ∗ is the approximate optimal path solution; otherwise, report a failure.

2.2. RRT

RRT explores the configuration space by maintaining a tree T. The algorithm sets the
root node of the tree as xstart and performs an iterative expansion. In each iteration, the
sampler randomly selects a sample xrand from the configuration space, finds the vertex
xnearest in T closest to xrand, and extends a step size dstepsize from xnearest toward xrand to obtain
the node xnew for expansion. If the local path from xnearest to xnew is collision-free, then xnew
is added to the tree. The algorithm terminates either when a feasible path is obtained or
when the maximum number of iterations ‘N’ is exceeded.

However, the randomness of the sampler often results in a low sampling probability in
narrow passages, leading to fewer sampling points in such areas. Consequently, it becomes
challenging for the expansion tree to detect these narrow passages. This limitation hampers
the effectiveness of the RRT algorithm in complex environments.

Appl. Sci. 2023, 13, 9666 4 of 20

2.3. RRV

RRV is an algorithm developed to overcome the narrow passage problem found in
the RRT algorithm. It uses principal component analysis to identify the local environment
type, as it can effectively map high-dimensional data to a lower-dimensional space while
maximizing information retention, which facilitates the extraction of data features. Specifi-
cally, this process involves mapping sampled points within obstacles into a single feature
vector that maximally retains information from the obstacle points. Subsequently, the xrand
point is projected onto the feature vector passing through xnearest. The resulting projected
point, xprojected, serves as a novel direction for the expansion of RRV. This strategic extension
enables the random tree to circumvent obstacles, similar to the growth of a vine, along the
obstacle boundaries.

As illustrated in Figure 1, the RRV algorithm generates local random sampling points
(shown in red and green) and performs principal component analysis on the red obstacle
points. The confidence ellipse is then used to determine the type of environment. If the
ellipse does not contain a green point, it is classified as a convex obstacle environment
(Figure 1a). If it contains a green point but not xnearest, it is identified as a passage entrance
environment (Figure 1b). If it contains both a green point and xnearest, it is a passage interior
environment (Figure 1c).

Appl. Sci. 2023, 13, 9666 4 of 21

added to the tree. The algorithm terminates either when a feasible path is obtained or
when the maximum number of iterations ‘N’ is exceeded.

However, the randomness of the sampler often results in a low sampling probability
in narrow passages, leading to fewer sampling points in such areas. Consequently, it
becomes challenging for the expansion tree to detect these narrow passages. This
limitation hampers the effectiveness of the RRT algorithm in complex environments.

2.3. RRV
RRV is an algorithm developed to overcome the narrow passage problem found in

the RRT algorithm. It uses principal component analysis to identify the local environment
type, as it can effectively map high-dimensional data to a lower-dimensional space while
maximizing information retention, which facilitates the extraction of data features.
Specifically, this process involves mapping sampled points within obstacles into a single
feature vector that maximally retains information from the obstacle points. Subsequently,
the xrand point is projected onto the feature vector passing through xnearest. The resulting
projected point, xprojected, serves as a novel direction for the expansion of RRV. This strategic
extension enables the random tree to circumvent obstacles, similar to the growth of a vine,
along the obstacle boundaries.

As illustrated in Figure 1, the RRV algorithm generates local random sampling points
(shown in red and green) and performs principal component analysis on the red obstacle
points. The confidence ellipse is then used to determine the type of environment. If the
ellipse does not contain a green point, it is classified as a convex obstacle environment
(Figure 1a). If it contains a green point but not xnearest, it is identified as a passage entrance
environment (Figure 1b). If it contains both a green point and xnearest, it is a passage interior
environment (Figure 1c).

Then, the xrand point is projected onto a principal component analysis feature vector
passing through xnearest to obtain xprojected, and the tree is expanded toward this point to avoid
growing toward obstacles. If the environment is identified as a convex obstacle or a
passage interior, the tree is expanded along the obstacle (as shown in Figure 1d,f). If it is
identified as a narrow passage entrance, as shown in Figure 1e, the tree is further
expanded along the obstacle to xnew1 and toward the interior of the passage to xnew2. This
enables RRV to discover narrow passages more effectively than the classic RRT algorithm,
and once a narrow passage is discovered, the expansion tree can grow quickly.

However, when applied to environments without narrow passages, the performance
of RRV falls short compared to the original RRT algorithm. This indicates a high degree
of environmental dependence in its performance.

Figure 1. Environment judgment and expansion in RRV. (a,d) represent convex obstacles, (b,e)
represent the entrance of the passage, and (c,f) represent the interior of the passage.

3. CERRT
The CERRT algorithm seeks to correct the insensitivity of traditional RRT algorithms

to the environment. It utilizes a novel node expansion strategy to improve expansion

Figure 1. Environment judgment and expansion in RRV. (a,d) represent convex obstacles, (b,e) repre-
sent the entrance of the passage, and (c,f) represent the interior of the passage.

Then, the xrand point is projected onto a principal component analysis feature vector
passing through xnearest to obtain xprojected, and the tree is expanded toward this point to
avoid growing toward obstacles. If the environment is identified as a convex obstacle or a
passage interior, the tree is expanded along the obstacle (as shown in Figure 1d,f). If it is
identified as a narrow passage entrance, as shown in Figure 1e, the tree is further expanded
along the obstacle to xnew1 and toward the interior of the passage to xnew2. This enables
RRV to discover narrow passages more effectively than the classic RRT algorithm, and once
a narrow passage is discovered, the expansion tree can grow quickly.

However, when applied to environments without narrow passages, the performance
of RRV falls short compared to the original RRT algorithm. This indicates a high degree of
environmental dependence in its performance.

3. CERRT

The CERRT algorithm seeks to correct the insensitivity of traditional RRT algorithms
to the environment. It utilizes a novel node expansion strategy to improve expansion
efficiency and incorporates new environmental awareness capabilities to address narrow
passage problems. Moreover, it introduces a path optimization strategy to enhance the
quality of the paths generated, making it a more efficient solution overall.

Appl. Sci. 2023, 13, 9666 5 of 20

3.1. Algorithm Framework

The CERRT algorithm is an optimization of the RRT algorithm. It uses an array V to
store expandable points in tree T and constantly deletes non-extensible points, known as
dead nodes.

The CERRT algorithm initially stores the starting point xstart point as the root node
in the tree and pre-allocates a corresponding set of expandable points, xstart.CAND for it
(Lines 1–3 in Algorithm 1). The sampler is adjusted to amplify the tree’s growth orientation
by systematically sampling points within the goal region with a certain probability. (Line 5
in Algorithm 1).

Following sampling, the algorithm selects the nearest point xnearest to the sampling
point from the array V and queries the closest vertex to the sampling point xrand from the
expansion point set xnearest.CAND of xnearest to obtain the new node xnew. Once found, the
point is removed from xnearest.CAND. If xnearest.CAND is empty after removal, and the vertex
xnearest is deemed dead and removed from the vertex array V (Lines 6–11 in Algorithm 1).

Should a collision happen during expansion, the algorithm enters the environment
perception phase to determine the type of environment where xnearest is located. If xnearest
is near a channel, a new xnew point is calculated for expansion; otherwise, resampling is
performed (Lines 13–14 in Algorithm 1).

If no collision occurs during the expansion, xnew is added to tree T, and a corresponding
set of candidate nodes for xnew is pre-allocated. If the set of candidate nodes overlaps with
any existing nodes in the tree, no allocation is performed. If the set of candidate nodes for
xnew is empty after allocation, it is not added to array V (Lines 17–21 in Algorithm 1).

Finally, after obtaining a feasible path, the algorithm optimizes it to reduce the cost
C(σ) (Line 24 in Algorithm 1). A more detailed description of the algorithm process is
given in the subsequent section.

Algorithm 1 CERRT(xstart, xgoal, dstep, dgap, N, Map)

1: T = {xstart};
2: V = T;
3: xstart.CAND = initTree(xstart);
4: for i = 1 to N do
5: xrand = GetSample(i);
6: (xnearest, nearidx) = GetNearest(V, xrand);
7: (xnew, newidx) = min(distance(xnearest.CAND(:), xrand));
8: Delete(xnearest.CAND(newidx));
9: if Empty(xnearest.CAND) then
10: Delete(V(nearidx));
11: end if
12: if Overlap(xnew, T) then continue; end if
13: if Collision(xnew, xnearest, Map) then
14: (xnew, Fig) = Aware(xnearest.parent, xnearest, Map, dstep, dgap);
15: if ~Fig then continue; end if
16: end if
17: xnew.CAND = SetCAND(xnearest, xnew, dstep, T, V);
18: if NoEmpty(xnew.CAND)
19: V = V ∪ {xnew};
20: end if
21: T = T ∪ {xnew};
22: if xnew ∈ Xgoal then break; end if
23: end for
24: σ = GetPath(σ);
25: return σ = OptPath(σ);

Appl. Sci. 2023, 13, 9666 6 of 20

3.2. Vertex Expansion Method

The traditional rapidly-exploring random tree (RRT) algorithm randomly samples the
configuration space to guide the tree’s expansion and exploration. When the RRT algorithm
expands a new vertex, it calculates the distance ‘d’ between the point and the goal. If ‘d’ is
less than a predetermined threshold ‘r’, it means the algorithm has found the goal point
and the search ceases. If not, the search continues.

In this regard, each time a new node is expanded, the RRT algorithm explores the
region with a radius of ‘r’ centered on that node. The unexplored regions of tree nodes
are referred to as the ‘unknown regions’, while the explored areas are defined as ‘explo-
ration regions’. With each expansion, new exploration regions are created within the
unknown regions.

The RRT algorithm achieves the exploration of the entire space by continuously
sampling and expanding. However, this process brings about a scenario where some
exploration regions are revisited, some even more than twice. The exploration efficiency
is thus measured by the area of novel exploration regions explored by newly expanded
vertices and the frequency of re-exploration of already known regions. Efficiency is high
when the area of unexplored regions explored is large, but it is low if the area of already
known regions explored is large or if they are explored multiple times.

Figure 2 illustrates the issue of redundant exploration in known regions. In this
figure, the blue region represents the explored area, while the overlapped area denotes the
repeated examination. The green zone denotes the exploration area for new vertices, and
new vertices conduct repeated exploration on region ‘T’ enclosed by the red circle more
than three times.

