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Abstract: Person re-identification (ReID) has attracted the attention of a large number of researchers
due to its wide range of applications. However, due to the difficulty of extracting robust features
and the complexity of the feature extraction process, ReID is difficult to truly apply in practice. In
this paper, we utilize Pyramid Vision Transformer (PVT) as the backbone for feature extraction and
propose a PVT-based ReID method in conjunction with other studies. First, we establish a basic model
using powerful methods verified on CNN-based ReID. Second, to further improve the robustness
of the features extracted from the PVT backbone, we design two new modules: (1) a local feature
clustering (LFC) module is used to select the most discrete local features and cluster them individually
by calculating the distance between local and global features, and (2) side information embeddings
(SIE) are used to encode nonvisual information and send it to the network for use training in order to
reduce its impact on the features. Our experiments show that the proposed PVTReID achieves an
mAP of 63.2% on MSMT17 and 80.5% on DukeMTMC-reID. In addition, we evaluated the inference
speed for images achieved by different methods, proving that image inference is faster with our
proposed method. These results clearly illustrate that using PVT as a backbone network with LFC
and SIE modules can improve inference speed while extracting robust features.

Keywords: ReID; Pyramid Vision Transformer; local feature clustering; side information embeddings

1. Introduction

In recent years, more and more attention is being paid to the public safety; in this
context, it is very important to improve person retrieval ability. Person re-identification
(ReID) is a technology for searching for specific people from images captured by different
cameras. It can complement face recognition technology and meet the needs of current
intelligent monitoring. In addition to being used for tracking the whereabouts of criminal
suspects on monitoring networks, ReID can be used for tracking in smart devices. Due to
the influence of visual factors such as lighting, posture, occlusion, and resolution [1] and
non-visual factors such as camera angle [2] and perspective, ReID faces many challenges in
practical applications.

Extracting robust and discriminative person features is an important research part of
ReID, which has long been dominated by CNN-based ReID [3–6]. In practical application,
the effects of objective causes such as background interference, person blockage, and pos-
ture misalignment make it difficult for global feature to meet the requirements of person
retrieval. The common practice of CNN-based ReID is to combine local feature extraction
to obtain fine-grained features to make up for the shortcomings of global features. With the
development of vision attention, the application of attention to ReID [7–9] has become
popular. With the vast success of ViT [10] in the field of computer vision, a number of
scholars have started to explore the application of ViT to the ReID task [11] by extracting
global features through a Transformer.

In reviewing CNN-based methods and ViT-based ReID, we discovered three signif-
icant matters which are not well solved in ReID. First, the inference speed is slow. Most
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CNN-based ReID methods combine local features to enhance its fine-grained ability to
identify people; however, these additional structures greatly increase model complexity
and consumption of computational resources [1]. Due to the large amount of computing
resources required by Transformer, ViT-based ReID has slow feature extraction speed.
Second, as ViT is designed for image classification tasks, the network needs to use a class
token for classification to reduce preferences for specific image patches. Because it learns
the information of image patches, it is overly reliant on global information, resulting in
reduced usage of local features and decreased fine-grained identification ability [12]. Third,
ViT uses position encoding to process spatial information. Position encoding corresponds
to the input image size and resolution. Thus, position embedding requires retraining when
dealing with images of different resolutions.

In order to solve the above problems, we present an ReID method using a Pyramid
Vision Transformer (PVT)-based method. PVT [13] has achieved high accuracy on image
classification tasks as well as on other downstream tasks. PVT uses a pyramidal feature
structure [14] and zero padding [15] to solve the above-mentioned problems. First, unlike
ViT, PVT uses a pyramid structure, which greatly reduces resource consumption and boosts
the efficiency of feature extraction. Second, instead of using additional tokens as output
vectors for feature extraction, PVT aggregates all local features trained by the Transformer to
obtain a global feature representation. Through this operation, PVT increases the dependence
of output features on local features while reducing model complexity and computational
consumption and improving model training and inference efficiency. Third, PVT does not use
absolute position encoding to represent the position information of image patches. Instead, it
introduces zero-padding position encoding to learn position information and uses depth-wise
convolution [16] to model position information.

In summary, PVT has great advantages; however, it needs to be modified in order
to adapt to the unique challenges present in ReID, such as occlusion, pose changes, and
camera changes. CNN-based methods alleviate the impact of these factors on person
features in various ways, among which local feature methods [17] and side information [2]
have been demonstrated to be effectual means of strengthening the robustness of features.
At the same time, the features extracted by CNN-based methods are different from those
extracted by the PVT-based method, and their semantic information differs. Furthermore,
considering side information such as cameras can reduce the impact of nonvisual factors on
the robustness of person features. If complex information constructed via CNN is directly
used for PVT, the encoding ability and pyramidal structure of PVT cannot be fully utilized.
To successfully solve these problems, it is necessary to design modules specifically for PVT.

