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Abstract: Remote vital signal estimation has been researched for several years. There are numerous
studies on rPPG, which utilizes cameras to detect cardiovascular activity. Most of the research has
concentrated on obtaining rPPG from a complete video. However, excessive movement or changes
in lighting can cause noise, and it will inevitably lead to a reduction in the quality of the obtained
signal. Moreover, since rPPG measures minor changes that occur in the blood flow of an image due
to variations in heart rate, it becomes challenging to capture in a noisy image, as the impact of noise is
larger than the change caused by the heart rate. Using such segments in a video can cause a decrease
in overall performance, but it can only be remedied through data pre-processing. In this study, we
propose a screening technique that removes excessively noisy video segments as input and only uses
signals obtained from reliable segments. Using this method, we were able to boost the performance
of the current rPPG algorithm from 50.43% to 62.27% based on PTE6. Our screening technique can be
easily applied to any existing rPPG prediction model and it can improve the reliability of the output
in all cases.

Keywords: near-infrared camera; noise assessment; post-processing; remote photoplethysmography

1. Introduction

The method of attaching a contact photoplethysmography (PPG) sensor to a subject
causes discomfort to the wearer. Remote photoplethysmography (rPPG) studies have
been conducted to address the inconvenience of contact-type PPG devices. Heart rate
measurement serves as a crucial technology for not only monitoring health conditions
but also for other applications such as emotion recognition based on heart rate variability
(HRV) indicators and driving monitoring, encompassing factors like concentration and
drowsiness [1,2]. However, remote photoplethysmography (rPPG) techniques possess
optical limitations, rendering them more vulnerable to the influence of multiple sources
of noise, such as user movements or fluctuations in lighting conditions, in comparison
to contact-based measurement methods. This susceptibility can be attributed to the fact
that rPPG relies on pixel signals captured by camera sensors, which encompass not only
subtle alterations in skin color induced by cardiac activity but also various forms of noise,
including object movements and changes in illumination. Much related work has been
undertaken to identify and isolate the pulse signal’s cycle or waveform from the pixel signal,
which comprises a complex amalgamation of the pulse signal itself, motion-induced noise,
and instabilities in illumination [3]. However, despite a lot of efforts to mitigate noise and
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enhance the accuracy of remote sensing pulse signal measurements, methods based on re-
mote photoplethysmography (rPPG) still exhibit limitations that render them susceptible to
motion and illumination noise. This vulnerability arises due to the propensity for skin color
changes resulting from cardiac activity to be easily contaminated by noise on a significantly
larger scale [4]. Particularly in driving environments, remote heart rate measurements
frequently contend with variations in external lighting conditions, encompassing factors
such as solar light (both during daytime and night-time), traffic lights, and headlights.
To address these challenges, related works within vehicular settings have explored the
application of infrared cameras as an alternative to RGB cameras. Figure 1 illustrates
the intensity of light across different wavelength bands, corresponding to various light
sources. Notably, within the 940 nm wavelength band, the influence of sunlight diminishes
considerably compared to other bands, owing to the impact of H2O in the atmosphere [5].
Consequently, by implementing bandpass filtering within the 940 nm wavelength band, the
adverse effects of sunlight can be substantially mitigated, thereby alleviating noise caused
by this specific light source. However, it is important to acknowledge that an infrared
camera operating at a wavelength of 940 nm remains susceptible to the subject’s motion as
well as other light sources emitting light within the same wavelength range.
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Figure 1. Spectrum of solar radiation according to the wavelength range.

In this paper, we present a novel rPPG screening method that facilitates remote
photoplethysmography (rPPG) measurements within complex environments, especially for
driving situations, without the need for additional attachment equipment. Our proposed
method works within an infrared-camera-based measurement environment that can detect
light within the 940 nm wavelength band. The proposed method introduces a noise-
assessment-based pulse signal screening algorithm aimed at enhancing the accuracy of
remote heart rate measurement. This algorithm defines metrics for noise assessment,
including motion noise, illumination noise, and signal-to-noise ratio (SNR) indicators of
the heart rate signal. By evaluating video clips that are susceptible to errors in pulse signal
measurement, the algorithm selects high-quality clips for pulse signal extraction based on
noise assessment. Figure 2 below depicts the overall flow of this research.
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Figure 2. Overall flow of proposed method.

Existing studies have primarily focused on steps 2 through 6 from Figure 2, which
are the parts of the process that remove noise or extract signal from the image itself.
In contrast, our pulse signal screening approach assesses the reliability of each pulse
signal by leveraging noise assessment indicators. This method can be applied not only to
algorithm-based remote photoplethysmography (rPPG) techniques such as CHROM [6],
POS [7], and OMIT [8], but also to deep learning approaches like PULSEGAN [9] and
Physnet [10]. Through experimental evaluations, we have verified that the proposed
method demonstrates improvements even when applied to rPPG based on RGB cameras,
in addition to its applicability to NIR measurements, yielding 100% accuracy. Therefore, we
propose a pulse signal screening method based on noise assessment in the NIR environment,
which effectively enhances the accuracy of rPPG-based heart rate measurements.