Appl. Sci. 2023, 13, 9666 6 of 21

21: T = T  {xnew};
22: if xnew ∈ Xgoal then break; end if
23: end for
24: σ σ= GetPath();

25: return σ σ= OptPath();

3.2. Vertex Expansion Method
The traditional rapidly-exploring random tree (RRT) algorithm randomly samples

the configuration space to guide the tree’s expansion and exploration. When the RRT
algorithm expands a new vertex, it calculates the distance ‘d’ between the point and the
goal. If ‘d’ is less than a predetermined threshold ‘r’, it means the algorithm has found the
goal point and the search ceases. If not, the search continues.

In this regard, each time a new node is expanded, the RRT algorithm explores the
region with a radius of ‘r’ centered on that node. The unexplored regions of tree nodes are
referred to as the ‘unknown regions,’ while the explored areas are defined as ‘exploration
regions’. With each expansion, new exploration regions are created within the unknown
regions.

The RRT algorithm achieves the exploration of the entire space by continuously
sampling and expanding. However, this process brings about a scenario where some
exploration regions are revisited, some even more than twice. The exploration efficiency
is thus measured by the area of novel exploration regions explored by newly expanded
vertices and the frequency of re-exploration of already known regions. Efficiency is high
when the area of unexplored regions explored is large, but it is low if the area of already
known regions explored is large or if they are explored multiple times.

Figure 2 illustrates the issue of redundant exploration in known regions. In this
figure, the blue region represents the explored area, while the overlapped area denotes
the repeated examination. The green zone denotes the exploration area for new vertices,
and new vertices conduct repeated exploration on region ‘T’ enclosed by the red circle
more than three times.

Figure 2a elucidates the traditional RRT expansion process. This diagram illustrates
that vertices x0, x1, and x2 have already examined the ‘T-region’ twice. Following this,
vertex x1 extends toward the xrand point and produces a fresh vertex xnew. Regrettably, this
new vertex instigates a third redundant exploration of the ‘T-region’. Multiple
explorations of the same area are pointless.

Figure 2. Issue of redundant exploration in known regions. (a) Redundant exploration using the
traditional extension strategy. (b) Improved extension strategy to reduce redundancy.

In response to the problem mentioned earlier, our research suggests that setting the
angle at 120 degrees between each vertex and its connected points can drastically decrease
unnecessary exploration in space, as shown in Figure 2b. When a new point, xnew, extends
from vertex x1, the angles between the three edges x1-x0, x1-x2 and x1-xnew are all 120 degrees.

Figure 2. Issue of redundant exploration in known regions. (a) Redundant exploration using the
traditional extension strategy. (b) Improved extension strategy to reduce redundancy.

Figure 2a elucidates the traditional RRT expansion process. This diagram illustrates
that vertices x0, x1, and x2 have already examined the ‘T-region’ twice. Following this,
vertex x1 extends toward the xrand point and produces a fresh vertex xnew. Regrettably, this
new vertex instigates a third redundant exploration of the ‘T-region’. Multiple explorations
of the same area are pointless.

In response to the problem mentioned earlier, our research suggests that setting
the angle at 120 degrees between each vertex and its connected points can drastically
decrease unnecessary exploration in space, as shown in Figure 2b. When a new point, xnew,
extends from vertex x1, the angles between the three edges x1-x0, x1-x2 and x1-xnew are all
120 degrees. This decreases the ‘T-region’ to a mere 30% of what it is in Figure 2a. The
exploration process also avoids repeating exploration areas over three times, which greatly
increases efficiency.

To achieve this, we propose pre-allocated expansion points and a vertex dead strategy
to ensure that the angle between each vertex’s edges is 120 degrees. Algorithm 2 presents
the detailed process of allocating candidate extension points. Initially, the angle ang0
of the edge xnew-xnearest is computed within the Cartesian coordinate system. Following

Appl. Sci. 2023, 13, 9666 7 of 20

this, candidate extension points are created with a 120-degree bias angle (Lines 1–4 in
Algorithm 2). If the candidate extension point coincides with a tree node, the allocation
fails (Lines 6–10 in Algorithm 2).

Figure 3 depicts the improved vertex expansion strategy. In this figure, the black, red,
green, and yellow dots, respectively, represent standard tree vertices, xnearest, xnew, and
xrand sample points. Dashed circles are potential expansion points for each vertex, while
red-crossed points signify discarded vertices removed from array V.

Appl. Sci. 2023, 13, 9666 7 of 21

This decreases the ‘T-region’ to a mere 30% of what it is in Figure 2a. The exploration
process also avoids repeating exploration areas over three times, which greatly increases
efficiency.

To achieve this, we propose pre-allocated expansion points and a vertex dead
strategy to ensure that the angle between each vertex’s edges is 120 degrees. Algorithm 2
presents the detailed process of allocating candidate extension points. Initially, the angle
ang0 of the edge xnew-xnearest is computed within the Cartesian coordinate system. Following
this, candidate extension points are created with a 120-degree bias angle (Lines 1–4 in
Algorithm 2). If the candidate extension point coincides with a tree node, the allocation
fails (Lines 6–10 in Algorithm 2).

Figure 3 depicts the improved vertex expansion strategy. In this figure, the black, red,
green, and yellow dots, respectively, represent standard tree vertices, xnearest, xnew, and xrand
sample points. Dashed circles are potential expansion points for each vertex, while red-
crossed points signify discarded vertices removed from array V.

Upon expanding a new vertex xnew, xnew.CANDj (where j is the candidate point index
j = 0, 1, 2) is pre-assigned to maintain each vertex’s edge angle at 120 degrees. Additionally,
if a vertex’s candidate point set is vacant, it is classified as a discarded vertex and removed
from array V. Figure 3a shows that every vertex logs its corresponding candidate
expansion points xi.CANDj (where i is the vertex index in the growing tree T, i = 0,1,...,n).
If xi’s candidate point set is void, it is deemed a discarded vertex and excluded from array
V.

The expansion process of the CERRT is conveyed in Figure 3b. After sampling xrand
randomly, the closest vertex xnearest is selected from array V as the starting point. Since x1 is
a discarded vertex and has been eliminated from array V, x3 is chosen as the nearest vertex.
Subsequently, vertex xnew is selected from the candidate expansion points of x3 based on
its proximity to xrand. After calculation, x3.CAND2 is chosen as xnew for expansion and
x3.CAND2 is removed from the candidate set of x3. As x6.CAND2 coincides with x3.CAND2,
it is also removed from the candidate set of x6. Since the candidate set of vertex x6 is now
empty, x6 becomes a dead vertex and is deleted from array V.

If edge xnew-xnearest collides with obstacles, the algorithm advances to the environment
awareness stage. Otherwise, xnew is added as a new vertex to tree T, and a set of candidate
expansion points is pre-allocated for xnew. It is worth noting that the candidate points must
not overlap with any existing points in tree T. This process is illustrated in Figure 3c.

Figure 3. Improved vertex expansion process. (a) Before expansion. (b) Selection of xnearest after
sampling. (c) After expansion.

Algorithm 2 SetCAND(xnearest, xnew, dstep, T, V)
1: ang0 = GetCartesianAngle(xnearest, xnew);
2: ang1 = ang0 + 120; ang2 = ang0 + 240;
3: new1 = xnew + dstep*[sin(ang1), cos(ang1)];
4: new2 = xnew + dstep*[sin(ang2), cos(ang2)];

Figure 3. Improved vertex expansion process. (a) Before expansion. (b) Selection of xnearest after
sampling. (c) After expansion.

Upon expanding a new vertex xnew, xnew.CANDj (where j is the candidate point index
j = 0, 1, 2) is pre-assigned to maintain each vertex’s edge angle at 120 degrees. Additionally,
if a vertex’s candidate point set is vacant, it is classified as a discarded vertex and removed
from array V. Figure 3a shows that every vertex logs its corresponding candidate expansion
points xi.CANDj (where i is the vertex index in the growing tree T, i = 0, 1, ..., n). If xi’s
candidate point set is void, it is deemed a discarded vertex and excluded from array V.

The expansion process of the CERRT is conveyed in Figure 3b. After sampling xrand
randomly, the closest vertex xnearest is selected from array V as the starting point. Since x1 is
a discarded vertex and has been eliminated from array V, x3 is chosen as the nearest vertex.
Subsequently, vertex xnew is selected from the candidate expansion points of x3 based on
its proximity to xrand. After calculation, x3.CAND2 is chosen as xnew for expansion and
x3.CAND2 is removed from the candidate set of x3. As x6.CAND2 coincides with x3.CAND2,
it is also removed from the candidate set of x6. Since the candidate set of vertex x6 is now
empty, x6 becomes a dead vertex and is deleted from array V.

If edge xnew-xnearest collides with obstacles, the algorithm advances to the environment
awareness stage. Otherwise, xnew is added as a new vertex to tree T, and a set of candidate
expansion points is pre-allocated for xnew. It is worth noting that the candidate points must
not overlap with any existing points in tree T. This process is illustrated in Figure 3c.

Algorithm 2 SetCAND(xnearest, xnew, dstep, T, V)

1: ang0 = GetCartesianAngle(xnearest, xnew);
2: ang1 = ang0 + 120; ang2 = ang0 + 240;
3: new1 = xnew + dstep*[sin(ang1), cos(ang1)];
4: new2 = xnew + dstep*[sin(ang2), cos(ang2)];
5: CAND = [];
6: if NoOverlap(new1, T) then
7: CAND(end + 1) = new1;
8: else if NoOverlap(new2, T) then
9: CAND(end + 1) = new2;
10: end if
11: return CAND;

Appl. Sci. 2023, 13, 9666 8 of 20

3.3. Environmental Awareness

Algorithms based on Sampling often encounter difficulties when navigating narrow
passages due to their lack of environmental sensitivity. However, whether a passage is
deemed narrow is contingent on the extension step length. If the step length is much
smaller than the narrow passage, it can be considered a spacious road. Conversely, if the
step length is too small, the search accuracy will be too high, resulting in lower algorithm
efficiency. To combat this, an environment perception strategy is proposed to enable the
random tree to quickly identify and pass through narrow passages without decreasing the
step length. When a collision occurs with an obstacle during the tree expansion process,
expansion is halted and enters the environment perception stage. Algorithm 3 provides a
comprehensive outline of this phase.