For these reasons, we present a novel ReID method called PVTReID for obtaining
robust person features. First, we build a strong basic network based on PVT with a few
crucial adaptations. Second, in view of solving the problem of local person features that
are indistinguishable from each other, we propose a local feature clustering module (LFC)
by calculating the most discrete local features for further feature learning. LFC is used in
the final stage of the framework to obtain person features together with the global features.
Third, to further improve the robustness of the person features, we employ side information
embeddings (SIE) to embed side information into the four encoding stages of the PVT.

The contributions of this paper are summarized as follows:

• We recommend a strong basic network that utilizes PVT for ReID with performance
that is comparable to CNN-based methods. With the help of PVT, by using pro-
gressively smaller feature pyramids the PVT-based method reduces the computation
of large feature maps, thereby alleviating the problem of slow inference for ReID
person images.

• We introduce a local feature clustering (LFC) module to compute the most discrete
of the local features and cluster them. With LFC, we further separate the feature
representations of different people in the feature space to make the person features
more robust.
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• We perform side information embeddings (SIE) on the camera information and send
this information to the feature extraction network for use in training, which reduces
interference from nonvisual information in the resulting features and improves their
robustness. In addition, we verify the effects of using camera information in training
at different PVT encoding stages.

• The final PVTReID framework achieves 87.8%, 63.2%, and 80.5% mAP accuracy on
Market-1501, MSMT17, and DukeMTMC-reID, respectively, and has faster inference
speed compared to CNN-based methods.

2. Related Work
2.1. Person Reidentification

Many CNN-based ReID methods have been proposed in recent years, and have proven
to have good performance. One popular pipeline is to build on top of a CNN backbone
network (e.g., ResNet [18]) and optimize the network by designing a suitable loss function
to extract person features.

Representation learning using global features is a very common ReID approach [19,20].
The representation learning method mainly regards ReID as an image classification task,
regards each person ID as a category, and uses the global features extracted by the backbone
to calculate the ID Loss [20]. Metric learning is a widely used method for image retrieval.
Metric learning considers ReID as an image clustering problem, and aims to find the
distance between two images in the feature space by learning. In the ReID feature space,
metric learning shows that the distance between different images with the same person ID
is less than the distance between different images with different person IDs. Triplet loss is
a widely used metric learning loss, and many metric learning methods are based on the
research and improvement of triplet loss [21,22]. The common idea of training the network
by integrating metric learning and representation learning in person re-identification
models has become popular. Luo et al. [23] devised with BNNeck, and Sun et al. [24]
submitted Circle Loss, both of which have provided good presentations of the use of ID
loss and triplet loss.

Representation learning and metric learning use the global features of people. In the
case of misaligned posture, occlusion of images, and cases in which only local details are
dissimilar, global features are prone to making mistakes. Local feature-based methods can
solve these problems to an extent by mining fine-grained information. GLAD [25] extracts
local features by dividing people into three parts: head, upper body, and lower body.
PCB [5] segments the extracted person features through average pooling, then uses 1× 1
convolution to obtain independent local features and predicts classification based on these
local features. Local feature-based methods usually add a branch on the basis of global
features; while this can extract rich person features, it increases the model inference time.

2.2. Vision Transformer

Ashish Vaswani et al. [26] first proposed the Transformer model to process sequence
data in natural language processing (NLP). Inspired by this discovery, numerous researchers
have explored its application in computer vision. Han [27] and Salman [28] investigated the
application of Transformers in computer vision and showed its effectiveness in different
tasks. ViT [10] divides an image into patches and flattens these patches into a sequence of
one-dimensional vectors used as input to the Transformer. The uniqueness of ViT is that a
learnable embedding is added to extract global features, reducing the preference for a certain
image patch when classifying images; however, this reduces the model’s ability to extract
local features. PVT [13] uses a self-attention variant called Spatial-Reduced Attention (SRA).
Based on this, PVT_V2 [29] obtains more continuous local image patches using overlapping
patch embedding, eliminates the need for fixed position encoding through convolutional
feed-forward networks, and compensates for the removal of position encoding through
3× 3 convolution, making it flexible enough to handle inputs of various resolutions.
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2.3. Side Information

In the process of ReID, it is very common to encounter changes in posture, and conse-
quently in the resulting resolution of images due to different camera angles. In order to
resolve these problems, previous works have used side information such as camera informa-
tion and viewpoint information to enhance the robustness of the learned features. CBN [2]
transforms person images from different cameras into the same subspace, effectively im-
proving the distribution difference of images taken by different cameras. TransReID [11]
sends side information encoding to the ViT for training, thereby reducing the influence of
camera factors on the resulting features and improving their robustness.