Therefore, we can summarize the contribution points of our research as follows. First,
this is the first study to determine and screen the confidence interval (time sequence)
of the extracted rPPG signal to obtain higher accuracy. The method proposed in this
study quantifies the target person’s movement or excessive light changes, which can be
easily acquired from the video itself. Therefore, it can be widely and easily applied to
various studies to extract rPPG. Second, we used infrared cameras, which are more robust
to sunlight changes than RGB cameras. In addition, the self-collected data used in our
experiments were obtained from equipment that is reasonably priced compared to existing
studies. We have shown in our experiments that the data have an acceptable level of
accuracy. Finally, we have shown through discussion that high accuracy was indeed
obtained in the selected intervals.
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2. Related Work
2.1. Single Channel rPPG Method

Green [11] demonstrated the feasibility of conducting remote photoplethysmography
(rPPG) measurements using a consumer-level webcam. They observed that the green
bandwidth of visible light exhibits the highest number of heart rate signals due to the
significant absorption of light by hemoglobin in the green bandwidth. To extract a pulse
signal from the time series data, they continuously recorded the average pixel value of a
region of interest (ROI) corresponding to the skin pixels. The findings of this investigation
validate the applicability of remote photoplethysmography in medical and sports domains.
Moreover, they established that remote sensing using a monochrome camera is viable not
only in the visible light spectrum but also in the infrared wavelength bands [11].

DistancePPG [12] is a camera-based algorithm designed for non-contact estimation
of vital signs by extracting photoplethysmography (PPG) signals using readily available
cameras. The algorithm specifically focuses on utilizing the green channel within the
RGB channels to capture skin color variations across different regions of the face. This is
achieved by employing a weighted average approach, where the weights are determined
based on the blood flow dynamics and the impact of light on specific facial regions. To
calculate the weights for the time series signals obtained from multiple regions of interest
(ROIs), a quality assessment of the pulse signals was performed [12].

2.2. Multi Channel rPPG Method

CHROM [6] is a chrominance-based method that primarily focuses on extracting
diffuse reflection associated with pulsation while eliminating specular reflection, which
does not contain pulsatile signals. By utilizing a linear combination within the RGB domain,
a chrominance space is defined where specular reflections are effectively suppressed. This
method is commonly classified as a model-based approach, as it leverages the optical prop-
erties of remote photoplethysmography (rPPG). Among the algorithm-based approaches,
CHROM demonstrates state-of-the-art (SOTA) performance and has been employed in
the experiments conducted for this study. The effectiveness of the proposed method in
enhancing performance has been verified [6].

POS [7] introduced a motion-noise robust method based on the chrominance-based
approach. The proposed method by POS effectively eliminates noise components and
extracts the pulse signal by employing a projection plane orthogonal to the skin tone.
Similar to CHROM, POS is considered a model-based method that demonstrates state-
of-the-art (SOTA) performance among the proposed techniques. Through experimental
validation using our proposed approach, significant performance enhancement has been
confirmed [7].

The 3DCNN [13] method employs deep learning techniques. This approach utilizes a
three-dimensional input structure, where image data from each frame are treated as two-
dimensional input, and the 3D data are constructed along the temporal axis of the video.
To facilitate training and testing, the OBF dataset [14] and the MAHNOB-HCI dataset [15],
both comprising RGB images, are employed. However, this study also identified several
challenges inherent in deep learning models. These challenges encompass the requirement
for a substantial amount of training data, difficulties in utilizing 3DCNN within embedded
environments, and the model’s dependency on the specific training dataset, which hampers
its generalization to different datasets. Addressing these limitations in future investigations
is crucial to enhancing the applicability and effectiveness of the 3DCNN method [13].

2.3. rPPG Extraction with Screening Method

In the context of infrared-environment-acquired rPPG signals, a noise-resistant heart
rate estimation was conducted by assessing signal quality. To evaluate the quality of the
signal, frequency domain analysis was employed, accompanied by the incorporation of
hand-crafted features. Specifically, three features were defined. Firstly, the signal-to-noise
ratio (SNR) was computed by dividing the power of the maximum value in the power
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spectral density (PSD) and its two first harmonics by the remaining power. Secondly,
bandwidth (BW) was determined as the range encompassing 99% of the power, centered
around the maximum value of the PSD. Lastly, ratio peaks (RP) represented the ratio
between the power of the highest peak in the PSD and the power of the second highest
peak. By utilizing these characteristics, the performance was compared to the classic rPPG
algorithm using the mean absolute error (MAE) metric. Furthermore, different video
segments were evaluated using the same quality algorithm to compare performance. While
the proposed quality-based rPPG method exhibited improved performance compared to
the classic rPPG algorithm, it demonstrated relatively poor performance in cases where the
video segments were longer [16].

