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Abstract: In the past few years, deep convolutional neural networks (DCNNs) have surpassed
human performance in tasks related to recognizing objects. However, DCNNs are also threatened by
performance degradation due to adversarial examples. DCNNs are essentially black-boxed, and it is
not known how the output is determined internally; consequently, it is not known how adversarial
attacks cause performance degradation inside the DCNNs. To observe the internal neuronal activities
of DCNN models for adversarial examples, we analyzed the population sparseness index (PSI)
values at each layer of two representative DCNN models, namely AlexNet and VGG11. From the
experimental results, we observed that the internal responses of the two DCNN models to adversarial
examples exhibited distinct layer-wise PSI values, differing from the internal responses to benign
examples. The main contribution of this study is the discovery of significant differences in the internal
responses of two specific DCNN models to adversarial and benign examples by PSI. Furthermore,
our research has the potential not only to contribute to the design of more robust DCNN models
against adversarial examples but also to bridge the gap between the fields of artificial intelligence
and neurophysiology of the brain.

Keywords: deep convolutional neural networks (DCNNs); population sparseness index (PSI);
adversarial attacks

1. Introduction

Advances in deep convolution neural networks (DCNNs) in the field of object recogni-
tion have surpassed human-level performance [1,2]. The effective functioning of DCNNs
can be attributed mainly to their structures, comprising a series of convolutional layers
and fully connected layers. Each layer contains numerous units equipped with diverse
filters (referred to as neurons in DCNNs), mirroring the hierarchical arrangement seen in
the visual stream’s ventral layers of primates [3]. By employing this hierarchical design and
utilizing supervised learning on an extensive set of object examples, DCNNs are anticipated
to form intricate internal representations of external objects.

While DCNN models exhibit normal behavior on benign examples through the train-
ing process, they have a fatal disadvantage in that their performance is degraded by
adversarial attacks. Adversarial examples, which are instances characterized by a small,
virtually imperceptible perturbation, can cause DCNN models to make mistakes [4,5]. To
human eyes, adversarial examples seem identical to the original and do not affect the
perception of an object.

To DCNNs, however, they work almost as an optical illusion, causing them to misclas-
sify data and make false predictions [6]. It is interesting to note that only DCNN models
that mimic the primate visual system are sensitive to adversarial attacks [7]. Adversarial
attacks reveal a serious vulnerability in deep learning systems and pose a safety challenge
that cannot be ignored in AI applications [8].

However, current research cannot find a clear cause of how adversarial attacks affect
deep learning systems, and only individual defense mechanisms against specific adver-
sarial attacks have been proposed [9–12]. Analyzing the fundamental cause of adversarial
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attacks can help researchers to effectively overcome the vulnerability of the DCNNs. The
vulnerability of DCNNs to adversarial attacks has led to a variety of opinions. While
Goodfellow et al. [4] discovered that the effectiveness against such attacks did not show
significant improvement, other researchers [5] put forth the hypothesis that the extreme
non-linearity of DCNNs is responsible for adversarial attacks.

Conversely, even in high-dimensional linear models, adversarial attacks can confi-
dently create successful perturbations in inputs [13]. Goodfellow et al. [4] attributed the
origin of adversarial attacks to the linear characteristics exhibited in high-dimensional
space. Consequently, we know very little about the process of finding the right answer
within DCNNs for even benign examples. Nor do we know what happens internally when
adversarial examples are applied to DCNN models [13–15].

Recently, an interesting study has been published related to neuronal activity in
DCNNs [16]. This study demonstrated the distribution of active neurons in layers using PSI
in the normal operation of DCNNs due to benign examples. PSI is a measure that allows
for the representation of the sparsity of neuron activation by observing the activation status
of a given neuron in the cerebral cortex when it is stimulated [17]. If we consider the nodes
of each layer that constitute the DCNN model as neurons, measuring the PSI in each layer
allows us to infer the internal dynamics of the models [18].

In their experiments, the distribution of PSI values for the object categories in each layer
of the AlexNet and VGG11 models was analyzed, and the sparseness of neuronal activities
was assessed by the PSI for the object categories of the ImageNet and Catlec256 datasets
on a per-layer basis, separately. While their research made a significant contribution by
employing the PSI to analyze the internal dynamics of DCNN models, their experiments
were limited to cases where models function correctly on datasets composed of benign
examples. Separately, our focus lies in analyzing the internal behavior of DCNN models
when exposed to abnormal examples, specifically adversarial examples.