To begin the environmental perception process, local spatial information is collected
around the xnearest point through local sampling. Local sampling uniformly samples n
points around the vertex to be expanded using the expansion step length as the radius and
stores them in a point set S. Here, n = 16 is used as an example. Set S is then separated
into two subsets, Sobs and Sfree, based on whether the position of S lies within the obstacle
area. The boundary points between Sfree and Sobs are selected and stored in Sbdry, where
Sbdry ⊆ Sfree (Lines 2–3 in Algorithm 3). Figure 4 illustrates the schematic diagram of local
sampling, where the red point represents the expanding vertex where a collision occurred,
the blue points represent Sobs sampling points, the green points represent boundary points
Sbdry, and the yellow and green points represent Sfree points. In Figure 4, the obstacle is
recognized as a wall obstacle.

Appl. Sci. 2023, 13, 9666 8 of 21

5: CAND = [];
6: if NoOverlap(new1, T) then
7: CAND(end + 1) = new1;
8: else if NoOverlap(new2, T) then
9: CAND(end + 1) = new2;
10: end if
11: return CAND;

3.3. Environmental Awareness
Algorithms based on Sampling often encounter difficulties when navigating narrow

passages due to their lack of environmental sensitivity. However, whether a passage is
deemed narrow is contingent on the extension step length. If the step length is much
smaller than the narrow passage, it can be considered a spacious road. Conversely, if the
step length is too small, the search accuracy will be too high, resulting in lower algorithm
efficiency. To combat this, an environment perception strategy is proposed to enable the
random tree to quickly identify and pass through narrow passages without decreasing
the step length. When a collision occurs with an obstacle during the tree expansion
process, expansion is halted and enters the environment perception stage. Algorithm 3
provides a comprehensive outline of this phase.

To begin the environmental perception process, local spatial information is collected
around the xnearest point through local sampling. Local sampling uniformly samples n
points around the vertex to be expanded using the expansion step length as the radius
and stores them in a point set S. Here, n = 16 is used as an example. Set S is then separated
into two subsets, Sobs and Sfree, based on whether the position of S lies within the obstacle
area. The boundary points between Sfree and Sobs are selected and stored in Sbdry, where Sbdry
⊆ Sfree (Lines 2–3 in Algorithm 3). Figure 4 illustrates the schematic diagram of local
sampling, where the red point represents the expanding vertex where a collision occurred,
the blue points represent Sobs sampling points, the green points represent boundary points
Sbdry, and the yellow and green points represent Sfree points. In Figure 4, the obstacle is
recognized as a wall obstacle.

Figure 4. Local sampling process and wall obstacle types.

For the local sampling to accurately identify narrow passages, it is crucial to further
clarify the quantity of local sampling points n and the extension step size dstep. Given the
width dgap of the minimum feasible driving passage and the extension step size dstep, to
ensure that the local sampling can sample the interior of the passage, the spacing between
adjacent sampling points should not exceed dgap. The number of sampling points n must
align with Equation (1).

Figure 4. Local sampling process and wall obstacle types.

For the local sampling to accurately identify narrow passages, it is crucial to further
clarify the quantity of local sampling points n and the extension step size dstep. Given the
width dgap of the minimum feasible driving passage and the extension step size dstep, to
ensure that the local sampling can sample the interior of the passage, the spacing between
adjacent sampling points should not exceed dgap. The number of sampling points n must
align with Equation (1).

n ≥ 2π

arccos
(

1− d2
gap

2d2
step

) (1)

After local sampling, environments are categorized based on the numerical relation
between the point sets Sfree and Sbdry. The environment is split into two primary classifi-
cations: wall obstacles and passage environments. If Sbdry has only two vertices and Sfree
has more than two vertices, the environment is classified as a wall obstacle, as shown
in Figure 4. In this case, the algorithm exits the environment perception and performs
resampling (Lines 4–6 in Algorithm 3). Otherwise, the environment is considered a narrow
passage environment, which can be further classified into entrance, interior, exit, and

Appl. Sci. 2023, 13, 9666 9 of 20

multi-branching regions, as shown in Figure 5. In this figure, the red point represents the
xnearest point, the yellow points represent Sfree sample points, the green points represent
the boundary points Sbdry, and the blue points represent the Sobs sample points. The green
sector area R contains a continuous set of Sfree points.

Appl. Sci. 2023, 13, 9666 9 of 21

π≥
 
 −
 
 

2
gap

2

2

arccos 1
2 step

n
d
d

(1)

After local sampling, environments are categorized based on the numerical relation
between the point sets Sfree and Sbdry. The environment is split into two primary
classifications: wall obstacles and passage environments. If Sbdry has only two vertices and
Sfree has more than two vertices, the environment is classified as a wall obstacle, as shown
in Figure 4. In this case, the algorithm exits the environment perception and performs
resampling (Lines 4–6 in Algorithm 3). Otherwise, the environment is considered a
narrow passage environment, which can be further classified into entrance, interior, exit,
and multi-branching regions, as shown in Figure 5. In this figure, the red point represents
the xnearest point, the yellow points represent Sfree sample points, the green points represent
the boundary points Sbdry, and the blue points represent the Sobs sample points. The green
sector area R contains a continuous set of Sfree points.

To traverse the narrow passage, multiple sector regions are divided using xnearest as
the fulcrum and the expansion step as the radius. Each sector region contains only a
continuous set of Sfree points. The resulting n sector regions are denoted as Ri (i = 1, 2, …,
n). The sector area that does not contain the xparent point is selected as the area for expansion.
An Sfree point that will not cause a collision is then selected from it as the xnew point for
expansion (Lines 8–13 in Algorithm 3).

For example, Figure 5a illustrates the entrance of a narrow passage. After the area is
divided into two sector regions (R1, R2), Sbdry2 is selected from R2 as the xnew point for
expansion since xparent is positioned in R1. The same expansion approach is applied to the
narrow passage interior shown in Figure 5b and the exit in Figure 5c.

If the number of sector areas n is greater than 2, it is considered a multi-passage
branching situation, as shown in Figure 5d. After division, three sector areas (R1, R2, R3)
are obtained. Since R1 contains the xparent point, two Sfree points are selected from the R2 and
R3 regions that will not cause collisions as xnew for expansion.

Figure 5. Narrow passage perception. (a) Entrance of the passage; (b) Interior of the passage; (c) Exit
of the passage; (d) Multiple branching passages.

Algorithm 3 Aware(xparent, xnearest, Map, dstep, dgap)
1: xnew = []; Fig = false;
2: (Sfree, Sobs) = LocalSample(xnearest, Map, dstep, dgap);
3: Sbdry = GetBoundary(Sfree, Sobs);
4: if size(Sbdry) == 2 && size(Sfree) > 2 then
5: Fig = false;

 6: return (xnew, Fig);
7: else
8: (R, n) = DivideRegion(Sfree, Sobs, Sbdry);

 9: for i = 1 to n do

Figure 5. Narrow passage perception. (a) Entrance of the passage; (b) Interior of the passage; (c) Exit
of the passage; (d) Multiple branching passages.

To traverse the narrow passage, multiple sector regions are divided using xnearest as the
fulcrum and the expansion step as the radius. Each sector region contains only a continuous
set of Sfree points. The resulting n sector regions are denoted as Ri (i = 1, 2, . . ., n). The sector
area that does not contain the xparent point is selected as the area for expansion. An Sfree
point that will not cause a collision is then selected from it as the xnew point for expansion
(Lines 8–13 in Algorithm 3).

For example, Figure 5a illustrates the entrance of a narrow passage. After the area
is divided into two sector regions (R1, R2), Sbdry2 is selected from R2 as the xnew point for
expansion since xparent is positioned in R1. The same expansion approach is applied to the
narrow passage interior shown in Figure 5b and the exit in Figure 5c.

If the number of sector areas n is greater than 2, it is considered a multi-passage
branching situation, as shown in Figure 5d. After division, three sector areas (R1, R2, R3)
are obtained. Since R1 contains the xparent point, two Sfree points are selected from the R2
and R3 regions that will not cause collisions as xnew for expansion.

Algorithm 3 Aware(xparent, xnearest, Map, dstep, dgap)

1: xnew = []; Fig = false;
2: (Sfree, Sobs) = LocalSample(xnearest, Map, dstep, dgap);
3: Sbdry = GetBoundary(Sfree, Sobs);
4: if size(Sbdry) == 2 && size(Sfree) > 2 then
5: Fig = false;
6: return (xnew, Fig);
7: else
8: (R, n) = DivideRegion(Sfree, Sobs, Sbdry);
9: for i = 1 to n do
10: if xparent ∈ Ri then R = R−Ri end if
11: end for
12: xnew = ChoseNew(R, Sfree, n−1);
13: Fig = true;
14: end if
15: return (xnew, Fig);

3.4. Path Optimization Strategy

Sampling-based algorithms for path planning can often generate redundant nodes
due to their random nature, potentially lowering the quality of path planning. In this paper,
a bidirectional shrinking optimization strategy (BSOS) is proposed based on the pruning
optimization strategy (POS) to further enhance the quality of the path.

Appl. Sci. 2023, 13, 9666 10 of 20

In Figure 6a, moving from x0 to x7 requires avoiding an obstacle, and the black line
path x0-x1-x2-x3-x4-x5-x6-x7 in the figure is the original planned path. This path contains a
large number of redundant nodes. By using the pruning strategy and based on the triangle
inequality theorem, the robot can move directly from x0 to x2 without passing through x1,
thus identifying x1 as a redundant node.

Appl. Sci. 2023, 13, 9666 11 of 21

Figure 6. Path optimization strategy. (a–c) show pruning optimization of the original path, where
the yellow path represents the pruned optimized path. (d–f) show bidirectional shrinkage
optimization of the path, where the green path represents the final optimized path.

The specific process of using the bidirectional shrinking path optimization strategy
to optimize the CERRT planning path is shown in Figure 7.
(1) Obtain the initial optimized path σ (x0, x1, ..., xn) using the CERRT and pruning

optimization strategies, where xi (i = 0, 1, ..., n) is a path point and i is the path point
number.

(2) Initialize i = 1.
(3) Check whether i is less than n. If it is, put xi into the temporary variable xtemp, put xi-1

into the variable xpre, and put xi + 1 into the variable xpost. If not, go to step (6).
(4) Move the current variable point xtemp one step toward the variable point xpost.
(5) Check whether the path segment xtemp-xpre collides with any obstacles. If there is a

collision, move xtemp one step toward the opposite direction of xpost, update the path
point xi to xtemp, set i = i + 1, and go to step (3). If there is no collision, go to step (4).