As shown in Table 1, previous studies mainly extracted rPPG signals through ROI detec-
tion, chrominance-based methods, or deep learning techniques. However, there are limitations
in extracting signals from NIR environments using DistancePPG, CHROM, POS, and 3D
CNN approaches. Moreover, previous studies except for Hernandez-Ortega, J. et al. [16], did
not incorporate rPPG screening methods. The proposed method in this study enables
rPPG signal extraction in NIR environments and allows for more robust pulse signal ex-
traction through a noise-assessment-based rPPG screening method. Additionally, unlike
Hernandez-Ortega, J. et al. [16], our method utilizes motion, illumination, and pulse signal
quality as noise assessment indicators. The proposed method enhances the accuracy of
the first-step rPPG extraction result through the second-step screening method, and can be
applied to all existing rPPG extraction methods. To confirm this, we checked the screening
results using Green, DistancePPG, which is applicable to the NIR environment. As can be
seen in the result section, the application of the screening method confirmed performance
improvements in the two rPPG methods.

Table 1. Related rPPG works.

Related Works NIR Applicable Screening Method rPPG Extraction

Green [11] 3 Face ROI detection
DistancePPG [12] SNR-based ROI selection

CHROM [6] Chrominance
POS [7] Chrominance

3D CNN [13] Supervised learning
Physformer [17] Supervised learning

Speth, Jeremy et al. [18] Unsupervised learning
Hernandez-Ortega, J. et al. [16] 3 3 Face ROI detection

Proposed method 3 3 SNR-based ROI selection

3. Method

In this study, we propose a method for extracting robust pulse signals in NIR environ-
ments through noise-assessment-based rPPG screening. Our approach leverages motion,
illumination, and pulse signal quality as indicators to evaluate the presence of noise, thereby
enhancing the performance of pulse signal extraction compared to existing methods. No-
tably, our method offers the advantage of minimal computational requirements, making it
suitable for real-time applications. Moreover, the rPPG screening technique can be seam-
lessly integrated with various existing methods, enabling performance improvements and
adaptability to diverse scenarios. Overall, this research contributes to the advancement
of efficient and effective heart rate extraction methods in infrared environments, with
potential applications in healthcare and other relevant fields.

3.1. Dataset

In the present study, data were collected from Sangmyung University, replicating the
conditions of an established open dataset. Twenty participants were included, comprising
nine males and eleven females, engaged in four distinct scenarios, with each scenario
lasting for two minutes. During these scenarios, participants were instructed to execute the



Appl. Sci. 2023, 13, 9818 6 of 17

following tasks: maintain a steady gaze, speak while maintaining a steady gaze, rotate their
faces at varying angles without speaking, and rotate their faces at varying angles while
speaking. As depicted in Figure 3, infrared cameras equipped with a 940 nm bandpass filter
and infrared illuminator were utilized for data collection. Moreover, ground truth signals
were obtained by leveraging a contact photoplethysmography (PPG) device. Among the
acquired dataset, two subjects exhibited light skin values, leading to significant saturation.
Consequently, the data from these two subjects were excluded, resulting in a dataset
containing information from 18 individuals. The final dataset, consisting of 72 cases,
was employed for both training and testing purposes. Details of camera equipment and
experimental setup of the dataset are shown in Table 2.

Table 2. Dataset specification.

Camera (Image Sensor) CM3-U3-13Y3M-CS (On Semi PYTHON 1300; Teledyne FLIR, Wilsonville, OR, USA) [19]

Infrared illuminator EI-100 (irradiation angle: 70◦, DC 12 V 0.8 A 10 W; Nikon Instruments, Tokyo, Japan)
Contact PPG sensor Ubpulse 360 (LAXTHA, Daejeon, Republic of Korea) [20]
Image resolution/fps 640 × 512/30 fps
Experiment setup Wild environment (head movements, facial expressions, and conversations allowed)
Illumination setup Indoor environment with infrared illuminator
Number of subjects 18 subjects (male: 9, female: 9)
Recording time Total 144 min (72 samples, 2 min per sample)
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3.2. Noise-Assessment-Based Screening Method

Figure 4 presents the overall process of acquiring rPPG in an infrared environment.
Initially, a 10 s video with a frame rate of 30 fps is utilized as the input. Subsequently,
facial regions in the video are detected, and the region of interest (ROI) is selected. This
pre-processing step is commonly employed by numerous algorithms, including Green and
DistancePPG, for rPPG extraction. Following this, the average of pixel changes within the
region is extracted as a signal, which then undergoes detrending and bandpass filtering
within the heart rate range to eliminate motion and noise. The refined signal is consequently
fed into algorithms such as Green or DistancePPG to extract the rPPG. Ultimately, the
Fourier transform is employed to ascertain the most frequently occurring frequency value,
which is expressed as the final predicted heart rate in terms of frequency.
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Figure 4. Depiction of the rPPG extraction method utilizing Green or DistancePPG prior to the
implementation of the proposed screening technique.