Our main idea is that there will be distinct changes in the PSI analysis compared to
when benign examples are applied, when the internal dynamics of DCNN models behave
differently for adversarial examples. The hypothesis within our main idea implies that the
neurons in each layer of DCNN models operate abnormally when subjected to adversarial
examples. To test our hypothesis, we applied the same DCNN models as in the study
by [16], with the exception that we used adversarial examples instead of benign examples.

We employed three different adversarial attacks to generate adversarial examples
for the experiments: FGSM attack, PGD attack, and CW attack [19]. In our experiment,
we analyzed the distribution of the PSI at each layer in DCNNs for adversarial examples.
Also, we compared the experimental results in [16] with our findings on the changes in the
PSI according to the adversarial examples. In particular, we systematically assessed the
layer-by-layer sparsity in the featured objects. Subsequently, we delineated the operational
aspects of sparsity by investigating how sparsity correlates with performance at each layer.
Lastly, we scrutinized the factors influencing the encoding scheme.

This paper is organized as follows: Section 2 is divided into four subsections related to
the experimental setup. Section 2.1 provides descriptions of the visual image datasets used
in the experiments, namely the ImageNet dataset and the Caltech256 dataset. Section 2.2
explains the architectures of the two DCNN models utilized in the experiments, namely the
AlexNet and VGG11 models. In Section 2.3, we elucidate the formulation and significance of
the PSI, a method employed to interpret the internal structure of DCNN models. Section 2.4
describes the attack techniques used to generate the three types of adversarial examples
employed in the experiments. In Section 3, we conduct PSI analysis on the two DCNN
models on a per-layer basis and analyze the implications of the findings. Lastly, we conclude
the study, outline its limitations, and propose future research directions in Section 4.
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2. Materials and Methods
2.1. Visual Image Datasets

For the experiment, two image datasets were prepared: the ImageNet dataset and the
Caltech256 dataset as in Table 1. The dataset from ImageNet Large-Scale Visual Recognition
Challenge 2012 (ILSVRC2012) [20] contains 1000 categories that are organized according to
the hierarchy of WordNet [21]. The 1000 object categories consist of both internal nodes and
leaf nodes of WordNet but do not overlap with each other. The dataset contains 1.2 million
images for model training, 50,000 images for model validation, and 100,000 images for
model testing.

Table 1. Specifications of ImageNet and Caltech256 datasets.

Dataset Training Validation Testing Categories

ImageNet 1,281,167 50,000 100,000 1000

Caltech256

Total data Data/Category Categories

30,607
Min. Med. Avg. Max.

25680 100 119 827

In the present study, only the validation dataset (i.e., 1000 categories × 50 images)
was used to evaluate the coding scheme of the DCNNs. The Caltech256 dataset consists
of 30,607 images from 256 object categories with a minimum number of 80 images per
category [21]. Caltech-256 is widely used for training and testing in the field of machine
learning, particularly for object recognition tasks. In the present study, a selection of
80 images per category was made at random from the original dataset.

2.2. Pretrained DCNN Models

Pre-trained AlexNet [22] and VGG11 [23] models on the ILSVRC2012 dataset, as
shown in Table 2, were downloaded from the PyTorch model, ZOO [24]. Both DCNN
architectures, illustrated in Figures 1 and 2, respectively, are purely feedforward in nature,
where each layer’s input solely relies on the output of the preceding layer. AlexNet is
composed of 5 convolutional layers (Conv1 to Conv5) that produce feature maps using
linear spatial filters, along with 3 fully connected layers (FC1 to FC3). Following each
convolutional and fully connected layer, a rectifying nonlinear unit (ReLU) of the form max
(x,0) is applied to all units.

Table 2. Configurations of VGG11 and AlexNet architectures.

Layer No. of Layer VGG11 AlexNet

Convolution layer

1 Conv3-64 Conv11-96

2 Conv3-128 Conv5-256

3 Conv3-256 Conv-3-384

4 Conv-3-256 Conv-3-384

5 Conv-3-512 Conv-3-256

6 Conv-3-512

7 Conv-3-512

8 Conv-3-512

FC layer
1 FC-4096 FC-4096

2 FC-4096 FC-4096

Output layer FC-1000 FC-1000
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In specific convolutional layers, ReLU is followed by a subsequent max pooling sub-
layer. VGG11 shares architectural similarities with AlexNet but differs in two aspects.
Firstly, VGG11 employs smaller receptive fields (3 by 3 with a stride of 1) compared to
AlexNet’s (11 by 11 with a stride of 4). Secondly, VGG11 possesses more layers, specifically
8 convolutional layers, compared to AlexNet.