3. Methods

As shown in Figure 1, ourproposed ReID framework for obtaining robust person
features is designed on the basis of a PVT-based image classification network along with
several useful improvements [23]. To further enhance the robustness of person feature
training in the face of the many challenges involved, in Sections 3.2 and 3.3 we present
the comprehensive design of a local feature clustering module (LFC) and side information
embeddings (SIE) module. The resulting end-to-end network uses both modules at the same
time, as displayed in Figure 2.

3.1. Basic PVT-Based Network

PVT [13,29] is a state-of-the-art image feature extraction method that is widely used
for a variety of computer vision tasks. As an asymptotic feature pyramid method, image
features are well learned in the performance of PVT while reducing the computation of
large image feature maps. We use PVT as a backbone network to construct a powerful
feature extraction network by adding representation learning and metric learning branches
to enhance feature extraction capability while improving feature extraction speed.

We establish a PVT-based basic network for ReID using the general strong methods [23].
Our PVT-based ReID method consists of two main parts: feature extraction and feature
utilization. PVT-V2 is chosen as the backbone network for feature extraction. As shown
in Figure 1, it is mainly segmented into four parts with the same structure; the extraction
process of each part can be expressed as follows:

Input : I1 = x, Ii = Oi−1 (1)

Fi = PatchEmbi(Ii) (2)

Oi = Encoder(Fi) (3)

For a given image x ∈ RH×W×C used as input, where H, W, C respectively represent
its height, width, and number of channels, respectively, we split the image into N patches
with fixed size using PatchEmbed. Here, Ii represents the input vector of each part of
the PVT. The image x is the first part of the input vector of the PVT backbone network,
while the input vectors of the other parts are the output vectors Oi−1 computed from the
previous part. The input vector Ii is obtained by PatchEmbedi to obtain the vector Fi, and Fi
is calculated by Encoderi to obtain the output vector Oi of each part. Repeating the above
operations four times constitutes the PVT-based ReID backbone.

In Stage 1, a given input image x ∈ RH×W×3 is first divided into H×W
42 image patches

of size 4× 4× 3, which are input to PatchEmbed and then expanded into a feature sequence
F1 = H×W

42 × C1. The feature sequence is then input to the corresponding Encoder layer,
and the final output is a feature map O1 = H

4 ×
W
4 × C1. The subsequent stage takes

the feature output of the previous stage as input for the same operation and outputs the
respectively feature maps F2, F3, and F4, with a reduction scale of 8, 16, and 32 times with
respect to the input image.
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Figure 1. PVT-based basic framework. The whole model can be divided into two parts, namely,
feature extraction and feature utilization. The feature extraction stage can be divided into four stages;
each stage has a PatchEmbed and an Encoder composed of multiple Transformer layers. According to
the pyramidal structure, the resolution of the output feature maps of the four stages decreases from the
front (1/4 the original image size) to the back (1/32 the original image size). The final output feature
maps are subjected to representation learning and metric learning, respectively. Inspired by [23], we
introduce the BNNeck before the ID Loss. * is applied to the feature using Batch Normalization.

Figure 2. PVTReID Framework. Compared to the PVT-based basic framework, PVTReID adds an SIE
module in the encoding phase and a local feature branch in the supervised learning phase. Nonvisual
information such as camera information is encoded in the SIE. The SIE is added to the image patch
embeddings element-by-element and fed into the Encoder. Supervised learning consists of two
separate branches; one branch is a common branch that acquires global features, while the other uses
the LFC module to compute the distance between local features and global features to obtain the
most discrete local features. ReID loss is contributed by both global feature and local features.
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Compared with ViT, which takes up a large amount of computational and storage
resources, the PVT network adopts a pyramidal structure; as the network deepens, the num-
ber of channels in the feature maps gradually increases and the size of the feature maps
gradually decreases. PVT obtains high-resolution feature maps in dense prediction tasks
while reducing the computational resource consumption of feature maps with large sizes.
In contrast to the ViT network, the PVT network does not add an extra learnable embedding
token, instead aggregating the vector O4 to obtain the global feature.