(6) Set i = n − 1.
(7) Check whether i is greater than 0. If it is, put xi into the temporary variable xtemp, put

xi+1 into the variable xpre, and put xi-1 into the variable xpost. If not, the optimized path
is obtained, and the process ends.

(8) Move the current variable point xtemp one step toward the variable point xpost.
(9) Check whether the path segment xtemp-xpre collides with any obstacles. If there is a

collision, move xtemp one step toward the opposite direction of xpost, update the path
point xi to xtemp, set i = i − 1, and go to step (7). If there is no collision, go to step (8).
After the entire process is executed, the path points are updated by shrinking, and

the obtained path σ (x0, x1, ..., xn) is the final optimized path. Note, that “moving one step”
in the process refers to moving one pixel.

Figure 6. Path optimization strategy. (a–c) show pruning optimization of the original path, where the
yellow path represents the pruned optimized path. (d–f) show bidirectional shrinkage optimization
of the path, where the green path represents the final optimized path.

Figure 6b illustrates the application of the pruning operation on the entire initial path,
eliminating superfluous nodes x1, x3, x5, and x6. The remaining nodes are connected to
obtain the pruned and optimized yellow path x0-x2-x4-x7, as shown in Figure 6c. The
yellow path obtained by POS has not only fewer path points but also a shorter path length,
but it is not an approximate optimal path.

This paper proposes a bidirectional shrinking-based optimization of path points on
the basis of pruning the path x0-x2-x4-x7. The endpoints x0 and x7 are excluded from the
shrinking process, leaving the remaining points to participate in two phases of reduction.

In the first round, each path point moves toward the next point with a higher number
according to the sequence of the point number. At the same time, it constantly checks
whether there is any collision with the previous path point. If a collision is about to occur,
the point stops moving, as shown in Figure 6d. For instance, path point x2 moves toward
x4 until the x0-x2 segment is about to collide with the obstacle, and then the point stops.
After that, path point x4 moves toward x7 until the x2-x4 segment is about to collide with
the obstacle, and then the point stops. Once all path points have completed the shrinking
movement, the blue path x0-x2-x4-x7 in Figure 6d is obtained, indicating that the first round
of shrinking is completed.

In the second round of contraction, the order is reversed, with the points moving
from high to low according to their vertex number. As shown in Figure 6e, path point x4
moves toward x2 first, and then it stops when the x4-x7 segment is about to collide with
the obstacle. Then, path point x2 moves toward x0 until the x2-x4 segment is about to
collide with the obstacle. Once all path points have completed the shrinking movement,
the green path x0-x2-x4-x7 in Figure 6f is obtained, which is the final path obtained by the
bidirectional search optimization strategy. The bidirectional shrinking method results in a
path that is shorter and closer to the optimal configuration.

The specific process of using the bidirectional shrinking path optimization strategy to
optimize the CERRT planning path is shown in Figure 7.

Appl. Sci. 2023, 13, 9666 11 of 20Appl. Sci. 2023, 13, 9666 12 of 21

Figure 7. Bidirectional shrinking optimization strategy flowchart.

4. Simulation and Experiment
To verify the algorithm performance of CERRT, this study conducted a comparative

analysis of the RRT, RRV [5], Fast-RRT [7] and CERRT algorithms in a simple
environment, a maze environment, a narrow passage environment, and a bug
environment. The accessible passage width was set to dgap = 10 px, and the map size was
1000 px × 1000 px, as shown in Figure 8. The tree expansion step was set to dstep = 30 px,
and the detection radius was r = dstep. The sampler probability of sampling in the target
area was 0.05, and the probability of sampling in the random area was 0.95. The maximum
sampling value was set to 80,000, and if the number of samples exceeded the maximum
value, the path planning was considered a failure.

The algorithm performance was evaluated using three criteria: execution time,
number of tree vertices generated, and success rate. These evaluations were conducted by
repeating each simulation 100 times. The execution time and number of vertices were only
counted for successful path planning. In the path optimization experiment, this study
compared the original planned path, the pruning optimized path, and the proposed
bidirectional shrinking optimized path and evaluated the path quality σ *()C using two
indicators: path length and smoothness. All simulations were performed on a machine
with an Intel (R) Core (TM) i7-12700H 2.30 GHz CPU and 16 GB of RAM. The simulation
platform was MATLAB R2022a, and the function min was employed in all algorithms to
find the nearest neighbor in all algorithms. The collision detection program used the linear
trial method [20].

Figure 7. Bidirectional shrinking optimization strategy flowchart.

(1) Obtain the initial optimized path σ (x0, x1, . . ., xn) using the CERRT and pruning
optimization strategies, where xi (i = 0, 1, . . ., n) is a path point and i is the path
point number.

(2) Initialize i = 1.
(3) Check whether i is less than n. If it is, put xi into the temporary variable xtemp, put xi-1

into the variable xpre, and put xi + 1 into the variable xpost. If not, go to step (6).
(4) Move the current variable point xtemp one step toward the variable point xpost.
(5) Check whether the path segment xtemp-xpre collides with any obstacles. If there is a

collision, move xtemp one step toward the opposite direction of xpost, update the path
point xi to xtemp, set i = i + 1, and go to step (3). If there is no collision, go to step (4).

(6) Set i = n − 1.
(7) Check whether i is greater than 0. If it is, put xi into the temporary variable xtemp, put

xi+1 into the variable xpre, and put xi-1 into the variable xpost. If not, the optimized path
is obtained, and the process ends.

(8) Move the current variable point xtemp one step toward the variable point xpost.
(9) Check whether the path segment xtemp-xpre collides with any obstacles. If there is a

collision, move xtemp one step toward the opposite direction of xpost, update the path
point xi to xtemp, set i = i − 1, and go to step (7). If there is no collision, go to step (8).

After the entire process is executed, the path points are updated by shrinking, and the
obtained path σ(x0, x1, . . ., xn) is the final optimized path. Note, that “moving one step” in
the process refers to moving one pixel.

4. Simulation and Experiment

To verify the algorithm performance of CERRT, this study conducted a comparative
analysis of the RRT, RRV [5], Fast-RRT [7] and CERRT algorithms in a simple environment, a
maze environment, a narrow passage environment, and a bug environment. The accessible
passage width was set to dgap = 10 px, and the map size was 1000 px × 1000 px, as shown
in Figure 8. The tree expansion step was set to dstep = 30 px, and the detection radius
was r = dstep. The sampler probability of sampling in the target area was 0.05, and the
probability of sampling in the random area was 0.95. The maximum sampling value was

Appl. Sci. 2023, 13, 9666 12 of 20

set to 80,000, and if the number of samples exceeded the maximum value, the path planning
was considered a failure.

Appl. Sci. 2023, 13, 9666 13 of 21

(a) (b) (c) (d)

Figure 8. Environments for the simulations. (a) Simple. (b) Maze. (c)Narrow. (d) Bug Trap.

4.1. Path Planning Simulation
In the path planning simulations, we tested the performance of the RRT, RRV, Fast-

RRT and CERRT algorithms in four 2D environments. The objective of using a simple
environment was to assess if the new algorithm’s performance was significantly impacted
by additional computation. On the other hand, the maze environment, narrow
environment, and Bug Trap environment were utilized to assess the algorithms’
performance in complex scenarios. The red dots in the map represent the starting points,
the green dots represent the target points. The entire exploration process is represented
by the green lines, and the generated path is represented by the red lines. The sampling
method was consistent across all experiments.

4.1.1. Simple Environment
The purpose of testing the algorithm in a simple environment was to evaluate the

performance loss of the new algorithm with additional computational costs. The planning
scenarios are shown in Figure 9, and the expansion shapes of the four random trees were
generally similar.

Table 1 presents the performance of the algorithm in a simple environment. The
success rates of the four algorithms are all 100%, and the average number of tree nodes
was similar. The average running time of RRV was four times that of RRT, the average
running time of Fast-RRT was 1.5 times that of RRT, and the average running time of
CERRT was 1.7 times that of RRT. The time variance of CERRT was close to that of RRT
and much smaller than that of RRV.

The data indicate that the performance loss of CERRT was significantly more than
that of RRV, and its overall performance was almost identical to RRT, indicating that the
performance loss caused by the additional computational cost of CERRT was minimal.

Figure 9. Performance comparison of four algorithms in sample environment. (a) RRT; (b) RRV; (c)
Fast-RRT; (d) CERRT.

Figure 8. Environments for the simulations. (a) Simple. (b) Maze. (c)Narrow. (d) Bug Trap.

The algorithm performance was evaluated using three criteria: execution time, number
of tree vertices generated, and success rate. These evaluations were conducted by repeating
each simulation 100 times. The execution time and number of vertices were only counted
for successful path planning. In the path optimization experiment, this study compared
the original planned path, the pruning optimized path, and the proposed bidirectional
shrinking optimized path and evaluated the path quality C(σ∗) using two indicators: path
length and smoothness. All simulations were performed on a machine with an Intel (R)
Core (TM) i7-12700H 2.30 GHz CPU and 16 GB of RAM. The simulation platform was
MATLAB R2022a, and the function min was employed in all algorithms to find the nearest
neighbor in all algorithms. The collision detection program used the linear trial method [20].

4.1. Path Planning Simulation

In the path planning simulations, we tested the performance of the RRT, RRV, Fast-
RRT and CERRT algorithms in four 2D environments. The objective of using a simple
environment was to assess if the new algorithm’s performance was significantly impacted
by additional computation. On the other hand, the maze environment, narrow environment,
and Bug Trap environment were utilized to assess the algorithms’ performance in complex
scenarios. The red dots in the map represent the starting points, the green dots represent
the target points. The entire exploration process is represented by the green lines, and the
generated path is represented by the red lines. The sampling method was consistent across
all experiments.

4.1.1. Simple Environment

The purpose of testing the algorithm in a simple environment was to evaluate the
performance loss of the new algorithm with additional computational costs. The planning
scenarios are shown in Figure 9, and the expansion shapes of the four random trees were
generally similar.

Appl. Sci. 2023, 13, 9666 13 of 21

(a) (b) (c) (d)

Figure 8. Environments for the simulations. (a) Simple. (b) Maze. (c)Narrow. (d) Bug Trap.