The screening method was applied to the derived heart rate, and the overall process is
depicted in Figure 5. In essence, the rPPG screening method utilizes only reliable heart rates
among those predicted from the rPPG signal, with reliability determined by the image qual-
ity. Factors such as substantial motion or significant illumination changes within the image
inevitably diminish the acquired signal’s quality, making it challenging for the algorithm
to compensate. Additionally, if the signal-to-noise ratio (SNR) value is exceedingly low,
noise impact becomes disproportionately large compared to the signal. As a result, we im-
plemented measures to assess whether the predicted heart rate—determined by detecting
motion amount, light changes, and the SNR within the video—can be considered reliable.

The judgment process is derived from various models, with the confidence level of
the rPPGcon f idence determined by the model. This allows for a numerical expression of
the predicted BPM’s reliability. If the derived rPPGcon f idence exceeds a certain threshold
(T), the predicted heart rate is utilized. Conversely, if it falls below T, the derived heart
rate is disregarded. This is illustrated in Equation (1). In this equation, k represents
the total number of samples for the derived heart rate. The optimal T value was also
determined through training. Subsequently, the derived rPPGk(T) is used to perform the
rPPGscreening. This method employs only the predicted heart rates with rPPGcon f idence(k)
values greater than or equal to T among all predicted rPPGs. In Equation (2), KrPPGk(T)>0
denotes the number of elements with rPPGcon f idence(k) greater than or equal to T among
the total number of K predictions. rPPGscreening signifies the average BPM post-filtering.
This equation demonstrates the process of screening solely reliable heart rates from the
extracted heart rates.

rPPGk(T) =
{

rPPGbpm , i f rPPGcon f idence(k) < T 0 , i f rPPGcon f idence(k) ≥ T (1)

rPPGscreening =
∑k

i=0 rPPGi(T)
KrPPGk(T)>0

(2)
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Figure 5. Illustration of the rPPG confidence measurement employed in the proposed rPPG
screening method.

3.3. Feature Extraction
3.3.1. Motion Noise Assessment

To quantify the motion noise of the face, the facial area is divided into 22 segments, with
each segment’s activity subsequently measured. In this study, we utilized the OpenFace
library to detect 68 facial landmarks for facial landmark analysis [21]. As illustrated in
Figure 6, an interpolation insertion technique was applied to the detected landmarks,
resulting in a total of 104 points, excluding the forehead area. Our focus was on the cheek
and chin areas, not the forehead. These areas were defined using 36 additional landmarks,
excluding the initial 68 landmarks. We created a total of 22 regions of interest (ROIs)
by designating one area using four landmarks. The 22 ROIs for motion detection were
established around the mouth and cheeks, which are the most sensitive areas during speech
or facial expression among facial movements. By employing the bounding box of the face,
we minimized the influence of background and non-skin facial areas. Furthermore, we did
not designate the forehead as an ROI due to the potential presence of noise from bangs or
hair, opting instead to focus on the lower part of the face.
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Motion measurement for each segment is calculated using the location difference
of the landmarks composing the segment. Euclidean distance is employed to determine
the location of each landmark, and the motion of the segment is assessed through the
average of the landmarks comprising each segment. Consequently, 22 motion values are
generated for each frame which are then utilized for further analysis. The equation for
motion measurement is presented below:

Mk = ∑4
n=1

(
bkn − b′kn

)
/4, (k = 1, 2, 3, · · · , 22) (3)

In Equation (3), k denotes the number of areas, n represents the vertex constituting
the area, b corresponds to the current frame’s vertex position, and b′ refers to the previous
frame’s vertex position. By evaluating the vertex changes between two frame sequences,
the movement of the four vertices within the region is determined, and the average is
calculated as M, the motion of the region. Subsequently, the 22 movement values are
utilized, as procured through the above-described method.

3.3.2. Illumination Noise Assessment

To quantify the illumination noise within the region of interest (ROI) pertaining to
facial analysis, the ROI was partitioned into nine distinct areas, as illustrated in Figure 7.
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The evaluation of illumination noise was conducted by computing the average pixel
values for both the entire facial region and the nine segmented facial areas. To assess
the temporal fluctuations in illumination within each area, standard deviation and the
difference between the maximum and minimum values were calculated based on the
time series of average pixel signals. The standard deviation of the time series data (X1 to
Xn) representing the average brightness values for each area was determined using the
following formula:

σk =

√
∑n

γ=1(Xγ − X)2

n
, (k = 1, 2, 3, · · · , 10) (4)

In the equation, X represents the average value of the time series data from X1 to Xn,
while k denotes the specific area of the face under consideration. The calculation of the dif-
ference between the maximum and minimum values in the time series data for the average
brightness values (X1 to Xn) of each area was performed using the following formula:

Ik = Max(Xk)−Min(Xk), (k = 1, 2, 3, · · · , 10), Xk = {X1, X2, · · · , Xn} (5)



Appl. Sci. 2023, 13, 9818 10 of 17

Hence, the assessment of illumination noise entails considering both the standard
deviation and the difference between the maximum and minimum values. Consequently,
the resulting illumination noise indicator comprises a total of 20 vectors.