3.1.1. Patch Embed

Early Transformer models such as ViT divide images into non-overlapping image
patches, which destroys the structural features of the local region. PVT uses sliding
windows to generate overlapping pixel image patches, which is better able to preserve the
integrity of the local features of images. PVT uses a pyramidal structure to divide the entire
feature extraction process into four parts; each of these requires the encoding of a feature
map. Assuming that the size of the image patch is P× P, the step size is S, and S is less
than P, the area where the two image patches overlap is (P− S)× P. If an input feature
map which has a resolution of H×W, it is divided into N patches using a suitable P and S:

N = NH × NW =

⌊
H + S− P

S

⌋
×
⌊

W + S− P
S

⌋
(4)

where NH and NW represent the numbers of splitting patches in height and width, respec-
tively, b.c is the floor function, and S is set to be smaller than P. When S is smaller, more
patches can be obtained by dividing the input feature map, although more patches requires
more computing power.

3.1.2. Feature Usage

We optimize the PVT-ReID basic network using the classification loss and triplet loss
for the global feature. ReID can be considered as a classification task. Person IDs are
regarded as categories of persons, and are used as labels to train the network. An amount
of classification categories is equal to the total count of person IDs in the training set. We
employ the cross-entropy loss along with label smoothing for the ID loss LID [30]:

LID = −
N

∑
i

qi ln pi (5)

qi =

{
1− N−1

N ε, i f i = y
ε
N , otherwise

(6)

where the sum of the person IDs in the training set is N, pi is the predicted probability of
person ID, and y represents the true ID of the predicted person. Equation (6) represents the
label smoothing operation on the ID, where ε is a hyperparameter. In this article, ε is set as
0.1. For a triplet set of person images

{
Ia, Ip, In

}
, we use the hard sample mining triplet

loss LT with a soft margin [21], as follows:

LT = log

{
1 + exp

[
max

fp
(
∥∥ fa − fp

∥∥2
2)−min

fn
(‖ fa − fn‖2

2)

]}
(7)

where fa, fp, and fn denote the feature representations of the person image Ia, the positive
pair image Ip, and the negative pair image In, respectively. We choose the most distant
positive pair and the closest negative pair in the mini-batch to calculate the triplet loss.

3.2. Local Feature Clustering Module

We add a local feature clustering (LFC) branch on the base of the global features.
We derive the most discrete local features by calculating the distance between different
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local features and global features, then optimize them using the cross-entropy loss and
triplet loss to separate different local features and improve the features’ fine-grained
discriminative ability.

The framework based on PVT has achieved excellent results in ReID due to its powerful
global feature extraction ability. However, with the problem of occlusion and posture
misalignment, using global feature alone as the standard for distance measurement cannot
meet the discrimination needs of difficult samples. Therefore, it is necessary to learn the
local features of people in order to improve fine-grained discrimination ability. Stripe
features and posture estimation have been widely used in CNN-based methods to extract
the fine-grained features of people.

The feature of an image that PVT-based ReID extracts is O4 = [ f1, f2, . . . , f32], and the
global feature f is obtained through the mean operation. In order to obtain fine-grained
local features, a straightforward approach is to use the discriminative ability of each local
feature, that is, to cluster all local features which have the same person ID in the feature
space. While the global feature f obtained after aggregating all local features is clustered
as well, it cannot take into account all local features, and there will be situations in which
local features cannot be distinguished, as shown in Figure 3a,c.
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Figure 3. Local feature distribution. We used UMAP (n_neighbors = 10, min_dist = 1) [31] to reduce
the dimension of local features: (a) without LFC and plot with ID; (b) with LFC and plot with
ID; (c) without LFC and plot with local index; (d) with LFC and plot with index. By comparing
the distribution of local features with and without the use of LFC, it can be concluded that local
features clustered together with different IDs can be dispersed into clusters of the corresponding ID
by clustering the most discrete local features.

In order to solve the problem that certain local features cannot be distinguished,
we propose a local feature clustering (LFC) module. By computing the distance of each
local feature fi from the global feature f , we select the local feature with the farthest
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distance. Then, through supervised learning we separate the aggregated local feature in
Figure 3a,c. The process of selecting the farthest local feature fm from the global feature f is
shown below:

fm = argmax
fi∈{ f1, f2,..., f32}

‖ fi − f ‖2
2 (8)

Through Equation (8), we can obtain the most discrete local feature fm. This means
that if fm is clustered with other local features of the same image, the global feature f
obtained by aggregating the local features has better discriminative power.

