Upper First Molar and Second Premolar Distalization with Clear Aligner and Interradicular Skeletal Anchorage: A Finite Element Study
Abstract
:1. Introduction
2. Materials and Methods
CAD Design
- -
- Mesh size: 0.09 mm;
- -
- Type of element: linear;
- -
- Average nodes: 1,240,850;
- -
- Average elements: 1,435,655.
- -
- Three with 16mm elongation length, as follows:
- (1)
- Elastic parallel to the occlusal plane (α90);
- (2)
- Elastic stretched at 20° with respect to the occlusal plane (α20);
- (3)
- Elastic stretched at 30° with respect to the occlusal plane (α30).
- -
- Three with 24.5 mm elongation length, as follows:
- (1)
- Elastic parallel to the occlusal plane (β90);
- (2)
- Elastic stretched at 20° with respect to the occlusal plane (β20);
- (3)
- Elastic stretched at 30° with respect to the occlusal plane (β30).
- -
- Three with pseudo-ankylosis supported by a miniscrew next to the upper second molar. The dental element was locked in the initial position, preventing unwanted movements due to the loss of posterior anchorage.
- (1)
- Elastic anchored on the upper first premolar and parallel to the occlusal plane (α 90 anch);
- (2)
- Elastic anchored on the upper canine and parallel to the occlusal plane (β 90 anch);
- (3)
- Elastic anchored on the upper canine and creating a 30° angle with respect to the occlusal plane (β 30 anch).
3. Results
4. Discussion
5. Conclusions
- -
- The variation of the force angle determined by different vertical locations of the mini-screw and elastic anchorage on the first premolar, rather than on the canine, can influence the pattern of tooth movement, particularly at the level of the canines.
- -
- In terms of anterior anchorage loss, the use of Class I elastics anchored on the canine can be of help in promoting the incisors’ proclination when required (Class II, division 2), while Class I elastics anchored on the first premolar can be of help when proclination needs to be corrected (Class II, division 1).
- -
- Buccal interradicular TADs and Class I elastics cannot prevent posterior anchorage loss.
- -
- The pseudo-ankylosis of the upper second molars can improve the amount of distalization movement achieved by the first molar and second premolar, avoiding any posterior anchorage loss.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kravitz, N.D.; Kusnoto, B.; BeGole, E.; Obrez, A.; Agran, B. How well does Invisalign work? A prospective clinical study evaluating the efficacy of tooth movement with Invisalign. Am. J. Orthod. Dentofac. Orthop. 2009, 135, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Rossini, G.; Parrini, S.; Castroflorio, T.; Deregibus, A.; Debernardi, C.L. Efficacy of clear aligners in controlling orthodontic tooth movement: A systematic review. Angle Orthod. 2015, 85, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Haouili, N.; Kravitz, N.D.; Vaid, N.R.; Ferguson, D.J.; Makki, L. Has Invisalign improved? A prospective follow-up study on the efficacy of tooth movement with Invisalign. Am. J. Orthod. Dentofac. Orthop. 2020, 158, 420–425. [Google Scholar] [CrossRef] [PubMed]
- De Ridder, L.; Aleksieva, A.; Willems, G.; Declerck, D.; Cadenas de Llano-Pérula, M. Prevalence of Orthodontic Malocclusions in Healthy Children and Adolescents: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 7446. [Google Scholar] [CrossRef] [PubMed]
- Daher, S. Dr. Sam Daher’s Techniques for Class II Correction with Invisalign and Elastics Align Technology, Santa Clara, Ca, USA. 2011. Available online: https://s3.amazonaws.com/learn-invisalign/docs/06840000000Fp2xAAC.pdf (accessed on 15 April 2011).