The designation “Conv#” signifies the results of the ReLU sublayer within the convolu-
tional layer numbered #, whereas “FC#” represents the outcomes of the #th fully connected
layer following ReLU activation. To extract DCNN activations, the DNNBrain toolbox [25]
was utilized. The activation map for every unit or channel was averaged to yield per-unit
or per-channel activations for each instance. The activation of a unit for a specific object
category was determined by averaging the per-unit responses across all instances belonging
to that category.

2.3. Population Sparseness Index

The PSI value was computed for every layer of DCNNs to measure the highest point
of the distribution of population responses evoked by an object category. This value
corresponds to the proportion of units within the population that engaged in encoding
objects, assuming binary responses [26].

PSI =
1− a

1− 1
Nu

, where a =

(
(∑Nu

u=1 ru)/Nu

)2

∑Nu
u=1 r2

u/Nu
(1)

where ru is the unit-wise activation of a unit u from a target layer in response to an object
category, and Nu is the number of units in that layer. Activation on a unit-by-unit basis was
z-scored for each unit across all categories. Subsequently, normalization was performed
to scale these values from 0 to 1 across all units, thereby converting negative values into
non-negative values as per the PSI’s specification. PSI values nearing 0 suggest low sparsity,
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signifying uniform responses across all units for the given object category. Conversely,
values nearing 1 indicate high sparsity, implying that only a limited number of units
respond to the category.

2.4. Adversarial Attacks
2.4.1. FGSM Attack

Szegedy et al. [27] introduced the most straightforward and rapid approach for gen-
erating adversarial examples. In order to diminish classification certainty and amplify
the ambiguity between categories, fast gradient sign method (FGSM) attack involves in-
troducing perturbations and linearizing the loss function in the direction of the gradient
by (2) [27]:

x′ = x + ε·sign(∇X J(x, y)) (2)

where x′ represents an adversarial example from the given input x, ε is a randomly selected
initial hyper-parameter, sign(·) is a signum function, y denotes the ground-truth label
corresponding to x, and J(·) represents the cost function used for training the neural
network model. Additionally, ∇X(·) signifies the gradient with respect to x. FGSM attack
employs analytical computations to calculate the gradient, whereas L-BFGS attack utilizes
numerical optimization. As a result, FGSM attack arrives at a solution more swiftly.
However, due to ε, FGSM attack is unable to generate a perceptual minimal difference
between x and x’, unlike L-BFGS attack. Once a suitable ε value is determined through
empirical means, the creation of an imperceptible adversarial sample can be achieved by
applying values in its proximity.

2.4.2. PGD Attack

Projective gradient descent (PGD) attack was first introduced by Madry et al. [28]. It
is an iterative version of the one-step FGSM attack. PGD can be initialized by randomly
using any point within the distance of the L∞ norm of a benign sample. Each time a small
step is taken, and each iteration will project the perturbation into a specified range. In a
non-targeted setting, it gives an iterative formulation to craft [28]:

xt+1 = Projx,ε
(
xt + α·sgn

(
∇xL

(
θ, xt, y

)))
(3)

where Proj denotes the function to project its argument to the surface of x′s ε-neighbor
ball. The step size α is usually set to be relatively small (e.g., 1 unit of pixel change for
each pixel), and step numbers guarantee that the perturbation can reach the border. This
PGD attack heuristically searches the samples x′, which have the largest loss value in the
L∞-ball around the original sample x. Compared to the one-step FGSM attack algorithm,
PGD attack has more flexibility, so it also has a greater adversarial attack effect.

2.4.3. CW Attack

Carlini and Wagner proposed a set of optimization-based adversarial attacks (CW
attacks) that can generate L0, L2 and L∞ norm-measured adversarial attacks [29]. The au-
thors employed a loss function chosen through empirical methods to induce the maximum
misclassification in each norm-based attack, as in (4) [29].