3.3.3. Signal-to-Noise Ratio Assessment

To enhance the precision of photoplethysmography (PPG) measurements and assess
the signal quality obtained for different regions, we subdivided the entire facial area into
five distinct regions, excluding the eyes, nose, mouth, and forehead, as illustrated in
Figure 8 below.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 8. Region of interest for signal-to-noise ratio extraction. 

Following the conversion of heart rate estimates obtained through remote photople-
thysmography into a frequency spectrum, the maximum peak within the heart rate band-
width range of 0.7 to 3 Hz was designated as the first peak. The second peak was set at a 
frequency point twice that of the first peak. 

The function Ut(f) denotes the heart rate per minute signal within the first band-
width, which includes a margin of (−α) and (+α) to the left and right, centered around the 
first peak. Similarly, the function S(f) represents the power spectrum density correspond-
ing to heart rate per minute within the second bandwidth, including a margin of (−β) and 
(+β) to the left and right, centered around the second peak. 

To calculate the signal-to-noise ratio (SNR) for each facial area, which represents the 
ratio of the heart rate signal-to-noise, the following equation was utilized [22]. 𝑆𝑁𝑅 = 10𝑙𝑜𝑔ଵ( ∑ (()ௌመ()భఴబరమ )మ∑ ((ଵି())ௌመ())మభఴబరమ )  (6)

3.4. Model Training for Noise-Assessment-Based Pulse Signal Screening 
3.4.1. Random Forest 

The random forest technique, an ensemble method of decision trees [19], is employed 
to achieve accurate predictions. This approach involves generating multiple training da-
tasets through random sampling, training decision trees on these datasets, and aggregat-
ing the predictions of each decision tree to obtain the final prediction [23]. 

To create a random forest model, we utilized the ‘RandomForestClassifier’ class. In 
order to mitigate the risk of overfitting, we set the maximum depth of each decision tree 
to 2 using the max_depth parameter. Additionally, considering the characteristic of ran-
dom forest where it learns randomly from each decision tree, we set the random_state to 
0 to ensure consistent learning results across the model. Random forest is particularly ef-
fective for handling large amounts of data and mitigating overfitting issues that can arise 
from excessive noise within the model, thereby improving the predictive performance. 

3.4.2. Support Vector Regression 
Support vector regression (SVR) is a widely recognized method employed in diverse 

applications, wherein it seeks an optimal hyperplane by defining data points as support 
vectors to train a regression model. Similar to other methodologies, noise assessment met-
rics (Ik, k, Mk, SNR) are utilized as inputs with the objective of training a model that per-
forms regression on the absolute error value between the ground truth heart rate and the 

Figure 8. Region of interest for signal-to-noise ratio extraction.

Following the conversion of heart rate estimates obtained through remote photo-
plethysmography into a frequency spectrum, the maximum peak within the heart rate
bandwidth range of 0.7 to 3 Hz was designated as the first peak. The second peak was set
at a frequency point twice that of the first peak.

The function Ut(f ) denotes the heart rate per minute signal within the first bandwidth,
which includes a margin of (−α) and (+α) to the left and right, centered around the first
peak. Similarly, the function S(f ) represents the power spectrum density corresponding to
heart rate per minute within the second bandwidth, including a margin of (−β) and (+β)
to the left and right, centered around the second peak.

To calculate the signal-to-noise ratio (SNR) for each facial area, which represents the
ratio of the heart rate signal-to-noise, the following equation was utilized [22].

SNR = 10log10(
∑180

42 (Ut( f )Ŝ( f ))
2

∑180
42
(
(1−Ut( f ))Ŝ( f )

)2 ) (6)

3.4. Model Training for Noise-Assessment-Based Pulse Signal Screening
3.4.1. Random Forest

The random forest technique, an ensemble method of decision trees [19], is employed
to achieve accurate predictions. This approach involves generating multiple training
datasets through random sampling, training decision trees on these datasets, and aggregat-
ing the predictions of each decision tree to obtain the final prediction [23].

To create a random forest model, we utilized the ‘RandomForestClassifier’ class. In
order to mitigate the risk of overfitting, we set the maximum depth of each decision tree to
2 using the max_depth parameter. Additionally, considering the characteristic of random
forest where it learns randomly from each decision tree, we set the random_state to 0 to
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ensure consistent learning results across the model. Random forest is particularly effective
for handling large amounts of data and mitigating overfitting issues that can arise from
excessive noise within the model, thereby improving the predictive performance.