As illustrated in Figure 2, another global branch which parallels to the LFC branch
obtains f , which is the global feature from the CNN method, using the mean operation.
Finally, the loss is computed using the ID loss and triplet loss for the global feature f and
the most discrete local feature fm, respectively, which are then added together using a
specific factor. The total training loss is

L = LID( f ) + LT( f ) + η[LID( fm) + LT( fm)]. (9)

During the inference process, the global feature f and the most discrete local feature
fm with respect to [ f ; η fm] are connected as the ultimate feature representations.

3.3. Side Information Embeddings

We encode the camera information using SIE, add it to the feature sequence obtained
from PatchEmbed, and send it to Encoder to participate in training. The robustness of the
features is improved by reducing interference caused by nonvisual information.

Although the feature representations are obtained through the PVT network, these
features are affected by nonvisual information such as cameras, angles, etc. In other words,
even a well-trained ReID framework might not be able to differentiate between people with
the same ID who are captured by different cameras. To reduce the impact of nonvisual
information on person features, we use side information embedding (SIE) to embed nonvisual
information into the feature extraction network in order to extract more robust person features.

Specifically, assuming that an ReID dataset has NC cameras in total, we initialize the
learnable camera ID information embedding as EC ∈ RNc×D. When the camera ID of a
person image is r, then the person ID encoding of this image is EC[r], and for all patches of
the image its EC[r] is the same.

Embedding SIE into the network represents a problem. The simplest way is to directly
add the patch embeddings and SIE. However, considering the need to balance the weight
between vision information and SIE, the SIE coefficient needs to be set according to specific
conditions. If the coefficient is too large, SIE will dominate and the role of vision information
will be ignored. Similarly, if the coefficient is too small, the role of SIE will be ignored.
The input sequence with camera ID information is sent to the Encoder as shown below:

I′ = I + λEc(r). (10)

where I is the input sequence of each encoding stage and λ is a hyperparameter used to
balance SIE. This process takes place after the PatchEmbed Equation (2) and prior to the
Encoder Equation (3). The final sequence of feature inputs is

Fi
′ = PatchEmbi(Ii) + I′. (11)

4. Experiments
4.1. Datasets

We conducted an evaluation of our proposed methods on three ReID datasets: Market-
1501 [32], MSMT17 [33], and DukeMTMC-reID [34]. Each image in these datasets contains
a camera ID; Table 1 shows the detailed dataset information.
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Table 1. Statistics of ReID datasets used in our experiments.

Dataset #Camera #Image #ID

Market-1501 6 32,668 1501
MSMT17 15 126,441 4101

DukeMTMC-reID 8 36,441 1404

4.2. Implementation

Except for special datasets, the image resolution of common ReID datasets is 256× 128;
thus, there is no need to process the image size. During image processing, we used random
erasing [35], random cropping, random padding, and horizontal flipping [36] to process
the training set images. There were 128 images per mini-batch and four images per person
ID. In the training process of the model, we optimized the model using AdamW with a
momentum of 0.9 and weight decay of 5× 10−2. The initial learning rate was set to 8× 10−3

and decreased following the cosine schedule. More detailed information can be found in
the Appendix A.

All of our experiments were performed on a system with one Nvidia RTX 3090 GPU
using the PyTorch toolbox. The initial weights used for the PVT were pretrained on
ImageNet-1K.

4.3. Evaluation Protocol

We evaluated the model in terms of its accuracy and inference speed. As is customary
in the ReID research community, we evaluated the accuracy of all methods using the Cumu-
lative Matching Characteristic (CMC) and the mean Accuracy Precision (mAP). In terms of
inference speed, there is no unified standard for evaluation; in this paper, we evaluate the
inference speed of the model using the feature extraction speed.

The CMC is calculated by summing the Acck of each query image and dividing it by
the total number of query images, usually denoted as Rank-k, e.g., Rank-1 accuracy denotes
the probability of correctly matching the top-ranked gallery image in the match list.

Acck =

{
1 top− k
0 othercases.

(12)

The mAP is used to evaluate overall model performance. For each query, we compute
the average precision (AP). The mAP is obtained by calculating the average of the APs
of all queries, which takes into account both the precision and recall of the query images.
Therefore, mAP provides a more comprehensive evaluation.

mAP =
∑k

i=1 APi

k
(13)

The time consumption of ReID required for inference is mainly divided into two
parts, namely, the feature extraction time Te and similarity computation time Tc. All ReID
methods have the same Tc for the same dataset, and only Te is taken into account. The
inference speed of the ReID method is obtained using the total number of query images
divided by Te.