L
(
x′, t

)
= max

(
max
i 6=t

{
Z
(
x′
)
(i)

}
− Z

(
x′
)
(t),−κ

)
, (4)

where Z(x′)(i) denotes the i-class’s logit, t signifies the target label, and κ is a parameter that
embodies the minimum desired confidence margin for the adversarial examples. The loss
function in (4) seeks to minimize the distance in logit values between class t and the next
most similar class. When t holds the highest logit value, the disparity between the logits
becomes negative, leading to optimization cessation when this logit disparity between t
and the second class surpasses κ.
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The authors demonstrated that CW attacks exhibited impressive success rates com-
pared to contemporary attacks when assessed on the ImageNet dataset. Specifically, L0, L2
and L∞-CW attacks outperformed JSMA, DeepFool attack, and FGSM attack, respectively.

3. Experimental Results

To clarify the relationship between adversarial examples and the PSI, we analyzed the
research contents related to the sparseness coding scheme studied by Xingyu Liu et al. [16].
They presented significant insight regarding the PSI through the utilization of pre-trained
AlexNet and VGG11 models on both the ImageNet and Caltech256 datasets. Their examination
of the PSI values within the context of the ImageNet validation dataset revealed consistently
modest values across all layers for every object category (median < 0.4), with the highest
values not surpassing 0.6 in their conducted experiments. This observation suggests the
widespread adoption of a sparse coding approach throughout all layers of the DCNNs for
the purpose of object representation. Figure 3 illustrates the experimental findings depicting
variations in the PSI values based on the layer, as depicted in [16].
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The sparsity was assessed by means of the PSI for individual object categories within each layer,
employing the ImageNet dataset.

Another noteworthy finding surfaced as the distributions of PSI for all categories
exhibited considerable breadth (range > 0.2) across each layer, indicating pronounced
variations in sparsity across distinct object categories. Notably, it was observed that the
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median PSI values displayed an inclination to rise progressively along the hierarchy, both
in the convolutional and fully connected layers, respectively. The median PSI trajectory,
however, was not strictly monotonic, with the initial layer showing slightly higher PSI
than its immediate neighbors. Interestingly, despite the dissimilar number of convolutional
layers between AlexNet and VGG11, a marked elevation in the median PSI was evident in
the last two layers.

To investigate the relationship between adversarial examples and the PSI, we gen-
erated adversarial examples through FGSM attack on the ImageNet validation dataset.
Then, the adversarial examples by FGSM attack were applied to pre-trained AlexNet and
VGG11 models. Figure 4 shows the hierarchical sparse coding for object categories by
FGSM-attacked adversarial examples in AlexNet and VGG11.
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Figure 4. Hierarchical sparse coding for object categories by FGSM adversarial samples in DCNN. In
comparison to the results of the normal ImageNet validation dataset in Figure 3, the right shift of the
graph hardly occurs despite the increase in the number of layers in AlexNet.

It was commonly observed in AlexNet and VGG11 that the median of the PSI in the
FGSM-attacked ImageNet dataset was in a lower range (median < 2.5) than the values
in the benign ImageNet dataset. In the experimental results in [16], the median of the
PSI in AlexNet gradually increased after convolutional layer 2, but in the case of FGSM
attack, it continuously decreased until convolutional layer 4, and then increased in the last
convolutional layer. In the fully connected layer, the value of the median of the PSI rather
decreased, which is opposite to the result in [16].

In comparison to the normal validation ImageNet dataset in Figure 3, despite the
increase in the number of layers in AlexNet, the graph hardly shifted to the right; rather,
a left shift was observed in the fully connected layer. From the overall observation, the
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change in the PSI due to FGSM attack shows that the value of the median of the PSI was
lower compared to the normal case, and a right shift of the graph rarely occurred.

The same experiment was performed on the pre-trained AlexNet and VGG11 on
adversarial examples of ImageNet attacked by PGD attack. The result of the median of
the PSI was less than 0.3, which is smaller than the result from the non-attacked ImageNet
validation dataset (typical dataset) shown in Figure 5. Although the median value of the PSI
in the first convolutional layer was observed to be similar to that in the typical ImageNet
dataset, there was no rapid increase in the median PSI values as the hierarchy progressed.
The range of change in the median PSI values at the convolution layers was 0.18 to 0.35 for
the typical ImageNet dataset, 0.15 to 0.20 for the ImageNet dataset attacked by FGSM
attack, and 0.19 to 0.26 for the ImageNet dataset attacked by PGD attack.
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Figure 5. Hierarchical sparse coding for object categories by PGD adversarial samples in DCNN. In
comparison with the result of FGSM attack, the similarity is that the median of the PSI is in a low
range, and the difference is that a slight right shift occurs.