4.1. Path Planning Simulation

In the path planning simulations, we tested the performance of the RRT, RRV, Fast-

RRT and CERRT algorithms in four 2D environments. The objective of using a simple

environment was to assess if the new algorithm’s performance was significantly impacted

by additional computation. On the other hand, the maze environment, narrow environ-

ment, and Bug Trap environment were utilized to assess the algorithms’ performance in

complex scenarios. The red dots in the map represent the starting points, the green dots

represent the target points. The entire exploration process is represented by the green

lines, and the generated path is represented by the red lines. The sampling method was

consistent across all experiments.

4.1.1. Simple Environment

The purpose of testing the algorithm in a simple environment was to evaluate the

performance loss of the new algorithm with additional computational costs. The planning

scenarios are shown in Figure 9, and the expansion shapes of the four random trees were

generally similar.

Table 1 presents the performance of the algorithm in a simple environment. The suc-

cess rates of the four algorithms are all 100%, and the average number of tree nodes was

similar. The average running time of RRV was four times that of RRT, the average running

time of Fast-RRT was 1.5 times that of RRT, and the average running time of CERRT was

1.7 times that of RRT. The time variance of CERRT was close to that of RRT and much

smaller than that of RRV.

The data indicate that the performance loss of CERRT was significantly more than

that of RRV, and its overall performance was almost identical to RRT, indicating that the

performance loss caused by the additional computational cost of CERRT was minimal.

Figure 9. Performance comparison of four algorithms in sample environment. (a) RRT; (b) RRV; (c)

Fast-RRT; (d) CERRT.

Figure 9. Performance comparison of four algorithms in sample environment. (a) RRT; (b) RRV;
(c) Fast-RRT; (d) CERRT.

Appl. Sci. 2023, 13, 9666 13 of 20

Table 1 presents the performance of the algorithm in a simple environment. The
success rates of the four algorithms are all 100%, and the average number of tree nodes was
similar. The average running time of RRV was four times that of RRT, the average running
time of Fast-RRT was 1.5 times that of RRT, and the average running time of CERRT was
1.7 times that of RRT. The time variance of CERRT was close to that of RRT and much
smaller than that of RRV.

Table 1. Results for planning in a simple environment.

Algorithm Avg. Time (ms) Min Time (ms) Max Time (ms) Std Avg. Nodes Success Rate

RRT 9.08 5.61 14.48 2.04 263 1.00
RRV 37.04 7.33 71.00 10.90 281 1.00

Fast-RRT 13.15 6.58 32.45 3.94 355 1.00
CERRT 15.86 9.28 24.63 2.81 286 1.00

The data indicate that the performance loss of CERRT was significantly more than
that of RRV, and its overall performance was almost identical to RRT, indicating that the
performance loss caused by the additional computational cost of CERRT was minimal.

4.1.2. Maze Environment

The maze environment was designed to evaluate the performance of algorithms in
complex environments without passages. Figure 10 illustrates the planning situations of
the four algorithms, indicating that the utilization rates of tree nodes were low for RRV,
RRT, and Fast-RRT, and there were numerous repeated exploration points on the left side of
the map. In contrast, CERRT’s tree nodes were evenly distributed, enabling the exploration
of a broader area with fewer points.

Appl. Sci. 2023, 13, 9666 14 of 21

Table 1. Results for planning in a simple environment.

Algorithm Avg. Time(ms) Min Time(ms) Max Time(ms) Std Avg. Nodes Success Rate

RRT 9.08 5.61 14.48 2.04 263 1.00

RRV 37.04 7.33 71.00 10.90 281 1.00

Fast-RRT 13.15 6.58 32.45 3.94 355 1.00

CERRT 15.86 9.28 24.63 2.81 286 1.00

4.1.2. Maze Environment

The maze environment was designed to evaluate the performance of algorithms in

complex environments without passages. Figure 10 illustrates the planning situations of

the four algorithms, indicating that the utilization rates of tree nodes were low for RRV,

RRT, and Fast-RRT, and there were numerous repeated exploration points on the left side

of the map. In contrast, CERRT’s tree nodes were evenly distributed, enabling the explo-

ration of a broader area with fewer points.

Table 2 presents the algorithms’ performance in the maze environment. RRT’s time

consumption was 2.7 times that of CERRT, Fast-RRT’s time consumption was 1.7 times

that of CERRT, and RRV’s time consumption was 15 times that of CERRT. CERRT had the

shortest running time and the smallest number of tree nodes. Furthermore, CERRT’s time

standard deviation was significantly lower than those of RRT and RRV, further indicating

that this algorithm was most stable in the Maze environment.

Based on the above, it can be concluded that the new CERRT algorithm outperformed

the RRT, RRV, and Fast-RRT algorithms in various aspects in complex non-navigable en-

vironments. The main reason for this is the improved vertex expansion strategy, which

effectively improved the utilization rate of vertices by pre-allocating them for expansion.

This strategy reduced repeated exploration of the same region and introduced a vertex

death mechanism to eliminate useless vertices, thus reducing the time cost of selecting the

optimal neighboring vertex.

Figure 10. Performance comparison of four algorithms in maze environment. (a) RRT; (b) RRV; (c)

Fast-RRT; (d) CERRT.

Table 2. Results for planning in a maze environment.

Algorithm Avg. Time (ms) Min Time (ms) Max Time (ms) Std Avg. Nodes Success Rate

RRT 108.29 83.66 153.99 13.97 2284 1.00

RRV 603.24 438.86 1001.21 120.67 3042 1.00

Fast-RRT 68.93 48.75 135.38 11.58 1368 1.00

CERRT 39.73 34.59 112.35 8.66 610 1.00

4.1.3. Narrow Environment

The RRT algorithm faced challenges in solving narrow passage problems, while the

RRV algorithm was specifically designed to address this issue. Additionally, the Fast-RRT

has also proposed solutions for narrow passages. In this study, we used a narrow envi-

ronment to test the performance of the new algorithm and evaluate its environmental

Figure 10. Performance comparison of four algorithms in maze environment. (a) RRT; (b) RRV;
(c) Fast-RRT; (d) CERRT.

Table 2 presents the algorithms’ performance in the maze environment. RRT’s time
consumption was 2.7 times that of CERRT, Fast-RRT’s time consumption was 1.7 times
that of CERRT, and RRV’s time consumption was 15 times that of CERRT. CERRT had the
shortest running time and the smallest number of tree nodes. Furthermore, CERRT’s time
standard deviation was significantly lower than those of RRT and RRV, further indicating
that this algorithm was most stable in the Maze environment.

Table 2. Results for planning in a maze environment.

Algorithm Avg. Time (ms) Min Time (ms) Max Time (ms) Std Avg. Nodes Success Rate

RRT 108.29 83.66 153.99 13.97 2284 1.00
RRV 603.24 438.86 1001.21 120.67 3042 1.00

Fast-RRT 68.93 48.75 135.38 11.58 1368 1.00
CERRT 39.73 34.59 112.35 8.66 610 1.00

Appl. Sci. 2023, 13, 9666 14 of 20

Based on the above, it can be concluded that the new CERRT algorithm outperformed
the RRT, RRV, and Fast-RRT algorithms in various aspects in complex non-navigable
environments. The main reason for this is the improved vertex expansion strategy, which
effectively improved the utilization rate of vertices by pre-allocating them for expansion.
This strategy reduced repeated exploration of the same region and introduced a vertex
death mechanism to eliminate useless vertices, thus reducing the time cost of selecting the
optimal neighboring vertex.

4.1.3. Narrow Environment

The RRT algorithm faced challenges in solving narrow passage problems, while the
RRV algorithm was specifically designed to address this issue. Additionally, the Fast-
RRT has also proposed solutions for narrow passages. In this study, we used a narrow
environment to test the performance of the new algorithm and evaluate its environmental
adaptability. Figure 11 shows the planning process of the four algorithms. It can be seen
that RRT had a large number of vertices on the left side of the map, and the algorithm could
not effectively detect the narrow passages on the walls. Fast-RRT expands multiple times
near obstacles to find passages. RRV and CERRT were quickly able to discover and pass
through the narrow passage.

Appl. Sci. 2023, 13, 9666 15 of 21

adaptability. Figure 11 shows the planning process of the four algorithms. It can be seen

that RRT had a large number of vertices on the left side of the map, and the algorithm

could not effectively detect the narrow passages on the walls. Fast-RRT expands multiple

times near obstacles to find passages. RRV and CERRT were quickly able to discover and

pass through the narrow passage.

Table 3 showcases the performance of the algorithms in the narrow passage environ-

ment. The planning success rate of the RRT algorithm was 0.97, while the other algorithms

were both 1.00, highlighting the shortcomings of RRT in narrow environments. The aver-

age running time of RRT was 27 times that of CERRT, the average running time of RRV

was four times that of CERRT, and the average running time of Fast-RRT was slightly

higher than that of CERRT. The new algorithm had a shorter planning time. The tree ver-

tex numbers of CERRT and RRV were similar, and much lower than that of the RRT and

Fast-RRT algorithm, indicating that both derived algorithms can solve narrow passage

problems. RRT’s time standard deviation was 135 times higher than CERRT, RRV’s time

standard deviation was 20 times higher than CERRT, and Fast-RRT’s time standard devi-

ation was 75 times higher than CERRT, suggesting that CERRT exhibited optimal stability.

Figure 11. Performance comparison of four algorithms in narrow environment. (a) RRT; (b) RRV;

(c) Fast-RRT; (d) CERRT.

Table 3. Results for planning in a narrow environment.

Algorithm Avg. Time (ms) Min Time (ms) Max Time (ms) Std Avg. Nodes Success Rate

RRT 455.13 7.52 5189.01 871.53 2931 0.97

RRV 65.72 25.04 1287.83 127.12 259 1.00

Fast-RRT 58.03 4.87 3779.04 487.47 869 1.00

CERRT 16.70 11.66 74.69 6.42 255 1.00

Based on the above analysis, we can conclude that the new CERRT algorithm outper-

formed the RRT, RRV and Fast-RRT algorithms in narrow environments. The main reason

for this is that RRV requires complex principal component analysis to determine the en-

vironment, while CERRT’s environmental perception ability only requires simple sam-

pling to determine the surrounding environment and select new expansion points with-

out complex calculations, effectively reducing the environmental recognition cost.