3.4.2. Support Vector Regression

Support vector regression (SVR) is a widely recognized method employed in diverse
applications, wherein it seeks an optimal hyperplane by defining data points as support
vectors to train a regression model. Similar to other methodologies, noise assessment
metrics (Ik, k, Mk, SNR) are utilized as inputs with the objective of training a model that
performs regression on the absolute error value between the ground truth heart rate
and the rPPG-based heart rate. The model training was conducted using the LIBSVM
method, employing a radial basis function kernel-based regression model. Additionally,
the hyperparameter for learning, gamma, was determined using Equation (7), and an
optimal regularization parameter was obtained through grid search.

gamma = 1/n f eatures (7)

where n f eatures is the length of the input. The grid search for the regularization parameter
was performed over a search range of 0.01 to 1000, with intervals defined as a geometric
sequence of 10 [24].

3.4.3. FT-Transformer

Tab transformer utilizes a transformer block to process categorical embeddings and
generate contextual embeddings [25]. The contextual embeddings are then combined
with the numerical features and fed through a multilayer perceptron (MLP) for prediction.
However, in order to address the limitation of utilizing numerical features only in the
final layers, we propose a model called the FT-Transformer that incorporates numerical
embeddings [26]. The FT-Transformer’s encoder receives numerical data as a list and
employs linear embeddings for numerical representation. The numerical embeddings have
a dimension of 64, and the model consists of 3 transformer blocks and 6 attention heads.
Both the attention layer and dense layer employ a dropout rate of 0.3. The numerical
embeddings, along with the noise assessment token embedding, are processed by the
transformer block, resulting in contextual embeddings that are then passed through the
MLP for prediction. During model training, Adam optimizer was employed, mean squared
error (MSE) served as the loss function, and root mean squared error (RMSE) was used
as the evaluation metric. Furthermore, early stopping was implemented to determine an
appropriate epoch for training.

4. Results

In order to evaluate the methods proposed in this study, the leave-one-out cross-
validation method was employed [27]. The accuracy calculations were based on the data
collected from all 18 participants, obtained through experiments conducted within the
same controlled environment. In each iteration, the data from one participant were set
aside as the validation set, while the data from the remaining 17 participants were utilized
as the training set to fit the model. The model’s predicted heart rate values were compared
against the ground truth heart rate values, and the accuracy was measured using the PTE6
(percentage of time that the heart rate error is less than 6 bpm) calculation [28].

PTE6 =
∑k bk

K
, bk =

0, i f
∣∣∣hrk − ĥrk

∣∣∣ > 6

1, i f
∣∣∣hrk − ĥrk

∣∣∣ ≤ 6
(8)

PTE6 is as shown in Equation (8), where hrk represents the ground truth of heart
rate corresponding to a kth time window. ĥrk is the remote heart rate measurement result
measured in a kth time window.
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Additionally, mean absolute percentage error (MAPE) is used as a metric. PTE6
classifies success and failure based on 6 bpm, so PTE6 is not affected by outliers such as an
error of 15 bpm or more. But, MAPE has the characteristic of reflecting errors with large
errors. MAPE is expressed as Equation (9).

MAPE =
100

k ∑k
i=1

∣∣∣∣∣ yi − f̂ (xi)

yi

∣∣∣∣∣ (9)

where k is the kth time window. yi is the correct heart rate corresponding to the ground
truth. f̂ (xi) is the remote heart rate measurement result.

This process was repeated for all 18 participants, and the average results were com-
puted to determine the overall accuracy. Among the four scenarios, the situations in which
the subjects maintained a steady gaze and spoke while maintaining a steady gaze were
grouped as still situations. The situation of moving their faces at various angles without
speaking and moving their faces at various angles while speaking was grouped into motion
situations. The results of calculating the accuracy using the two situations and all data are
shown in the following Table 3.

Table 3. Results of original methods and proposed methods.

Algorithm
Still Motion Total

PTE6 MAPE PTE6 MAPE PTE6 MAPE

Without screening method
Green [10] 39.89% >15% 29.98% >15% 34.97% >15%

DistancePPG [11] 54.08% 9.97% 45.44% 13.13% 50.43% 11.53%

Green with screening method (Ours)
Random Forest 56.77% 9.46% 42.90% 12.4% 56.04% 10.92%

SVR 56.67% 9.14% 41.79% 11.83% 55.91% 10.75%
Transformer 55.33% 10.27% 37.07% >15% 52.73% 11.4%

DistancePPG with screening method (Ours)
Random Forest 65.44% 7.76% 59.31% 8.54% 57.04% 8.94%

SVR 61.26% 8.14% 56.09% 9.16% 62.27% 8.63%
Transformer 60.29% 8.23% 48.13% 11.73% 54.61% 9.45%

The results suggest that the rPPG screening models refine high-error segments of
the video and selectively use low-error segments. We compared how accurately the
model’s predicted errors for each situation and person ID. Figures 9 and 10 demonstrate
the predicted error values for each situation by person ID.
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As shown in Figure 9, the model’s predicted error is usually high when there is motion
and talk in most cases. This indicates that the model is adept at detecting instances in the
input video that contain a considerable amount of noise, including motion, light, and SNR.
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The MAE without rPPG screening for each person ID and scenario is presented in
Figure 10 [29]. In most cases, the largest MAE is observed for Motion with talk and Motion
with large movements, as shown in the graph. This observation is consistent with the size
of the errors predicted by the model in Figure 9. Furthermore, it can be observed that in Still
(Ideal environment), where noise is minimal, the majority of the errors are under 5 bpm.
This correlation between the two graphs supports our hypothesis that our proposed rPPG
screening model can improve the accuracy of predicting rPPG through the identification
and removal of video regions with significant errors.