The right shifting in the convolutional layers and fully connected layers according to
the hierarchy was more pronounced than in the FGSM attack. However, it did not reach
the results of the typical ImageNet dataset. In the graph of the PSI versus the proportion of
categories, the PGD-attacked ImageNet dataset shows a right shift, with the peak values of
the PSI in the range of 0.2 to 0.3 in Figure 5, while the FGSM-attacked ImageNet dataset
had a right shift from 0.12 to 0.4 in Figure 4, and the typical ImageNet dataset had a right
shift from 0.1 to 0.25 in Figure 3.

The final experiment for the hierarchical sparse coding for object categories using the
ImageNet dataset was performed on the same DCNNs using the CW-attacked ImageNet
dataset. The experiments with the CW-attacked ImageNet dataset had interesting results in
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contrast to the results of the previously described FGSM attack and PGD attack. The CW
attack results in Figure 6 are very similar to the results in Figure 3. The range of median
PSI values from 0.19 to 0.35 is very similar to the range from 0.18 to 0.38 as a result of
applying the typical ImageNet dataset, and the pattern of change in the PSI according to
the hierarchy is also very similar.
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Figure 6. Hierarchical sparse coding for object categories by CW adversarial samples in DCNN.

In the PSI versus the proportion of categories graph, the pattern of shifts to the right is
such that the peaks of the PSI distribution move from 0.2 to 0.4 for AlexNet and VGG11,
while for the typical ImageNet datasets, they move from 0.12 to 0.4 for AlexNet and from
0.2 to move 0.4 for VGG11.

Comparing the three attack methods, namely FGSM Attack, PGD attack, and CW
attack, in terms of attack strength, CW attack is the strongest attack method and PGD
Attack is the second strongest attack method based on FGSM attack [30]. From the results
of the four experiments in Figure 6, it can be deduced that the stronger the attack and the
more difficult it is to defend against it, the more difficult it is to distinguish the hierarchical
sparseness from the hierarchical sparseness of the DCNN trained with a typical dataset.

We conducted the same experiment to observe whether the same results were obtained
when different datasets were applied to the same DCNN models. That is, the same
experiment was carried out by applying the Caltech256 dataset to the VGG11 and the
AlexNet models. Figure 7 shows the PSI results of the VGG11 and AlexNet models for the
FGSM-attacked Caltech256 dataset.
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When comparing the changes in the peak values of the PSI distribution by layer in
the AlexNet model, it can be observed that the FGSM-attacked dataset shows lower peak
values compared to the results of the benign Caltech256 dataset. In addition, it can be seen
that in the fully connected layers, significant low values are indicated. That is, the peak
values of the benign Caltech256 dataset were 0.27 and 0.42 in fully connected layer 1 and
fully connected layer 2, but 0.18 and 0.19 in the FGSM-attacked Caltect256 dataset.

The same results were observed in the VGG11 model. A decrease in the peak values
in the PSI distribution was observed overall, and a peak value reduction of up to 50% was
observed in the fully connected layers. In the median PSI comparison, the convolution
layers show a pattern similar to the results of the benign Caltec256 dataset, but an increase
was observed in the fully connected layers.

In the same experiment on the PGD-attacked Caltech356 dataset, the AlexNet model
was observed to exhibit higher peak values in the PSI distribution compared to the results
of the ImageNet dataset that was subjected to the same attack in Figure 8. It is worth
noting that in the PGD-attacked ImageNet dataset, the peak value of the PSI decreased as it
progressed from fully connected layer 1 to fully connected layer 2, but in the PGD-attacked
Caltech256 dataset, it increased, as it did in both benign datasets. The VGG11 model shows
very similar results to the benign Caltech256 dataset in the convolution layers, but it was
observed that the peak value of the PSI distribution decreased sharply in fully connected
layer 1 and then recovered to a value similar to that of the benign dataset in fully connected
layer 2.
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In the experiments with the CW-attacked Catech256 dataset, the AlexNet model had
peak values that were similar to or slightly lower than those of the benign Caltech256
dataset in the convolution layers in Figure 9. A slightly lower value was observed in fully
connected layer 1 compared to the results of the benign dataset, but a peak value of 0.28 was
observed in fully connected layer 2, which was significantly smaller than the peak value of
0.42 in the benign dataset.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 17 
 

 
Figure 9. PSI results of VGG11 and AlexNet models by CW-attacked Caltech256 dataset. 