4.4. Results for the PVT-Based Basic Network

In this section, we compare the performance of different backbone networks on the
ReID task, with the results shown in Table 2. Several different backbone networks were cho-
sen as the feature extraction network for ReID to display the trade-off between computation
consumption and performance: ViT-Base, PVT-V2-B2, and PVT-V2-B5, denoted as ViT-B,
PVT-v2-b2, and PVT-v2-b5, respectively. In order to comprehensively compare the different
backbone networks, we took into account the parameters, inference time, and performance.
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Table 2. Backbone network comparison for ReID. The inference speed is expressed in terms of a
comparison of each model with ResNet50, as only relative comparisons are required. All experiments
were performed on an identical computer to allow for fair comparisons.

Inference
Speed

MSMT17
Backbone Params (M)

mAP R1

ResNet50 23.5 1.0× 51.3 75.3
ResNet101 44.5 1.48× 53.8 77.0
ResNet152 60.2 1.96× 55.6 78.4
ResNeSt50 25.6 1.86× 61.2 82.0
ResNeSt200 68.6 3.12× 63.5 83.5

ViT-B 86.0 1.79× 61.0 81.8
PVT-V2-B2 25.4 0.82× 54.1 77.3
PVT-V2-B5 82.0 1.22× 60.2 81.2

From the above results, a huge gap in the ability of the models to extract person
features can observed between ResNet and PVT. Compared with ResNet50, PVT2-B2 uses
more parameters to achieve slightly better performance in terms of inference speed and
accuracy. PVT2-B5 has similar performance to ResNest50 [37] with a significantly lower
inference time (1.22× vs. 1.86×). PVT2-B5 uses fewer parameters and has a lower inference
time (1.22× vs. 1.79×), achieving results comparable to ViT-B.

4.5. Ablation Study of LFC

The effectiveness of the proposed LFC module is validated in Table 3. LFC confers
an improvement of +1.3% mAP on Market1501, +1.9% mAP on MSMT17 and +1.5% mAP
on DukeMTMC-reID compared to the basic network. Comparing LFC and LFC without
local features, it can be observed that when both are trained using LFC in the training stage,
using only global features (“w/o local”) in the inference stage results in slightly worse
performance than the full version, while the inference times are similar.

Table 3. Local feature clustering ablation study; “w/o local” indicates that only global features
were evaluated.

Backbone
Market1501 MSMT17 DukeMTMC-reID

mAP R1 mAP R1 mAP R1

Basic 86.3 94.9 60.2 81.2 77.8 87.9
+LFC 87.6 95.1 62.1 82.1 79.3 88.6
+LFC w/o local 87.6 95.1 62.0 82.1 79.2 88.4

Figure 3a,c shows that most of the local features in the feature space are aggregated
around the corresponding ID clusters, while a small portion are in a discrete state. After the
introduction of the LFC module in the base network, Figure 3b,d shows the discrete local
features clustered around the corresponding IDs, which indicates that the LFC module
can alleviate the problem of discrete local features and improve the robustness of the
resulting features.

4.6. Ablation Study of Camera Information

Studying the side information in the three datasets leads to the conclusion that only the
camera information can be effectively applied as SIE information. In Table 4, we compared
the performance of the camera SIE on the Market1501, MSMT17, and DukeMTMC-reID
datasets while simultaneously investigating the effects of adding SIE at four different stages
on the accuracy of PVT-based ReID. Figure 4, shows the results of our evaluation of the
impact of camera information with weights λ on the model’s performance on the MSMT17
and DukeMTMC-reID datasets.
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Table 4. Ablation study of SIE. Because PVT has four embedding stages, we added SIE at several
different stages. Note that λ in Equation (10) is 1.0. 4 means that SIE modules are used by the
coding stage.

Method
Embed Stage Market1501 MSMT17 DukeMTMC-reID

1 2 3 4 mAP R1 mAP R1 mAP R1

Basic 86.3 94.9 60.2 81.2 77.8 87.9

+SIE

4 86.7 94.7 61.8 81.9 79.4 88.6
4 86.6 94.5 61.7 82 79.2 88.5

4 86.4 94.4 61.2 81.5 78.8 88.3
4 86.0 94.2 59.7 81.1 78.3 88.1
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Figure 4. Influence of λ on SIE.

4.6.1. Performance Analysis

From Table 4, it can be concluded that applying SIE in the first and second stages is
much better than applying it in the third and fourth stages. In fact, using SIE in the fourth
stage can even lead to a decrease in accuracy for PVT-based ReID. In summary, the earlier
SIE is applied in PVT, the higher the model accuracy.