4.1.4. Bug Trap Environment

The bug trap environment is created by adding concave traps to a narrow environ-

ment to assess the algorithm’s ability to handle such obstacles. Figure 12 shows the plan-

ning process of the four algorithms. Notably, both the RRT and Fast-RRT algorithms per-

formed extremely poorly in the Bug Trap environment, as evidenced by a significant ac-

cumulation of tree vertices inside the trap. The RRV algorithm can only recognize convex

obstacles and mistakenly identified the concave traps as entryways, resulting in multiple

attempts to expand within the trap area, which greatly reduced the algorithm’s perfor-

mance, with the number of tree vertices still high. The CERRT algorithm effectively

Figure 11. Performance comparison of four algorithms in narrow environment. (a) RRT; (b) RRV;
(c) Fast-RRT; (d) CERRT.

Table 3 showcases the performance of the algorithms in the narrow passage environ-
ment. The planning success rate of the RRT algorithm was 0.97, while the other algorithms
were both 1.00, highlighting the shortcomings of RRT in narrow environments. The average
running time of RRT was 27 times that of CERRT, the average running time of RRV was four
times that of CERRT, and the average running time of Fast-RRT was slightly higher than
that of CERRT. The new algorithm had a shorter planning time. The tree vertex numbers
of CERRT and RRV were similar, and much lower than that of the RRT and Fast-RRT
algorithm, indicating that both derived algorithms can solve narrow passage problems.
RRT’s time standard deviation was 135 times higher than CERRT, RRV’s time standard
deviation was 20 times higher than CERRT, and Fast-RRT’s time standard deviation was
75 times higher than CERRT, suggesting that CERRT exhibited optimal stability.

Table 3. Results for planning in a narrow environment.

Algorithm Avg. Time (ms) Min Time (ms) Max Time (ms) Std Avg. Nodes Success Rate

RRT 455.13 7.52 5189.01 871.53 2931 0.97
RRV 65.72 25.04 1287.83 127.12 259 1.00

Fast-RRT 58.03 4.87 3779.04 487.47 869 1.00
CERRT 16.70 11.66 74.69 6.42 255 1.00

Based on the above analysis, we can conclude that the new CERRT algorithm out-
performed the RRT, RRV and Fast-RRT algorithms in narrow environments. The main

Appl. Sci. 2023, 13, 9666 15 of 20

reason for this is that RRV requires complex principal component analysis to determine
the environment, while CERRT’s environmental perception ability only requires simple
sampling to determine the surrounding environment and select new expansion points
without complex calculations, effectively reducing the environmental recognition cost.

4.1.4. Bug Trap Environment

The bug trap environment is created by adding concave traps to a narrow environment
to assess the algorithm’s ability to handle such obstacles. Figure 12 shows the planning
process of the four algorithms. Notably, both the RRT and Fast-RRT algorithms performed
extremely poorly in the Bug Trap environment, as evidenced by a significant accumulation
of tree vertices inside the trap. The RRV algorithm can only recognize convex obstacles
and mistakenly identified the concave traps as entryways, resulting in multiple attempts to
expand within the trap area, which greatly reduced the algorithm’s performance, with the
number of tree vertices still high. The CERRT algorithm effectively utilizes each vertex to
explore the space and can quickly discover and pass through the real channel.

Appl. Sci. 2023, 13, 9666 16 of 21

utilizes each vertex to explore the space and can quickly discover and pass through the

real channel.

Table 4 illustrates the performance of the algorithms in the Bug Trap environment.

The planning success rates of RRT and Fast-RRT were only 0.90 and 0.92, respectively,

while the other two algorithms achieved rates of 1.00. The average running time of RRT

was 101 times that of CERRT, the average running time of Fast-RRT was 20 times that of

CERRT, and the average running time of RRV was 52 times that of CERRT, with the new

algorithm having the shortest planning time. The average number of tree vertices of RRT

was 29 times that of CERRT, the average number of tree vertices of Fast-RRT was 21 times

that of CERRT, and the average number of tree vertices of RRV was six times that of

CERRT, indicating that the new algorithm had the highest vertex utilization rate. Moreo-

ver, RRT’s time standard deviation was 526 times higher than CERRT, Fast-RRT’s time

standard deviation was 371 times higher than CERRT, and RRV’s time standard deviation

was 329 times higher than CERRT, underscoring the superior stability of the CERRT algo-

rithm.

Based on the above analysis, it can be concluded that the new CERRT algorithm out-

performed the RRT and RRV algorithms in the Bug Trap environment. The reason is that

the vertex death mechanism can deactivate the vertices inside the traps, preventing the

algorithm from becoming stuck in the concave traps. Combined with environmental

awareness, the CERRT algorithm was quickly able to break through the bug trap environ-

ment.

Figure 12. Performance comparison of four algorithms in Bug Trap environment. (a) RRT; (b) RRV;

(c) Fast-RRT; (d) CERRT.

Table 4. Results for planning in a Bug Trap environment.

Algorithm Avg. Time (ms) Min Time (ms) Max Time (ms) Std Avg. Nodes Success Rate

RRT 2725.83 504.12 8782.20 1856.74 13902 0.90

RRV 1418.43 31.42 6234.62 1160.86 2679 1.00

Fast-RRT 1674.35 267.01 9574.50 1313.36 9798 0.92

CERRT 26.97 13.36 35.28 3.53 474 1.00

4.2. Path Optimization Simulation

In the path optimization experiments, complex Maze and Bug Trap environments

were used to test the quality of the four algorithms’ paths after pruning and bidirectional

shrinking optimization. To assess the stability of the optimization strategy, the experiment

was repeated 100 times. The quality characteristics of the generated paths were evaluated

by comparing the average length and smoothness values. The path lengths were calcu-

lated using the Euclidean distance, which refers to the straight-line distance connecting

two points on a plane, and can be computed using the Pythagorean theorem, Addition-

ally, the path smoothness values were obtained by accumulating the turning angles of

each path, measured in radians.

Figure 12. Performance comparison of four algorithms in Bug Trap environment. (a) RRT; (b) RRV;
(c) Fast-RRT; (d) CERRT.

Table 4 illustrates the performance of the algorithms in the Bug Trap environment. The
planning success rates of RRT and Fast-RRT were only 0.90 and 0.92, respectively, while
the other two algorithms achieved rates of 1.00. The average running time of RRT was 101
times that of CERRT, the average running time of Fast-RRT was 20 times that of CERRT,
and the average running time of RRV was 52 times that of CERRT, with the new algorithm
having the shortest planning time. The average number of tree vertices of RRT was 29 times
that of CERRT, the average number of tree vertices of Fast-RRT was 21 times that of CERRT,
and the average number of tree vertices of RRV was six times that of CERRT, indicating that
the new algorithm had the highest vertex utilization rate. Moreover, RRT’s time standard
deviation was 526 times higher than CERRT, Fast-RRT’s time standard deviation was 371
times higher than CERRT, and RRV’s time standard deviation was 329 times higher than
CERRT, underscoring the superior stability of the CERRT algorithm.

Table 4. Results for planning in a Bug Trap environment.

Algorithm Avg. Time (ms) Min Time (ms) Max Time (ms) Std Avg. Nodes Success Rate

RRT 2725.83 504.12 8782.20 1856.74 13902 0.90
RRV 1418.43 31.42 6234.62 1160.86 2679 1.00

Fast-RRT 1674.35 267.01 9574.50 1313.36 9798 0.92
CERRT 26.97 13.36 35.28 3.53 474 1.00

Based on the above analysis, it can be concluded that the new CERRT algorithm
outperformed the RRT and RRV algorithms in the Bug Trap environment. The reason is that
the vertex death mechanism can deactivate the vertices inside the traps, preventing the algo-
rithm from becoming stuck in the concave traps. Combined with environmental awareness,
the CERRT algorithm was quickly able to break through the bug trap environment.

Appl. Sci. 2023, 13, 9666 16 of 20

4.2. Path Optimization Simulation

In the path optimization experiments, complex Maze and Bug Trap environments
were used to test the quality of the four algorithms’ paths after pruning and bidirectional
shrinking optimization. To assess the stability of the optimization strategy, the experiment
was repeated 100 times. The quality characteristics of the generated paths were evaluated
by comparing the average length and smoothness values. The path lengths were calculated
using the Euclidean distance, which refers to the straight-line distance connecting two
points on a plane, and can be computed using the Pythagorean theorem, Additionally, the
path smoothness values were obtained by accumulating the turning angles of each path,
measured in radians.

4.2.1. Maze Environment Path Optimization

The purpose of the experiments in the Maze environment was to test the performance
of the proposed optimization strategy. Figure 13 illustrates the results of pruning and
bidirectional shrinking optimizations. It is evident that the original paths generated by all
algorithms were convoluted and intricate. However, after the pruning optimization, the
quality of the paths improved, but they were not optimal, while bidirectional shrinking
optimization generated paths that were close to the optimal path. A detailed comparison of
the paths is provided in Table 5. The path lengths of bidirectional shrinking optimization
were the shortest, and the path smoothness values were the lowest, indicating that the
generated paths were optimal. The paths generated by the four algorithms were all able
to be optimized to approximate the optimal path. Hence, it can be concluded that the
bidirectional shrinking path optimization strategy outperformed the pruning optimization
strategy in complex environments.

Appl. Sci. 2023, 13, 9666 17 of 21

4.2.1. Maze Environment Path Optimization
The purpose of the experiments in the Maze environment was to test the performance

of the proposed optimization strategy. Figure 13 illustrates the results of pruning and
bidirectional shrinking optimizations. It is evident that the original paths generated by all
algorithms were convoluted and intricate. However, after the pruning optimization, the
quality of the paths improved, but they were not optimal, while bidirectional shrinking
optimization generated paths that were close to the optimal path. A detailed comparison
of the paths is provided in Table 5. The path lengths of bidirectional shrinking
optimization were the shortest, and the path smoothness values were the lowest,
indicating that the generated paths were optimal. The paths generated by the four
algorithms were all able to be optimized to approximate the optimal path. Hence, it can
be concluded that the bidirectional shrinking path optimization strategy outperformed
the pruning optimization strategy in complex environments.

Figure 13. Pruning and bidirectional shrinking optimization in the Maze environment. The blue
lines indicate the original paths, the green lines indicate the pruned optimized paths, and the red
lines indicate the bidirectional shrinking optimized paths.