In addition, the VGG11 model showed almost the same experimental results as the 
benign Caltech256 dataset, although convolution layer 6 showed a different peak value. 
In the analysis of the median PSI, it was observed that the results of the AlexNet model 
were almost identical to the results of the benign Caltech256 dataset, and a pattern similar 
to the results of the AlexNet model was found in the VGG11 model. This study involved 
analyzing the coding scheme across various layers of two conventional DCNNs, AlexNet 
and VGG11, using two attacked versions of datasets—ImageNet and Caltech256. 

The results of our experiments can be summarized as shown in Tables 3 and 4 for the 
median PSI analysis and in Tables 5 and 6 for the PSI peak value analysis. These tables 
present the layer-specific median PSI values and PSI peak values, offering insights into 
the level of sparsity within each layer of conventional DCNNs, AlexNet and VGG11. 

In the PSI analysis of the two DCNN models for the benign examples, it was found 
that the PSI, as the degree of sparseness, increased with the increase in the layers in the 
DCNNs. The observation that an increased median PSI at each layer aligned with greater 
behavioral relevance within the DCNNs implies that this phenomenon serves as a funda-
mental mechanism for efficiently representing a diverse range of objects. 

Essentially, this suggests that in the initial stages of visual processing, a larger popu-
lation of general neurons is engaged to accurately process various natural objects. As we 
move up the processing hierarchy, these objects are parsed into more abstract features, 
leading to the involvement of a smaller, yet highly specialized, group of neurons in con-
structing this representation. This heightened level of sparsity significantly enhances the 
interpretability of these representations, as the extent of sparsity appears to predict be-
havioral performance primarily in the higher processing stages [16]. 

Figure 9. Cont.



Appl. Sci. 2023, 13, 9722 12 of 16

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 17 
 

 
Figure 9. PSI results of VGG11 and AlexNet models by CW-attacked Caltech256 dataset. 

In addition, the VGG11 model showed almost the same experimental results as the 
benign Caltech256 dataset, although convolution layer 6 showed a different peak value. 
In the analysis of the median PSI, it was observed that the results of the AlexNet model 
were almost identical to the results of the benign Caltech256 dataset, and a pattern similar 
to the results of the AlexNet model was found in the VGG11 model. This study involved 
analyzing the coding scheme across various layers of two conventional DCNNs, AlexNet 
and VGG11, using two attacked versions of datasets—ImageNet and Caltech256. 

The results of our experiments can be summarized as shown in Tables 3 and 4 for the 
median PSI analysis and in Tables 5 and 6 for the PSI peak value analysis. These tables 
present the layer-specific median PSI values and PSI peak values, offering insights into 
the level of sparsity within each layer of conventional DCNNs, AlexNet and VGG11. 

In the PSI analysis of the two DCNN models for the benign examples, it was found 
that the PSI, as the degree of sparseness, increased with the increase in the layers in the 
DCNNs. The observation that an increased median PSI at each layer aligned with greater 
behavioral relevance within the DCNNs implies that this phenomenon serves as a funda-
mental mechanism for efficiently representing a diverse range of objects. 

Essentially, this suggests that in the initial stages of visual processing, a larger popu-
lation of general neurons is engaged to accurately process various natural objects. As we 
move up the processing hierarchy, these objects are parsed into more abstract features, 
leading to the involvement of a smaller, yet highly specialized, group of neurons in con-
structing this representation. This heightened level of sparsity significantly enhances the 
interpretability of these representations, as the extent of sparsity appears to predict be-
havioral performance primarily in the higher processing stages [16]. 

Figure 9. PSI results of VGG11 and AlexNet models by CW-attacked Caltech256 dataset.

In addition, the VGG11 model showed almost the same experimental results as the
benign Caltech256 dataset, although convolution layer 6 showed a different peak value.
In the analysis of the median PSI, it was observed that the results of the AlexNet model
were almost identical to the results of the benign Caltech256 dataset, and a pattern similar
to the results of the AlexNet model was found in the VGG11 model. This study involved
analyzing the coding scheme across various layers of two conventional DCNNs, AlexNet
and VGG11, using two attacked versions of datasets—ImageNet and Caltech256.

The results of our experiments can be summarized as shown in Tables 3 and 4 for the
median PSI analysis and in Tables 5 and 6 for the PSI peak value analysis. These tables
present the layer-specific median PSI values and PSI peak values, offering insights into the
level of sparsity within each layer of conventional DCNNs, AlexNet and VGG11.