When SIE is encoded only in the first stage, the Basic + SIE improves by 0.7% in terms
of rank-1 accuracy and 1.6% in terms of mAP on the MSMT17 dataset compared to the basic
network. A very similar result is reached on the DukeMTMC-reID dataset, where Basic + SIE
improves rank-1 accuracy by 0.7% and mAP by 1.6%. However, on the Market1501 it only
obtains a 0.4% improvement in mAP. Because PVT is a variant of ViT, the problem of easy
overfitting on small datasets persists. However, considering that the DukeMTMC-reID dataset
is similar in size to Market-1501, the most likely reason that SIE does not improve as much on
Market-1501 as on the other datasets is be that the number of cameras is too small in this case.

4.6.2. Ablation Study of λ

In Figure 4, when λ = 0, Basic achieves 60.2% mAP on MSMT17 and 77.8% mAP on
DukeMTMC-reID. With increasing λ, Basic achieves 79.7% mAP on DukeMTMC-reID when
λ = 0.5 and 61.8% mAP on MSMT17 when λ = 1.0. This performance indicates that SIE helps
to reduce the impact of environmental factors on the robustness of person features and can
help the model to learn invariant features. Continuing to increase the value of λ results in
the model’s performance decreasing. This is due SIE dominating person features and the
role of vision information being weakened when λ is too large,.

4.7. Ablation Study of PVTReID

The effectiveness of the two proposed modules is evaluated in Table 5. Compared to
the Basic network, the LFC module and SIE module increase performance by +1.3%/+1.9%/
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+1.5 mAP and +0.4%/+1.6%/+1.9% mAP, respectively, on the Market1501/MSMT17/Duke
MTMC-reID databases. With these two modules used together, PVTReID achieves 87.8%
(+1.5%) mAP, 63.2% (+3.0%) mAP, and 80.5% (+2.7%) mAP on the Market1501, MSMT17,
and DukeMTMC-reID databases, respectively. The effectiveness of our proposed ReID
method and modules is further demonstrated by these experimental results.

Table 5. Results of PVTReID ablation study. 8 means that the module is not used at method. 4 means
that the module is used at method.

Method LFM SIE
Market1501 MSMT17 DukeMTMC-reID

mAP R1 mAP R1 mAP R1

Basic 8 8 86.3 94.9 60.2 81.2 77.8 87.9
4 8 87.6 95.1 62.1 82.1 79.3 88.6
8 4 86.7 94.7 61.8 81.9 79.7 89.3

PVTReID 4 4 87.8 95.0 63.2 82.3 80.5 90.0

4.8. Comparison to State-of-the-Art Methods

In Table 6, we compare our PVTReID to state-of-the-art methods on the three bench-
marks datasets Market1501, MSMT17, and DukeMTMC-reID. On large datasets, the overall
performance of PVTReID is significantly better than previous state-of-the-art methods.
Specifically, on MSMT17, PVTReID achieves a 2.4% improvement in mAP. On DukeMTMC-
reID, PVTReID obtains a 0.5% improvement in mAP. On smaller datasets such as Market-
1501, PVTReID lags slightly behind a few other state-of-the-art methods.

Table 6. Comparison with state-of-the-art methods.

Backbone Method Size Inference
(Images/s)

Market1501 MSMT17 DukeMTMC-reID

mAP R1 mAP R1 mAP R1

CNN

CBN [2] 256 × 128 338 77.3 91.3 42.9 72.8 67.3 82.5
OSNet [38] 256 × 128 2028 84.9 94.8 52.9 78.7 73.5 88.6
SAN [39] 256 × 128 290 88.0 96.1 55.7 79.2 75.7 87.9
PGFA [40] 256 × 128 263 76.8 91.2 - - 65.5 82.6
HOReID [41] 256 × 128 310 84.9 94.2 - - 75.6 86.9
ISP [42] 256 × 128 315 88.6 95.3 - - 80.0 89.6
MGN [43] 384 × 128 287 86.9 95.7 52.1 76.9 78.4 88.7
SCSN [8] 384 × 128 267 88.5 95.7 58.5 83.8 79.0 91.0
ABDNet [9] 384 × 128 223 88.3 95.6 60.8 82.3 78.6 89.0

PVT Basic 256 × 128 359 86.3 94.9 60.2 81.2 77.8 87.9
PVTReID 256 × 128 341 87.8 95.3 63.2 82.3 80.5 90.0

- denotes absence of data.