- Rossini, G.; Schiaffino, M.; Parrini, S.; Sedran, A.; Deregibus, A.; Castroflorio, T. Upper second molar distalization with clear aligners: A finite element study. Appl. Sci. 2020, 10, 7739. [Google Scholar] [CrossRef]
- Fischer, K. Invisalign treatment of dental Class II malocclusions without auxiliaries. J. Clin. Orthod. 2010, 44, 665–672. [Google Scholar] [PubMed]
- Schupp, W.; Haubrich, J.; Neumann, I. Class II correction with the Invisalign system. J. Clin. Orthod. 2010, 44, 28–35. [Google Scholar] [PubMed]
- Ravera, S.; Castroflorio, T.; Garino, F.; Daher, S.; Cugliari, G.; Deregibus, A. Maxillary molar distalization with aligners in adult patients: A multicenter retrospective study. Prog. Orthod. 2016, 17, 12. [Google Scholar] [CrossRef] [PubMed]
- Garino, F.; Castroflorio, T.; Daher, S.; Ravera, S.; Rossini, G.; Cugliari, G.; Deregibus, A. Effectiveness of composite attachments in controlling upper-molar movement with aligners. J. Clin. Orthod. 2016, 50, 341–347. [Google Scholar]
- Saif, B.S.; Pan, F.; Mou, Q.; Han, M.; Bu, W.; Zhao, J.; Guan, L.; Wang, F.; Zou, R.; Zhou, H.; et al. Efficiency evaluation of maxillary molar distalization using Invisalign based on palatal rugae registration. Am. J. Orthod. Dentofac. Orthop. 2022, 161, e372–e379. [Google Scholar] [CrossRef]
- Arveda, N.; de Felice, M.E.; Derton, N.; Lombardo, L.; Gatto, R.; Caruso, S. Management of Class III Extraction with the Miniscrew-Supported Orthodontic Pseudo-Ankylosis (MSOPA) Using Direct Tads. Appl. Sci. 2022, 12, 2464. [Google Scholar] [CrossRef]
- Konda, P.; Sa, T. Basic principles of finite element method and its applications in orthodontics. J. Pharm. Biomed. Anal. 2012, 16, 1–4. [Google Scholar]
- Papageorgiou, S.N.; Keilig, L.; Hasan, I.; Jäger, A.; Bourauel, C. Effect of material variation on the biomechanical behaviour of orthodontic fixed appliances: A finite element analysis. Eur. J. Orthod. 2016, 38, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Barone, S.; Paoli, A.; Razionale, A.V.; Savignano, R. Computational design and engineering of polymeric orthodontic aligners. Int. J. Numer. Method Biomed. Eng. 2017, 33, e2839. [Google Scholar] [CrossRef] [PubMed]
- Himmlová, L.; Dostálová, T.; Kácovský, A.; Konvicková, S. Influence of implant length and diameter on stress distribution: A finite element analysis. J. Prosthet. Dent. 2004, 91, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Berutti, E.; Chiandussi, G.; Gaviglio, I.; Ibba, A. Comparative analysis of torsional and bending stresses in two mathematical models of nickel-titanium rotary instruments: ProTaper versus ProFile. J. Endod. 2003, 29, 15–19. [Google Scholar] [CrossRef]
- De Vree, J.H.; Peters, M.C.; Plasschaert, A.J. The influence of modification of cavity design on distribution of stresses in a restored molar. J. Dent. Res. 1984, 63, 1217–1220. [Google Scholar] [CrossRef]
- Knop, L.; Gandini, L.G.; Shintcovsk, R.L.; Gandini, M.R.E.A.S. Scientific use of the finite element method in orthodontics. Dent. Press J. Orthod. 2015, 20, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Su, M.Z.; Chang, H.H.; Chiang, Y.C.; Cheng, J.H.; Fuh, L.J.; Wang, C.Y.; Lin, C.P. Modeling viscoelastic behavior of periodontal ligament with nonlinear finite element analysis. J. Dent. Sci. 2013, 8, 121–128. [Google Scholar] [CrossRef]