Table 3. Layer-wise median PSIs in AlexNet and VGG11 models for benign and adversarial examples
from attacked ImageNet datasets.

Model Layer
Median PSI Value

Benign FGSM PGD CW

AlexNet

conv1 0.23 0.20 0.23 0.22
conv2 0.18 0.16 0.19 0.19
conv3 0.19 0.15 0.19 0.19
conv4 0.25 0.15 0.21 0.20
conv5 0.35 0.18 0.26 0.35

fc1 0.27 0.12 0.18 0.25
fc2 0.37 0.08 0.22 0.36

VGG11

conv1 0.24 0.24 0.24 0.23
conv2 0.21 0.18 0.20 0.20
conv3 0.19 0.16 0.18 0.19
conv4 0.20 0.17 0.18 0.19
conv5 0.20 0.17 0.17 0.19
conv6 0.25 0.19 0.21 0.21
conv7 0.25 0.18 0.20 0.21
conv8 0.35 0.26 0.26 0.35

fc1 0.27 0.17 0.19 0.22
fc2 0.38 0.25 0.25 0.36

Table 4. Layer-wise median PSIs in AlexNet and VGG11 models for benign and adversarial examples
from attacked Caltech256 datasets.

Model Layer
Median PSI Value

Benign FGSM PGD CW

AlexNet
conv1 0.20 0.21 0.21 0.21
conv2 0.16 0.20 0.20 0.17
conv3 0.17 0.21 0.20 0.18
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Table 4. Cont.

Model Layer
Median PSI Value

Benign FGSM PGD CW

AlexNet

conv4 0.19 0.22 0.23 0.20
conv5 0.22 0.28 0.33 0.23

fc1 0.16 0.22 0.23 0.15
fc2 0.29 0.26 0.28 0.25

VGG11

conv1 0.20 0.23 0.13 0.22
conv2 0.19 0.18 0.17 0.18
conv3 0.19 0.17 0.18 0.17
conv4 0.18 0.17 0.17 0.16
conv5 0.18 0.17 0.18 0.17
conv6 0.20 0.22 0.19 0.19
conv7 0.20 0.21 0.19 0.18
conv8 0.25 0.28 0.24 0.24

fc1 0.16 0.19 0.17 0.17
fc2 0.29 0.27 0.17 0.25

Table 5. Layer-wise PSI peak values in AlexNet and VGG11 models for benign and adversarial
examples from attacked ImageNet dataset.

Model Layer
PSI Peak Value

Benign FGSM PGD CW

AlexNet

conv1 0.22 0.20 0.25 0.24
conv2 0.17 0.21 0.17 0.17
conv3 0.16 0.22 0.18 0.17
conv4 0.22 0.13 0.18 0.24
conv5 0.26 0.17 0.23 0.35

fc1 0.26 0.08 0.17 0.24
fc2 0.36 0.16 0.30 0.43

VGG11

conv1 0.15 0.20 0.17 0.17
conv2 0.15 0.19 0.18 0.18
conv3 0.14 0.18 0.18 0.18
conv4 0.14 0.18 0.19 0.19
conv5 0.13 0.17 0.19 0.20
conv6 0.22 0.16 0.20 0.20
conv7 0.22 0.16 0.20 0.33
conv8 0.25 0.24 0.33 0.36

fc1 0.23 0.20 0.18 0.13
fc2 0.37 0.23 0.32 0.32

Table 6. Layer-wise PSI peak values in AlexNet and VGG11 models for benign and adversarial
examples from attacked Caltech256 dataset.

Model Layer
PSI Peak Value

Benign FGSM PGD CW

AlexNet

conv1 0.17 0.14 0.17 0.13
conv2 0.17 0.18 0.18 0.18
conv3 0.23 0.19 0.24 0.25
conv4 0.24 0.26 0.25 0.23
conv5 0.33 0.26 0.28 0.30

fc1 0.27 0.18 0.23 0.23
fc2 0.42 0.19 0.28 0.28
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Table 6. Cont.