Table 5. Results for Optimization in a Maze Environment.

Algorithm Path Cost POS Cost BSOS Cost Path Smoothness POS
Smoothness BSOS Smoothness

RRT 5346.20 4413.83 4076.84 78.24 12.20 11.16
RRV 4838.35 4392.98 4056.15 33.77 12.50 11.31

Fast-RRT 5426.26 4408.72 4062.23 65.32 11.78 11.24
CERRT 6033.47 4397.60 4071.37 226.11 11.85 11.12

4.2.2. Bug Trap Environment Path Optimization
The purpose of the experiments conducted in the Bug Trap environment was to test

the performance of the proposed optimization strategies in narrow passage environments.
Figure 14 displays the results of pruning and bidirectional contraction optimization. The
pruned paths were not able to determine the optimal route, while the bidirectional
contraction path generated the optimal paths close to the wall. A detailed comparison of
the paths is provided in Table 6. The paths generated by the four algorithms all had
relatively low quality, and after pruning optimization, the path smoothness values were
effectively improved, but the path lengths were not optimal. After bidirectional
contraction path optimization, the paths had the lowest smoothness values and the
shortest lengths and they were close to the optimal path. Therefore, it is evident that the
bidirectional contraction path optimization strategy still outperformed the pruning
optimization strategy in narrow environments and was applicable to all initial paths
generated by sampling algorithms.

Figure 13. Pruning and bidirectional shrinking optimization in the Maze environment. The blue lines
indicate the original paths, the green lines indicate the pruned optimized paths, and the red lines
indicate the bidirectional shrinking optimized paths.

Table 5. Results for Optimization in a Maze Environment.

Algorithm Path Cost POS Cost BSOS Cost Path
Smoothness

POS
Smoothness

BSOS
Smoothness

RRT 5346.20 4413.83 4076.84 78.24 12.20 11.16
RRV 4838.35 4392.98 4056.15 33.77 12.50 11.31

Fast-RRT 5426.26 4408.72 4062.23 65.32 11.78 11.24
CERRT 6033.47 4397.60 4071.37 226.11 11.85 11.12

4.2.2. Bug Trap Environment Path Optimization

The purpose of the experiments conducted in the Bug Trap environment was to test
the performance of the proposed optimization strategies in narrow passage environments.
Figure 14 displays the results of pruning and bidirectional contraction optimization. The
pruned paths were not able to determine the optimal route, while the bidirectional con-
traction path generated the optimal paths close to the wall. A detailed comparison of the

Appl. Sci. 2023, 13, 9666 17 of 20

paths is provided in Table 6. The paths generated by the four algorithms all had relatively
low quality, and after pruning optimization, the path smoothness values were effectively
improved, but the path lengths were not optimal. After bidirectional contraction path
optimization, the paths had the lowest smoothness values and the shortest lengths and they
were close to the optimal path. Therefore, it is evident that the bidirectional contraction
path optimization strategy still outperformed the pruning optimization strategy in narrow
environments and was applicable to all initial paths generated by sampling algorithms.

Appl. Sci. 2023, 13, 9666 18 of 21

Figure 14. Pruning and bidirectional shrinking optimization in the Bug Trap environment. The blue
lines represent the original paths, the green lines represent the pruned paths, and the red lines
represent the paths optimized by bidirectional shrinking.

Table 6. Results for Optimization in the Bug Trap Environment.

Algorithm Path Cost POS Cost BSOS Cost Path
Smoothness

POS
Smoothness

BSOS
Smoothness

RRT 1723.38 1386.87 1289.38 32.75 4.48 4.15
RRV 1618.49 1383.94 1281.70 13.58 4.78 4.34

Fast-RRT 1682.35 1375.54 1285.46 29.74 4.36 4.21
CERRT 1619.61 1323.14 1283.38 55.53 4.08 4.05

4.3. Evaluation of Algorithms in Real Environment
In order to evaluate the performance of the algorithm, we have chosen an actual map

scenario, which is Tianjin Central Square with geographical coordinates of 117°04′56.88″
E, 39°05′49.19″ N, as shown in Figure 15a. The map covers an area of 175 m × 175 m and
is divided into a grid of 1000 px × 1000 px, where each pixel represents an actual area of
0.03 m × 0.03 m. Figure 15b depicts the map generated based on the real scene, where black
represents the obstacle areas and white represents the free space.

Figure 15. Actual map environment.

The coordinates of the starting point are marked with a red circle at [100, 480], and
the coordinates of the target point are marked with a green circle at [870, 240]. We will
perform path planning tasks 100 times for a mobile robot in this scenario and evaluate the
algorithm’s performance by taking the average.

Algorithm Comparison
In Figure 16, the path planning results of four algorithms in a real-world environment

are depicted. Notably, a curved narrow passage shortcut can be observed on the map. All
four algorithms can generate feasible paths for the mobile robot, but only CERRT is able

Figure 14. Pruning and bidirectional shrinking optimization in the Bug Trap environment. The
blue lines represent the original paths, the green lines represent the pruned paths, and the red lines
represent the paths optimized by bidirectional shrinking.

Table 6. Results for Optimization in the Bug Trap Environment.

Algorithm Path Cost POS Cost BSOS Cost Path
Smoothness

POS
Smoothness

BSOS
Smoothness

RRT 1723.38 1386.87 1289.38 32.75 4.48 4.15
RRV 1618.49 1383.94 1281.70 13.58 4.78 4.34

Fast-RRT 1682.35 1375.54 1285.46 29.74 4.36 4.21
CERRT 1619.61 1323.14 1283.38 55.53 4.08 4.05

4.3. Evaluation of Algorithms in Real Environment

In order to evaluate the performance of the algorithm, we have chosen an actual map
scenario, which is Tianjin Central Square with geographical coordinates of 117◦04′56.88′′

E, 39◦05′49.19′′ N, as shown in Figure 15a. The map covers an area of 175 m × 175 m and
is divided into a grid of 1000 px × 1000 px, where each pixel represents an actual area
of 0.03 m × 0.03 m. Figure 15b depicts the map generated based on the real scene, where
black represents the obstacle areas and white represents the free space.

Appl. Sci. 2023, 13, 9666 18 of 21

Figure 14. Pruning and bidirectional shrinking optimization in the Bug Trap environment. The blue
lines represent the original paths, the green lines represent the pruned paths, and the red lines
represent the paths optimized by bidirectional shrinking.

Table 6. Results for Optimization in the Bug Trap Environment.

Algorithm Path Cost POS Cost BSOS Cost Path
Smoothness

POS
Smoothness

BSOS
Smoothness

RRT 1723.38 1386.87 1289.38 32.75 4.48 4.15
RRV 1618.49 1383.94 1281.70 13.58 4.78 4.34

Fast-RRT 1682.35 1375.54 1285.46 29.74 4.36 4.21
CERRT 1619.61 1323.14 1283.38 55.53 4.08 4.05

4.3. Evaluation of Algorithms in Real Environment
In order to evaluate the performance of the algorithm, we have chosen an actual map

scenario, which is Tianjin Central Square with geographical coordinates of 117°04′56.88″
E, 39°05′49.19″ N, as shown in Figure 15a. The map covers an area of 175 m × 175 m and
is divided into a grid of 1000 px × 1000 px, where each pixel represents an actual area of
0.03 m × 0.03 m. Figure 15b depicts the map generated based on the real scene, where black
represents the obstacle areas and white represents the free space.

Figure 15. Actual map environment.

The coordinates of the starting point are marked with a red circle at [100, 480], and
the coordinates of the target point are marked with a green circle at [870, 240]. We will
perform path planning tasks 100 times for a mobile robot in this scenario and evaluate the
algorithm’s performance by taking the average.

Algorithm Comparison
In Figure 16, the path planning results of four algorithms in a real-world environment

are depicted. Notably, a curved narrow passage shortcut can be observed on the map. All
four algorithms can generate feasible paths for the mobile robot, but only CERRT is able

Figure 15. Actual map environment.

The coordinates of the starting point are marked with a red circle at [100, 480], and
the coordinates of the target point are marked with a green circle at [870, 240]. We will

Appl. Sci. 2023, 13, 9666 18 of 20

perform path planning tasks 100 times for a mobile robot in this scenario and evaluate the
algorithm’s performance by taking the average.

Algorithm Comparison

In Figure 16, the path planning results of four algorithms in a real-world environment
are depicted. Notably, a curved narrow passage shortcut can be observed on the map. All
four algorithms can generate feasible paths for the mobile robot, but only CERRT is able to
discover and navigate through the curved passage shortcut in the actual environment. The
other algorithms struggle to solve the narrow passage problem in the real environment,
further confirming the practical value of the proposed algorithm. Additionally, the path
quality is significantly improved after optimizing with BSOS compared to the initial paths.

Appl. Sci. 2023, 13, 9666 19 of 21

to discover and navigate through the curved passage shortcut in the actual environment.
The other algorithms struggle to solve the narrow passage problem in the real
environment, further confirming the practical value of the proposed algorithm.
Additionally, the path quality is significantly improved after optimizing with BSOS
compared to the initial paths.

Figure 16. Performance comparison of four algorithms in real environment. The blue lines represent
the original paths and the red lines represent the paths optimized by bidirectional shrinking.

Since RRT-based algorithms have probabilistic completeness, the success rate of all
four algorithms in planning paths in the actual environment is 100% when the sampling
limit is not restricted. Table 7 displays the performance parameters of these algorithms.
The average runtime of RRT is approximately five times that of CERRT, RRV is
approximately 50 times that of CERRT, and Fast-RRT is approximately seven times that
of CERRT. CERRT has the shortest average runtime with a standard deviation of only
4.68, which is significantly lower than the other three algorithms, indicating excellent
performance of the proposed algorithm in the actual environment.

Regarding path optimization, a horizontal comparison reveals that the path lengths
after applying BSOS are all smaller than the initial paths, confirming the practicality of
BSOS. A vertical comparison shows that the path length generated by CERRT is smaller
than the other three algorithms. This is because CERRT is able to quickly discover and
navigate through the curved passage shortcut in the actual environment, while the other
algorithms struggle to pass through the curved passage efficiently.