5. Discussion (and Future Work)

The results indicate that our proposed rPPG screening method outperformed the
existing approaches across all scenarios. Among them, random forest exhibited the best
performance in both still and motion environments, while SVR achieved the highest accu-
racy in the overall dataset, where all the data were trained and tested together. For a more
comprehensive analysis, we evaluated the accuracy for each individual. Table 4 presents
the accuracy results for each person in the decision tree and random forest models, while
Table 5 displays the accuracy for each person in the SVR and transformer models. Notably,
the results demonstrate a substantial dependence on the individual’s identity. Generally, in-
dividuals with lighter skin tended to exhibit higher infrared light saturation. Furthermore,
individuals wearing glasses displayed lower accuracy, particularly in motion scenarios.
Specifically, Person IDs 3, 8, 15, and 17 serve as examples of individuals wearing glasses.

Finally, we compared the error size of the actual and predicted BPMs with the error
size predicted by the model. Results of comparison are shown in Figure 11. Figure 11a
illustrates a comparison example in a scenario considering the motion and talk of subject 2.
In the bar graph, the red bar corresponds to the area predicted by the model to have low
error and selected by the filter, while the black bar represents the area not selected by the
model. The dotted plot displays the size of the predicted error at that time, which indicates
that the red bars have the smallest values among all the bins. We compared the cPPG and
predicted rPPG during the approximately 2 s interval (16–17 s) of the red bars that were
selected by the filter, and the interval (64–65 s) that were not selected. The results are shown
in Figure 11b,c, respectively. Regarding the first graph in Figure 11b which displays the
PPG amplitude, the comparison of cPPG and rPPG through each interval indicates that
rPPG, highlighted by a red line, has a similar spacing to cPPG. Below, there is a graph that
displays the time–frequency spectrum of the 1-s signal’s rPPG for both 16 and 17, with the
correct value of cPPG represented by a red line [30]. It is evident that the time–frequency
spectrum aligns precisely with the correct cPPG for both seconds 16 and 17. Figure 11c
displays the time–frequency spectrum of the rPPG at 64 and 65 s, respectively, with the
frequency of the cPPG shown as the red line. The unselected intervals exhibit a noisy
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predicted signal, as the rPPG at 64 and 65 s does not have the same frequency spectrum as
the maximum frequency of the cPPG.

Table 4. Results of proposed methods (decision tree, random forest) in person ID.

Person ID
Decision Tree Random Forest

Still Motion Total Still Motion Total
Person 1 37.70% 79.17% 41.98% 35.59% 42.86% 39.68%
Person 2 79.22% 88.00% 64.68% 82.26% 81.58% 61.07%
Person 3 91.09% 7.14% 71.17% 91.43% 26.67% 81.82%
Person 4 82.91% 50.00% 70.65% 82.46% 4.35% 74.54%
Person 5 0.00% 7.69% 25.68% 0.00% 38.89% 4.44%
Person 6 90.91% 95.24% 86.15% 88.89% 71.43% 92.23%
Person 7 21.74% 65.85% 31.72% 20.88% 67.57% 15.84%
Person 8 91.18% 0.00% 71.97% 63.11% 0.00% 94.55%
Person 9 72.00% 57.89% 90.91% 70.00% 70.59% 88.24%
Person 10 86.14% 78.67% 75.49% 88.78% 68.75% 90.48%
Person 11 71.62% 86.67% 56.72% 67.69% 50.00% 53.33%
Person 12 93.42% 85.25% 73.15% 90.00% 85.45% 57.89%
Person 13 9.09% 7.69% 10.47% 9.09% 7.14% 2.35%
Person 14 12.82% 4.76% 19.30% 37.10% 14.29% 14.93%
Person 15 20.69% 16.67% 21.78% 18.75% 46.67% 15.09%
Person 16 84.48% 54.55% 89.07% 85.42% 60.00% 54.86%
Person 17 58.14% 100.00% 34.29% 58.14% 57.14% 49.00%
Person 18 92.16% 39.13% 37.00% 59.70% 20.00% 50.00%

Table 5. Results of proposed methods (SVR, transformer) in person ID.