- Simon, M.; Keilig, L.; Schwarze, J.; Jung, B.A.; Bourauel, C. Treatment outcome and efficacy of an aligner technique--regarding incisor torque, premolar derotation and molar distalization. BMC Oral Health 2014, 14, 68. [Google Scholar] [CrossRef] [PubMed]
- Gomez, J.P.; Peña, F.M.; Martínez, V.; Giraldo, D.C.; Cardona, C.I. Initial force systems during bodily tooth movement with plastic aligners and composite attachments: A three-dimen-sional finite element analysis. Angle Orthod. 2015, 85, 454–460. [Google Scholar] [CrossRef]
- Castroflorio, T.; Sedran, A.; Spadaro, F.; Rossini, G.; Quinzi, V.; Deregibus, A. Analysis of Class II Intermaxillary Elastics Applied Forces: An in-vitro Study. Front. Dent. Med. 2022, 2, 748985. [Google Scholar] [CrossRef]
- Liu, H.; Wu, X.; Yang, L.; Ding, Y. Safe zones for miniscrews in maxillary dentition distalization assessed with cone-beam computed tomography. Am. J. Orthod. Dentofac. Orthop. 2017, 151, 500–506. [Google Scholar] [CrossRef]
- Liou, E.J.; Chen, P.H.; Wang, Y.C.; Lin, J.C. A computed tomographic image study on the thickness of the infrazygomatic crest of the maxilla and its clinical implications for miniscrew insertion. Am. J. Orthod. Dentofac. Orthop. 2007, 131, 352–356. [Google Scholar] [CrossRef]
- Rossini, G. Finite Element Analysis of Clear Orthodontic Aligners’ Biomechanics: From cad-fe Framework Design to Clinical Optimization. Doctoral Thesis, Polytechnic University of Turin, Torino, Italy, 2020. [Google Scholar]
- Wang, Q.; Dai, D.; Wang, J.; Chen, Y.; Zhang, C. Biomechanical analysis of effective mandibular en-masse retraction using Class II elastics with a clear aligner: A finite element study. Prog. Orthod. 2022, 23, 23. [Google Scholar] [CrossRef] [PubMed]
- Dianiskova, S.; Rongo, R.; Buono, R.; Franchi, L.; Michelotti, A.; D’Antò, V. Treatment of mild Class II malocclusion in growing patients with clear aligners versus fixed multibracket therapy: A retrospective study. Orthod. Craniofac. Res. 2022, 25, 96–102. [Google Scholar] [CrossRef]
- Zhu, Y.; Hu, W.; Li, S. Force changes associated with differential activation of en-masse retraction and/or intrusion with clear aligners. Korean J. Orthod. 2021, 51, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Gao, J.; Fang, S.; Wang, W.; Ma, Y.; Jin, Z. Torque movement of the upper anterior teeth using a clear aligner in cases of extraction: A finite element study. Prog. Orthod. 2022, 23, 26. [Google Scholar] [CrossRef] [PubMed]
- Derton, N.; Lupini, D.; Cozzani, M. Miniscrew-Supported Orthodontic Pseudo-Ankylosis for Mesialization of a Lower Third Molar. J. Clin. Orthod. 2017, 51, 290–293. [Google Scholar]
Material | Young’s Modulus, E (MPa) | Poisson Ration, v |
---|---|---|
Teeth | 1.96 × 104 | 0.30 |
Attachment | 1.25 × 104 | 0.36 |
Periodontal ligament | 0.69 | 0.45 |
Aligners | 528 | 0.36 |
Configuration | Max (mm) | Localization | Min (mm) | Localization |
---|---|---|---|---|
α 90 | 0.092634 | U5 crown | 0.000166 | U4 buccal root |
α 20 | 0.094285 | U5 crown | 0.000155 | U2 palatal root |