In conclusion, the CERRT algorithm outperforms the other three algorithms in a real-
world environment. The main reason is that the expansion principle of CERRT is inspired
by the hexagonal honeycomb structure found in nature. Reference [21] mentions that a
hexagonal honeycomb provides the least-perimeter way to enclose and separate infinitely
many regions of unit area, indicating that using a hexagonal expansion strategy can
greatly improve the utilization of each tree node and thus enhance the algorithm’s
performance.

Figure 16. Performance comparison of four algorithms in real environment. The blue lines represent
the original paths and the red lines represent the paths optimized by bidirectional shrinking.

Since RRT-based algorithms have probabilistic completeness, the success rate of all
four algorithms in planning paths in the actual environment is 100% when the sampling
limit is not restricted. Table 7 displays the performance parameters of these algorithms. The
average runtime of RRT is approximately five times that of CERRT, RRV is approximately 50
times that of CERRT, and Fast-RRT is approximately seven times that of CERRT. CERRT has
the shortest average runtime with a standard deviation of only 4.68, which is significantly
lower than the other three algorithms, indicating excellent performance of the proposed
algorithm in the actual environment.

Table 7. Results for planning in actual map.

Algorithm Avg. Time (ms) Std Avg. Nodes Path Cost BSOS Cost

RRT 278.31 139.61 3126 2499.48 2104.93
RRV 2782.19 435.89 3149 2446.17 2036.01

Fast-RRT 365.72 138.94 2674 2545.87 2124.81
CERRT 55.23 4.68 907 1990.01 1706.98

Appl. Sci. 2023, 13, 9666 19 of 20

Regarding path optimization, a horizontal comparison reveals that the path lengths
after applying BSOS are all smaller than the initial paths, confirming the practicality of
BSOS. A vertical comparison shows that the path length generated by CERRT is smaller
than the other three algorithms. This is because CERRT is able to quickly discover and
navigate through the curved passage shortcut in the actual environment, while the other
algorithms struggle to pass through the curved passage efficiently.

In conclusion, the CERRT algorithm outperforms the other three algorithms in a real-
world environment. The main reason is that the expansion principle of CERRT is inspired
by the hexagonal honeycomb structure found in nature. Reference [21] mentions that a
hexagonal honeycomb provides the least-perimeter way to enclose and separate infinitely
many regions of unit area, indicating that using a hexagonal expansion strategy can greatly
improve the utilization of each tree node and thus enhance the algorithm’s performance.

5. Conclusions

In this paper, we propose a sampling-based path planning algorithm, CERRT, which
performs better than other algorithms in complex environments and effectively solves
the narrow passage problem. CERRT consists of two important parts: the first part limits
the selection and expansion of tree vertices to maximize the utilization of each vertex,
while the second part involves environment perception, where vertices are sampled near
obstacles to ensure feasible passages are discovered. By combining the vertex selection
method of the first part with the sampling strategy of the second part, the algorithm
avoids redundant and useless exploration near trap-type obstacles, significantly improving
planning performance. Numerical simulations comparing the proposed algorithm with
others validate its effectiveness. Since sampling-based algorithms generally generate lower-
quality paths, we propose the BSOS strategy to optimize the initial paths. The suitability of
the algorithm has been verified through path optimization for different sampling algorithms.
The optimized paths produced by the BSOS algorithm were superior to those produced by
the well-known pruning optimization strategy (POS). However, for the algorithm proposed
in this paper, the number of locally sampled points in three-dimensional environments
may increase dramatically, limiting the environmental perception capability. Therefore, the
next step is to study the performance of the algorithm in high-dimensional environments.

Author Contributions: Conceptualization, K.H. and Y.Y.; methodology, K.H. and Z.L.; software,
Y.Y. and Z.L.; validation, K.H., Z.L. and Y.Y.; formal analysis, Z.L.; investigation, K.H.; resources,
X.Z.; data curation, X.Z.; writing—original draft preparation, Y.Y.; writing—review and editing,
K.H.; visualization, Y.L.; supervision, Y.L.; project administration, Z.L.; funding acquisition, K.H. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the Chunhui Cooperation Program of the Ministry
of Education, HZKY20220590-202200265; National Natural Science Foundation of China under
Grant 61902273.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No data were used for the research described in the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hichri, B.; Gallala, A.; Giovannini, F.; Kedziora, S. Mobile robots path planning and mobile multirobots control: A review. Robotica

2022, 40, 4257–4270. [CrossRef]
2. Öztürk, Ü.; Akdağ, M.; Ayabakan, T. A review of path planning algorithms in maritime autonomous surface ships: Navigation

safety perspective. Ocean. Eng. 2022, 251, 111010. [CrossRef]
3. Wang, X.; Wei, J.; Zhou, X.; Xia, Z.; Gu, X. AEB-RRT*: An adaptive extension bidirectional RRT* algorithm. Auton. Robot. 2022, 46,

685–704.

https://doi.org/10.1017/S0263574722000893
https://doi.org/10.1016/j.oceaneng.2022.111010

Appl. Sci. 2023, 13, 9666 20 of 20

4. Kuffner, J.J.; LaValle, S.M. RRT-connect: An efficient approach to single-query path planning. In Proceedings of the Proceedings 2000
ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065),
San Francisco, CA, USA, 24–28 April 2000; IEEE: Piscataway, NJ, USA, 2000; pp. 995–1001.

5. Tahirovic, A.; Ferizbegovic, M. Rapidly-exploring random vines (RRV) for motion planning in configuration spaces with narrow
passages. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25
May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 7055–7062.

6. Hsu, D.; Jiang, T.; Reif, J.; Sun, Z. The bridge test for sampling narrow passages with probabilistic roadmap planners. In
Proceedings of the 2003 IEEE International Conference on Robotics and Automation (cat. no. 03CH37422), Taipei, Taiwan, 14–19 September
2003; IEEE: Piscataway, NJ, USA, 2003; pp. 4420–4426.

7. Wu, Z.; Meng, Z.; Zhao, W.; Wu, Z. Fast-RRT: A RRT-Based Optimal Path Finding Method. Appl. Sci. 2021, 11, 11777. [CrossRef]
8. Cai, P.; Yue, X.; Zhang, H. ADD-RRV for motion planning in complex environments. Robotica 2022, 40, 136–153. [CrossRef]
9. Li, B.; Chen, B. An adaptive rapidly-exploring random tree. IEEE/CAA J. Autom. Sin. 2021, 9, 283–294. [CrossRef]
10. Chi, W.; Ding, Z.; Wang, J.; Chen, G.; Sun, L. A Generalized Voronoi Diagram-Based Efficient Heuristic Path Planning Method for

RRTs in Mobile Robots. IEEE Trans. Ind. Electron. 2021, 69, 4926–4937. [CrossRef]
11. Taheri, E.; Ferdowsi, M.H.; Danesh, M. Fuzzy greedy RRT path planning algorithm in a complex configuration space.

Int. J. Control. Autom. Syst. 2018, 16, 3026–3035. [CrossRef]
12. Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 2011, 30, 846–894. [CrossRef]
13. Islam, F.; Nasir, J.; Malik, U.; Ayaz, Y.; Hasan, O. Rrt∗-smart: Rapid convergence implementation of rrt∗ towards optimal solution.

In Proceedings of the 2012 IEEE International Conference on Mechatronics and Automation, Chengdu, China, 5–8 August 2012; IEEE:
Piscataway, NJ, USA, 2012; pp. 1651–1656.

14. Gammell, J.D.; Srinivasa, S.S.; Barfoot, T.D. Informed RRT*: Optimal sampling-based path planning focused via direct sampling
of an admissible ellipsoidal heuristic. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems,
Chicago, IL, USA, 14–18 September 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 2997–3004.

15. Qureshi, A.H.; Ayaz, Y. Potential functions based sampling heuristic for optimal path planning. Auton. Robot. 2016, 40, 1079–1093.
[CrossRef]

16. Jeong, I.-B.; Lee, S.-J.; Kim, J.-H. Quick-RRT*: Triangular inequality-based implementation of RRT* with improved initial solution
and convergence rate. Expert Syst. Appl. 2019, 123, 82–90. [CrossRef]

17. Liao, B.; Wan, F.; Hua, Y.; Ma, R.; Zhu, S.; Qing, X. F-RRT*: An improved path planning algorithm with improved initial solution
and convergence rate. Expert Syst. Appl. 2021, 184, 115457. [CrossRef]

18. Qian, K.; Liu, Y.; Tian, L.; Bao, J. Robot path planning optimization method based on heuristic multi-directional rapidly-exploring
tree. Comput. Electr. Eng. 2020, 85, 106688. [CrossRef]

19. Chen, Y.; Fu, Y.; Zhang, B.; Fu, W.; Shen, C. Path planning of the fruit tree pruning manipulator based on improved RRT-Connect
algorithm. Int. J. Agric. Biol. Eng. 2022, 15, 177–188. [CrossRef]

20. Hao, K.; Zhao, J.; Wang, B.; Liu, Y.; Wang, C. The Application of an Adaptive Genetic Algorithm Based on Collision Detection in
Path Planning of Mobile Robots. Comput. Intell. Neurosci. 2021, 2021, 5536574. [CrossRef]

21. Morgan, F. The hexagonal honeycomb conjecture. Trans. Am. Math. Soc. 1999, 351, 1753–1763. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/app112411777
https://doi.org/10.1017/S0263574721000436
https://doi.org/10.1109/JAS.2021.1004252
https://doi.org/10.1109/TIE.2021.3078390
https://doi.org/10.1007/s12555-018-0037-6
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1007/s10514-015-9518-0
https://doi.org/10.1016/j.eswa.2019.01.032
https://doi.org/10.1016/j.eswa.2021.115457
https://doi.org/10.1016/j.compeleceng.2020.106688
https://doi.org/10.25165/j.ijabe.20221502.6249
https://doi.org/10.1155/2021/5536574
https://doi.org/10.1090/S0002-9947-99-02356-9

	Introduction
	Background
	Problem Definition
	RRT
	RRV

	CERRT
	Algorithm Framework
	Vertex Expansion Method
	Environmental Awareness
	Path Optimization Strategy

	Simulation and Experiment
	Path Planning Simulation
	Simple Environment
	Maze Environment
	Narrow Environment
	Bug Trap Environment

	Path Optimization Simulation
	Maze Environment Path Optimization
	Bug Trap Environment Path Optimization

	Evaluation of Algorithms in Real Environment

	Conclusions
	References