Person ID
SVR Transformer

Still Motion Total Still Motion Total
Person 1 31.11% 50.00% 41.30% 18.18% 45.61% 54.55%
Person 2 76.09% 100.00% 77.08% 36.36% 70.97% 87.50%
Person 3 84.00% 0.00% 89.58% 91.67% 7.02% 75.00%
Person 4 72.00% 46.15% 98.00% 50.00% 23.33% 72.00%
Person 5 8.70% 100.00% 0.00% 63.36% 33.87% 16.67%
Person 6 97.83% 100.00% 93.75% 100.00% 91.80% 65.21%
Person 7 28.00% 23.08% 22.00% 33.33% 62.30% 37.50%
Person 8 88.00% 30.77% 94.00% 50.00% 11.48% 8.33%
Person 9 54.00% 100.00% 50.00% 25.00% 57.38% 79.17%
Person 10 94.00% 83.33% 94.00% 100.00% 66.67% 62.50%
Person 11 76.47% 42.86% 82.35% 84.62% 71.43% 68.00%
Person 12 95.56% 78.57% 87.50% 100.00% 68.25% 83.33%
Person 13 20.00% 0.00% 4.35% 18.18% 18.97% 47.83%
Person 14 21.28% 30.77% 12.77% 33.33% 24.56% 34.78%
Person 15 8.89% 41.67% 8.70% 54.55% 19.30% 18.18%
Person 16 85.11% 25.00% 93.48% 75.00% 65.45% 45.45%
Person 17 57.78% 83.33% 64.44% 54.55% 90.91% 63.64%
Person 18 93.88% 69.23% 95.92% 91.67% 33.33% 58.33%

To summarize the contributions of this study, we have proposed a model to evaluate
the confidence of rPPG measurement and proposed a screening method for rPPG through
the confidence based on model’s predicted error. The model for measuring confidence is
a universal method that can be applied to any rPPG method because it uses facial region
and landmark data and rPPG signal as inputs. Through experiments, it was confirmed and
verified that performance is improved in all cases when the proposed method is applied to
the Green [10] and DistancePPG [11] methods applicable to infrared environments. For the
widespread use of rPPG, high-accuracy measurement is required even in wild environments
such as vehicles, mobile, and fitness environments, and the proposed screening method is
expected to be applied.

However, this study has limitations. First, the dataset used in the experiment includes
only Asian participants and was measured in an indoor environment. Therefore, addi-
tional experiments including participants of multiple races should be conducted as part
of future works. The second is that this study utilized an experimental environment with
no restrictions on subjects’ movements and conversations, but its data were acquired and
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verified only in an indoor environment, so verification in outdoor, driving, and fitness
environments should be conducted. Finally, although an improvement in accuracy was
confirmed via a method with low coverage for the actual total time, there is a limitation in
that the heart rate measurement accuracy does not cover the entire section. To overcome
this limitation, a method of compensating all the sections based on high-confidence data
with low predicted error margins should also be conducted as part of future works.
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wild environments such as vehicles, mobile, and fitness environments, and the proposed 
screening method is expected to be applied. 

However, this study has limitations. First, the dataset used in the experiment in-
cludes only Asian participants and was measured in an indoor environment. Therefore, 
additional experiments including participants of multiple races should be conducted as 
part of future works. The second is that this study utilized an experimental environment 
with no restrictions on subjects’ movements and conversations, but its data were acquired 
and verified only in an indoor environment, so verification in outdoor, driving, and fitness 
environments should be conducted. Finally, although an improvement in accuracy was 
confirmed via a method with low coverage for the actual total time, there is a limitation 

Figure 11. Detailed analysis of the motion with talk scenario in Subject 02. (a) Ground truth
MAE presented in a bar graph, where red bars represent accepted regions and black bars represent
abandoned regions, alongside the predicted MAE displayed in a dotted-line graph. (b) Comparison
of cPPG and rPPG signals within the accepted area. (c) Comparison of cPPG and rPPG signals within
the abandoned area.

6. Conclusions

The performance enhancement of an algorithm itself has inherent limitations. There-
fore, it is often necessary to refine and extract essential data through pre-processing or rPPG
screening techniques to achieve improved performance. For instance, research focused on
enhancing the performance of remote photoplethysmography (rPPG) includes methods
such as skin segmentation or pre-processing approaches that identify regions with promi-
nent blood flow changes. In this paper, we propose an rPPG screening method for selecting
reliable data from the extracted rPPG signals. Our proposed method has demonstrated
significant performance improvements in most cases compared to the absence of rPPG
screening. Notably, when applied to the total dataset, which contains not only still videos
but also videos with motion, the method yields a remarkable 23.47% (= 62.27%−50.43%

50.43% × 100%)
PTE6 performance increase, particularly when SVR is utilized (from Table 3). Furthermore,
the proposed method exhibits a low computational complexity, enabling real-time appli-
cation and integration with existing rPPG extraction methods. Future work can involve
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investigating data in more challenging scenarios with frequent interferences, such as in
vehicular environments or under various light movements. Additionally, the effectiveness
of the algorithm in RGB camera environments warrants further exploration. Furthermore,
we anticipate that the rPPG screening method will find applications not only in rPPG
enhancement but also in other vital sign measurements, such as remote respiration and
blood pressure measurement [31–33].
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