Model Layer
PSI Peak Value

Benign FGSM PGD CW

VGG11

conv1 0.26 0.13 0.13 0.25
conv2 0.17 0.17 0.17 0.13
conv3 0.17 0.18 0.18 0.16
conv4 0.18 0.17 0.17 0.17
conv5 0.18 0.18 0.18 0.18
conv6 0.23 0.19 0.19 0.19
conv7 0.23 0.19 0.19 0.23
conv8 0.36 0.24 0.24 0.33

fc1 0.23 0.17 0.17 0.24
fc2 0.34 0.17 0.17 0.33

In the PSI analysis of the two DCNN models for the benign examples, it was found
that the PSI, as the degree of sparseness, increased with the increase in the layers in
the DCNNs. The observation that an increased median PSI at each layer aligned with
greater behavioral relevance within the DCNNs implies that this phenomenon serves as a
fundamental mechanism for efficiently representing a diverse range of objects.

Essentially, this suggests that in the initial stages of visual processing, a larger pop-
ulation of general neurons is engaged to accurately process various natural objects. As
we move up the processing hierarchy, these objects are parsed into more abstract fea-
tures, leading to the involvement of a smaller, yet highly specialized, group of neurons in
constructing this representation. This heightened level of sparsity significantly enhances
the interpretability of these representations, as the extent of sparsity appears to predict
behavioral performance primarily in the higher processing stages [16].

As shown in the median PSI values for the benign examples of the AlexNet and VGG11
models in Table 3, the median PSI values tended to increase progressively from convolution
layer 2 to convolution layer 5 in AlexNet and to convolution layer 8 in VGG11, except for
convolution layer 1. In the case of the Caltech256 dataset in Table 4, when benign examples
were applied to the two models, it can be observed that the median PSI increased along the
convolution layers entirely.

In addition, as shown in the study of [16], it was observed that the last convolution
layer, which corresponds to conv5 in AlexNet and conv8 in VGG11, and the last fully
connected layers in the two models had a dramatical decrease in the median PSI value.

In the PSI analysis, the same tendency was observed in the adversarial examples in
both DCNN model. In particular, we found that in the adversarial examples generated
from FGSM and PGD attack, not only did the median PSI increase slowly according to the
layer, but it also showed a lower median PSI value compared to the results of the benign
examples. Interestingly, the change in the median PSI was observed to show a rate of
change of 1.0–1.3 for the benign examples from fc1 to fc2, while a rate of change of 0–0.8
during the same transition layer for both attacks. These results are interpreted as affecting
the behavioral performance of DCNN models since specialized groups of neurons do not
work when adversarial examples are applied to DCNN models. Note that the changes in
sparseness were observed in two structurally similar DCNNs in AlexNet and VGG11, and
therefore, this may not be applicable to other DCNNs.

We found interesting results related to the median PSI from CW-attacked datasets. The
median PSI for each layer for the CW adversarial examples generated from the ImageNet
dataset, as shown in Table 3, showed values that are almost similar to the results of the
benign examples in the AlexNet and VGG11 models. Although the median PSI at fc2 was
slightly smaller than the results of the benign examples, the median PSI for the entire layer
was similar. The same results were also obtained in the CW-adversarial examples obtained
from the Caltech256 dataset.
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4. Conclusions

This study represents the coding scheme of adversarial examples generated from three
adversarial attacks and provides information on how adversarial examples behave inside
DCNNs. In particular, we observed that the AlexNet and VGG11 models, which have
similar but different structures, exhibited similar PSI characteristics for the adversarial
examples generated from each attack, and confirmed that the DCNNs behaved abnormally.
A notable observation is that the median PSI values at the final fully connected layer of
the two DCNN models, which ultimately determine the models’ performance, were lower
when compared to the PSI values of the benign examples. This phenomenon was more
pronounced in the attacked ImageNet dataset. These results suggest a perturbation in the
features of samples caused by adversarial examples.

Our research can be considered from the perspective of DCNN model design and from
a neurophysiological perspective. The first aspect provides a basis for revealing the internal
mechanisms of DCNNs that cause malfunctions by adversarial examples. Consequently,
considering the internal dynamics of DCNN models known as black boxes, it can be applied
to design more robust DCNN models against adversarial attacks.

From a neurophysiological point of view, it provides a macro- and micro-perspective
on how we misperceive objects. In other words, brain studies targeting non-human pri-
mates have limited spatial resolution or brain area, but DCNNs can clearly observe the
activity of neuron units, so it is possible to conduct research without such limitations.

Therefore, although our study was limited to two types of DCNN models and three
types of adversarial examples from two datasets, it is valuable as a new attempt to under-
stand adversarial attacks in DCNN structures. Beyond the constraints of the models and
datasets used in this experiment, investigating the internal dynamics of models using PSI
for other models and datasets remains a future research task.
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