Although CNN-based ReID methods mostly use the ResNet50 backbone to extract
person features, they may contain several branches (e.g., attention modules, pose estimation
models, and other modules) which increase computational cost. We conducted a fair
comparison of inference speed between PVTReID and CNN-based ReID on the same
hardware. OSNet does not use ResNet50 as the backbone, instead using a self-designed
CNN. Compared to state-of-the-art methods using ResNet50, PVTReID is 0.8% slower than
ISP in terms of mAP and 8% faster than ISP in terms of inference speed on the Market-
1501 dataset; on MSMT17, PVTReID shows an improvement of 2.4% in mAP compared
to ABDNet and a 52% improvement in inference speed, while on the DukeMTMC-reID
dataset PVTReID shows an improvement of 0.5% in mAP and 8% in inference speed
compared to ISP. The reasons for these results are as follows: first, most CNN-based
methods use complex branches to improve their fine-grained discrimination ability, which
generates additional resource consumption; second, several ReID methods (e.g., ABDNet)
use 384 × 128 size images, which increases resource consumption during feature extraction;
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third, PVTReID is based PVT, which has inherent disadvantages on small-scale datasets;
fourth, while PVTReID has additional branches, these branches are not complex and the
added resource consumption is not large. Therefore, PVTReID can achieve faster inference
speed with accuracy comparable to the majority of CNN-based methods.

5. Conclusions

In this article, we use PVT for ReID and propose two modules: a local feature clus-
tering (LFC) module and a side information embeddings (SIE) module. The proposed
PVTReID model achieves 87.8%, 63.2%, and 80.5% mAP, respectively, on the popular ReID
datasets Market1501, MSMT17, and DukeMTMC-reID, with fast inference speed. From
our theoretical analysis and experimental results, the following conclusions can be drawn:
(1) PVT used for ReID can provide improved inference speed under the premise of ex-
tracting effective person features; (2) clustering the discrete local features can improve the
robustness of the resulting features; (3) encoding the camera information to participate in
the feature extraction process can reduce the influence of nonvisual information on the
extracted features; and (4) using the Transformer structure for ReID has inherent problems
with poor performance on small datasets.

Based on the good results achieved by the proposed PVTReID model, we believe
that PVT has great potential for further development on the ReID task. It is possible to
use unsupervised learning to pretrain the PVT model on a large ReID dataset to solve the
cross-domain problem that exists between the current pretraining ImageNet dataset and
the ReID datasets used for testing. The PVT network outputs four different feature maps,
and PVT feature maps with different resolutions can be used in the ReID task. The current
PVTReID does not run fast enough to be reliably used in practice; thus a future direction
is to simplify the proposed PVTReID model using knowledge distillation to generate a
lighter version.
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Appendix A. Additional Experimental Results

Study of Basic PVT-Based Network

Section 3.1 of this paper describes the underlying PVT-based network with important
improvements. In this Appendix, the hyperparameter settings for training such a network
are analyzed in detail. Table A1 shows the results of the ablation study on the Market-1501
database with different training settings.
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Table A1. Ablation study on the Market-1501 database used for training hyperparameter settings.
The first line corresponds to the default configuration used for the basic PVT-based network (with
PVT-V2-B5 serving as the default backbone). The 4 indicates that the corresponding settings are
included. The abbreviations LR, DR, ADR, DPR, and LS denote the learning rate, drop rate, attention
drop rate, drop path rate, and label smoothing, respectively.

Method LR DR ADR DPR LR
Market1501

mAP R1

Basic 0.0008 0.1 0.1 0.3 4 86.3 94.9

0.008 4 4 4 4 86.0 (−0.3) 94.1 (−0.8)
0.004 4 4 4 4 86.1 (−0.2) 94.2 (−0.7)

Learning 0.002 4 4 4 4 86.2 (−0.1) 94.5 (−0.4)
Rate 0.001 4 4 4 4 86.3 (0.0) 94.7 (−0.2)

0.0006 4 4 4 4 86.2 (−0.1) 94.6 (−0.3)
0.0004 4 4 4 4 86.0 (−0.3) 94.2 (−0.7)

Drop 4 0.0 4 4 4 86.1 (−0.2) 94.4 (−0.6)
Rate 4 0.2 4 4 4 85.5 (−0.8) 94.0 (−0.9)

Attention 4 4 0.0 4 4 86.2 (−0.1) 94.2 (−0.7)
Drop 4 4 0.2 4 4 85.2 (−0.1) 94.3 (−0.6)

4 4 4 0.0 4 84.9 (−1.4) 93.6 (−1.3)
Drop 4 4 4 0.1 4 85.7 (−0.6) 94.1 (−0.8)
Path 4 4 4 0.2 4 86.1 (−0.2) 94.6 (−0.3)

4 4 4 0.4 4 86.0 (−0.3) 94.4 (−0.5)

Loss Function 4 4 4 4 8 86.0 (−0.2) 94.2 (−0.7)
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