α 30 | 0.094184 | U5 crown | 0.000157 | U2 palatal root |
β 90 | 0.095492 | U5 crown | 0.000172 | U5 buccal root |
β 20 | 0.096133 | U5 crown | 0.000303 | U4 palatal root |
β 30 | 0.095814 | U5 crown | 0.000273 | U4 palatal root |
α 90 anch | 0.093408 | U5 crown | 0.000000 | U7 |
β 90 anch | 0.095966 | U5 crown | 0.000000 | U7 |
β 30 anch | 0.096463 | U5 crown | 0.000000 | U7 |
Configuration | X (mm) | Y (mm) | Z (mm) | Total (mm) |
---|---|---|---|---|
α 90 | −0.015 | −0.044 | 0.013 | 0.048 |
α 20 | −0.015 | −0.044 | 0.013 | 0.048 |
α 30 | −0.015 | −0.043 | 0.013 | 0.048 |
β 90 | −0.026 | −0.064 | 0.021 | 0.072 |
β 20 | −0.028 | −0.065 | 0.023 | 0.075 |
β 30 | −0.029 | −0.065 | 0.023 | 0.075 |
α 90 anch | −0.015 | −0.044 | 0.013 | 0.048 |
β 90 anch | −0.026 | −0.064 | 0.021 | 0.072 |
β 30 anch | −0.029 | −0.065 | 0.023 | 0.075 |
Configuration | X (mm) | Y (mm) | Z (mm) | Total (mm) |
---|---|---|---|---|
α 90 | −0.044 | 0.009 | 0.052 | 0.045 |
α 20 | −0.058 | 0.003 | 0.008 | 0.059 |
α 30 | −0.060 | −0.000 | 0.014 | 0.061 |
β 90 | −0.096 | 0.062 | −0.001 | 0.063 |
β 20 | −0.028 | 0.052 | 0.010 | 0.060 |
β 30 | −0.041 | 0.042 | 0.015 | 0.061 |
α 90 anch | −0.043 | 0.010 | 0.005 | 0.044 |
β 90 anch | −0.009 | 0.062 | −0.001 | 0.063 |
β 30 anch | −0.041 | 0.043 | 0.015 | 0.062 |
Configuration | X (mm) | Y (mm) | Z (mm) | Total (mm) |
---|---|---|---|---|
α 90 | −0.002 | 0.062 | −0.016 | 0.064 |
α 20 | −0.007 | 0.060 | −0.015 | 0.062 |
α 30 | −0.009 | 0.058 | −0.014 | 0.060 |
β 90 | −0.009 | 0.068 | −0.017 | 0.071 |
β 20 | −0.010 | 0.065 | −0.017 | 0.068 |
β 30 | −0.011 | 0.063 | −0.016 | 0.066 |
α 90 anch | −0.0001 | 0.064 | −0.017 | 0.066 |
β 90 anch | −0.008 | 0.069 | −0.018 | 0.072 |
β 30 anch | −0.009 | 0.065 | −0.017 | 0.068 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castroflorio, T.; Parrini, S.; Rossini, G.; Nebiolo, B.; Gavetti, F.; Quinzi, V.; Derton, N.; Greco, M.A.; Deregibus, A. Upper First Molar and Second Premolar Distalization with Clear Aligner and Interradicular Skeletal Anchorage: A Finite Element Study. Appl. Sci. 2023, 13, 9695. https://doi.org/10.3390/app13179695
Castroflorio T, Parrini S, Rossini G, Nebiolo B, Gavetti F, Quinzi V, Derton N, Greco MA, Deregibus A. Upper First Molar and Second Premolar Distalization with Clear Aligner and Interradicular Skeletal Anchorage: A Finite Element Study. Applied Sciences. 2023; 13(17):9695. https://doi.org/10.3390/app13179695
Chicago/Turabian StyleCastroflorio, Tommaso, Simone Parrini, Gabriele Rossini, Bianca Nebiolo, Flavia Gavetti, Vincenzo Quinzi, Nicola Derton, Mario Alessandro Greco, and Andrea Deregibus. 2023. "Upper First Molar and Second Premolar Distalization with Clear Aligner and Interradicular Skeletal Anchorage: A Finite Element Study" Applied Sciences 13, no. 17: 9695. https://doi.org/10.3390/app13179695
APA StyleCastroflorio, T., Parrini, S., Rossini, G., Nebiolo, B., Gavetti, F., Quinzi, V., Derton, N., Greco, M. A., & Deregibus, A. (2023). Upper First Molar and Second Premolar Distalization with Clear Aligner and Interradicular Skeletal Anchorage: A Finite Element Study. Applied Sciences, 13(17), 9695. https://doi.org/10.3390/app13179695